BIOAVAILABILITY AND PHARMACOKINETICS ,DRUG LIKELINESS PREDICTIONS OF BIOACTIVE COMPOUNDS OF LICORICE USING SWISS ADME SOFTWARE
Main Article Content
Keywords
ADMET LAB 3.0, licorice, bioactive compounds, medicinal plant, SWISS ADME, drug likeliness.
Abstract
BACKGROUND: Earlier research on licorice focused on documenting their bioactive compound profiles and traditional use. Before making a drug like substance prediction using information from in-silico experimental models. The current work aimed to examine and analyze the ADMET properties. This study assessed the drug-likeliness and ADMET characteristics of bioactive compounds from licorice.
MATERIALS AND METHODS:The current study will be the first to use the free online tool SWISS ADME to report the ADME characteristics of licorice. The ADME properties of five bioactive compounds from licorice were screened and the results were evaluated.
RESULT:Five bioactive compounds were identified to have good gastrointestinal absorption and can penetrate the brain . These compounds include Glycyrrhizic acid showing better lipophilicity, hydrogen bond donor and hydrogen bond acceptor.
CONCLUSION: This method is for determining the ADME characteristics of the bioactive compounds in Licorice. Based on the information, it was predicted that licorice would be effective in managing the disease. To validate these findings, it is advisable to conduct further controlled experimental research exploring the bioactive compounds’ pharmacological effects.
References
2. Amani M, Mostoufi RS, Kashani HA. Optimal extraction of glycyrrhetinic acid from licorice root. J Food Technol. 2005;3(4):576-80.
3. Awad V, Kuvalekar A, Harsulkar A. Microbial elicitation in root cultures of *Taverniera cuneifolia* (Roth) Arn. for elevated glycyrrhizic acid production. Ind Crops Prod. 2014;54:13-6.
4. Simon JE, Chadwick AF, Craker LE. Herbs: an indexed bibliography, 1971-1980: the scientific literature on selected herbs, aromatic, and medicinal plants of the temperate zone. Connecticut: Shoe String Press; 1984.
5. Evans WC. Trease and Evans’ pharmacognosy. London: Elsevier Health Sciences; 2009.
6. Abe H, Ohya N, Yamamoto KF, et al. Effects of glycyrrhizin and glycyrrhetinic acid on growth and melanogenesis in cultured B16 melanoma cells. Eur J Cancer Clin Oncol. 1987;23:1549-55.
7. Abudayyak M, Özdemir Nath E, Özhan G. Toxic potentials of ten herbs commonly used for aphrodisiac effect in Turkey. Turk J Med Sci. 2015;45:496-506.
8. Agarwal R, Mukhtar H. Inhibition of mouse skin tumor-initiating activity of DMBA by chronic oral feeding of glycyrrhizin in drinking water. Nutr Cancer. 1991;15:187-93.
9. Akasaka Y, Hatta A, Sato T, et al. Chronic toxicity study of monoammonium glycyrrhizinate by repeated subcutaneous administration to CD rats for 26 weeks. Jpn Pharmacol Ther. 2008;36:1025-37.
10. Akasaka Y, Hatta A, Sato T, et al. Studies on genotoxicity of monoammonium glycyrrhizinate. Jpn Pharmacol Ther. 2009;37:49-60.
11. Zhao Z, Luo L, Wang Z, Guo B, Gao C. Biomimetic “Trojan Horse” delivery of traditional Chinese medicine with immunogenic hybrid vesicles of bacterial outer membrane and tumor cell membrane for synergistic chemo-immunotherapy of liver cancers. Mater Today Bio. 2025;34:102251. doi:10.1016/j.mtbio.2025.102251
12. Sivakumar H, Brintha Jei J, Muthukumar B. In vitro evaluation of tear strength, antifungal effect, and polymicrobial resistance in *Glycyrrhiza glabra*–incorporated maxillofacial silicone. J Oral Biol Craniofac Res. 2025;15(5):1071-6. doi:10.1016/j.jobcr.2025.07.010
13. Xue W, Fan X, Hui Y, Yu J. Active compounds of licorice ameliorate microplastics-induced intestinal damage by targeting FADD. Food Chem Toxicol. 2025;203:115570. doi:10.1016/j.fct.2025.115570
14. Labrie F, Cusan L, Gomez JL, Diamond P, Candas B. Can combined androgen blockade provide long-term control or possible cure of localized prostate cancer? Urology. 2002;60(3):115-9. Available from: [https://www.sciencedirect.com/science/article /pii/S0090429502016394](https://www.sciencedirect.com/science/article/pii/S0090429502016394)
15. de la Taille A, Hayek OR, Burchardt M, Melamed J, Buttyan R, Katz AE. Herbal therapy PC-SPES: in vitro effects and evaluation of its efficacy in 69 patients with prostate cancer. J Urol. 2000;164(4):1229-34. Available from: [https://www.sciencedirect.com/science/ article/pii/S0022534705671467](https://www.sciencedirect.com/science/article/pii/S0022534705671467)
16. Pirani JF. The effects of phytotherapeutic agents on prostate cancer: an overview of recent clinical trials of PC-SPES. Urology. 2001;58(2 Suppl 1):35-8. Available from: [https://www.sciencedirect.com/science/article/pii/S0090429501012407](https://www.sciencedirect.com/science/article/pii/S0090429501012407)
17. Oh WK, Kantoff PW, Weinberg V, Jones HW, Rini BI, Derynck MK, et al. Activity of the herbal combination, PC-SPES, in the treatment of patients with androgen-independent prostate cancer. Urology. 2001;57(1):122-6. Available from: [https://www.sciencedirect.com/ science/article/pii/S0090429500009869](https://www.sciencedirect.com/science/article/pii/S0090429500009869)
18. Oh WK, Bubley GJ, Balk SP. PC-SPES and prostate cancer. Urol Clin North Am. 2002;29(1):107-18. Available from: [https://www.sciencedirect.com/science /article/pii/S0094014302000174](https://www.sciencedirect.com/science/article/pii/S0094014302000174)
19. Ye L, Wang ZL, Xu ZQ, Tian YG, Zhang M, Abe I, Ye M. Elucidating the biosynthetic pathway and mechanisms of retrochalcones. J Am Chem Soc. 2025;147(32):29205-14. doi:10.1021/jacs.5c08070
20. Zhao C, Zhang Q, Li H, Wang R, Fan J, Ting JU, Zou J, Ye M. Isolation, structural characterization, and hepatoprotective activities of isopentenylphenols from the root barks of *Glycyrrhiza uralensis*. J Agric Food Chem. 2025;73(25):15741-50. doi:10.1021/ac s.jafc.5c04426
21. Çevik D, Masullo M, Lauro G, Napolitano A, Martucciello S, Paolella G, et al. Dihydroaurones and isoflavan derivatives from the roots of *Glycyrrhiza asymmetrica*. J Nat Prod. 2025;88(2):294-305. doi:10.1021/acs.jnatprod.4c00878
22. Alhusban M, Pandey P, Ahn J, Avula B, Haider S, Avonto C, et al. Computational tools to expedite the identification of potential PXR modulators in complex natural product mixtures: a case study with five closely related licorice species. ACS Omega. 2022;7(30):26824-43. doi:10.1021/acsomega.2c03240
23. Kang Y, Pezzuto J. Induction of quinone reductase as a primary screen for natural product anticarcinogens. Methods Enzymol. 2004;382:380-414. doi:10.1016/S0076-6879(04)82021-4
24. Kape R, Parniske M, Brandt S, Werner D. Isoliquiritigenin, a strong nod gene- and glyceollin resistance-inducing flavonoid from soybean root exudate. Appl Environ Microbiol. 1992;58:1705-10. doi:10.1128/aem.58.5.1705-1710.1992
25. Cao Y, Wang Y, Ji C, Ye J. Determination of liquiritigenin and isoliquiritigenin in *Glycyrrhiza uralensis* and its medicinal preparations by capillary electrophoresis with electrochemical detection. J Chromatogr A. 2004;1042:203-9. doi:10.1016/j.chroma.2004.05.04
26. Ramadan M, Kamel M, Ohtani K, Kasai R, Yamasaki K. Minor phenolics from *Crinum bulbispermum* bulbs. Phytochemistry. 2000;54:891-6. doi:10.1016/S0031-9422(00)00184-9
27. Pan X, Kong L, Zhang Y, Cheng C, Tan R. In vitro inhibition of rat monoamine oxidase by liquiritigenin and isoliquiritigenin isolated from *Sinofranchetia chinensis*. Acta Pharmacol Sin. 2000;21:949-53.
28. Kong L, Zhang Y, Pan X, Tan R, Cheng C. Inhibition of xanthine oxidase by liquiritigenin and isoliquiritigenin isolated from *Sinofranchetia chinensis*. Cell Mol Life Sci. 2000;57:500-5. doi:10.1007/PL00000710
29. Hulka BS, Moorman PG. Breast cancer: hormones and other risk factors. Maturitas. 2001;38(1):103-13. doi:10.1016/S0378-5122(00)00196-1
30. Adlercreutz H. Phyto-oestrogens and cancer. Lancet Oncol. 2002;3(6):364-73. doi:10.1016/S1470-2045(02)00777-5
31. Keinan-Boker L, van der Schouw YT, Grobbee DE, Peeters PHM. Dietary phyto-estrogens and breast cancer risk. Am J Clin Nutr. 2004;79(2):282-8. doi:10.1016/S0002-9165(22)03825-4
32. Qiu S, Dong S, Fan J, Wu C, Qi X. Effect of high mobility group box 1 pathway inhibition on gene expression in the prefrontal cortex of mice exposed to alcohol. Alcohol. 2025;127:47-53. doi:10.1016/j.alcohol.2024.10.047
33. Matuzok TM, Prikhodko VA, Napalkova SM, Buyuklinskaya OV, Okovityi SV. Effects of glycyrrhizinic acid on neuromotor function in leptin-resistant mice. Drug Dev Regist. 2025;14(3):2030. doi:10.33380/2305-2066-2025-14-3-2030
34. Nazari S, Rameshrad M, Hosseinzadeh H. Toxicological effects of *Glycyrrhiza glabra* (licorice): a review. Phytother Res. 2017;31(11):1635-51. doi:10.1002/ptr.589
35. Iafrati MD, Karas RH, Aronovitz M, Kim S, Sullivan TR Jr, Lubahn DB, O’Donnell TF Jr, Korach KS, Mendelsohn ME. Estrogen inhibits the vascular injury response in estrogen receptor alpha-deficient mice. Nat Med. 1997;3:545-8.
36. Korach KS. Insights from the study of animals lacking functional estrogen receptor. Science. 1994;266:1524-7.
37. Phillips DM, Balducci L. Current management of breast cancer. Am Fam Physician. 1996;53:657-65.
38. Broeders MJ, Verbeek AL. Breast cancer epidemiology and risk factors. Q J Nucl Med. 1997;41:179-88.
39. Harris RJ, Lippman ME, Veronesi U, Willett W. Medical progress: breast cancer. N Engl J Med. 1992;327:319-28.
40. Dong S, et al. Activation of rapid signaling pathways and the subsequent transcriptional regulation for the proliferation of breast cancer MCF-7 cells by the treatment with an extract of *Glycyrrhiza glabra* root.Food Chem Toxicol.2007;45(12):24707.
41. Gumpricht E, et al. Licorice compounds glycyrrhizin and 18beta-glycyrrhetinic acid are potent modulators of bile acid-induced cytotoxicity in rat hepatocytes. J Biol Chem. 2005;280(11):10556-63.
42. Jung JI, et al. Isoliquiritigenin induces apoptosis by depolarizing mitochondrial membranes in prostate cancer cells. J Nutr Biochem. 2006;17(10):689-95.