INTRATHECAL HYPERBARIC BUPIVACAINE VERSUS HYPERBARIC ROPIVACAINE FOR SPINAL ANAESTHESIA IN CAESAREAN SECTION: A RANDOMIZED CONTROLLED TRIAL FROM NORTHEAST INDIA

Main Article Content

Dr. Sahani Debbarma
Dr. Anupam Chakrabarti
Dr. Ranjit Reang
Dr. Rahul Dattaroy

Keywords

caesarean section; spinal anaesthesia; ropivacaine; bupivacaine; hyperbaric; motor recovery; haemodynamics; randomized trial.

Abstract

Background: Spinal anaesthesia (SA) is the preferred technique for elective caesarean section (CS), offering rapid onset, reliable surgical conditions, and avoidance of airway manipulation [1–4]. Hyperbaric bupivacaine remains standard but is associated with prolonged motor block and hypotension [3,6]. Ropivacaine, a pure S-enantiomer with lower cardiotoxicity and relative sensorymotor dissociation, may facilitate earlier mobilization with a comparable sensory profile [7–9]. Methods: In this single-blinded, randomized controlled trial conducted at Agartala Government Medical College & GBP Hospital, parturients (ASA I–II; 18–40 years; ≥37 to <42 weeks; height 145– 165 cm; weight 45–95 kg) scheduled for elective CS were allocated 1:1 to receive intrathecal hyperbaric bupivacaine 0.5% 12 mg (2.4 mL) or hyperbaric ropivacaine 0.75% 18 mg (2.4 mL). Randomization used variable blocks with sequentially numbered opaque sealed envelopes; participants were blinded. Primary outcomes were onset and duration of sensory block (to T6; regression to T10) and motor block (Bromage 3 onset; regression to 0). Secondary outcomes included duration of effective analgesia (to first rescue at VAS ≥ 4), intra-/postoperative haemodynamics (HR, SBP, DBP, MAP, SpO₂), and adverse effects. Statistical analysis employed t-tests and chisquare/Fisher’s exact tests (p<0.05). Ethics approval Ref. No. F.4(6-13)/AGMC/…/2022/21,857 (09Jan-2023); CTRI/2024/05/067399.


Results: Sixty-six parturients were analysed (33/group). Groups were comparable at baseline (age 26.6 ± 5.8 vs 28.0 ± 13.3 y; weight 68.9 ± 8.8 vs 68.0 ± 7.7 kg; height 151.4 ± 2.7 vs 147.6 ± 2.4 cm; all p>0.05). Ropivacaine produced faster onset of sensory block to T6 (4.18 ± 0.59 vs 6.05 ± 0.70 min; p = 0.001) and faster motor block onset (8.33 ± 1.33 vs 9.39 ± 0.87 min; p = 0.01). Regression was faster with ropivacaine for both sensory (to T10: 135.1 ± 7.5 vs 156.5 ± 10.0 min; p = 0.001) and motor block (149.3 ± 10.5 vs 176.1 ± 10.5 min; p = 0.025). Duration of effective analgesia was shorter with ropivacaine (136.3 ± 7.9 vs 158.6 ± 13.4 min; p = 0.003). Haemodynamics were similar between groups intra- and postoperatively without clinically meaningful differences. Intraoperative adverse events (nausea, vomiting, shivering, hypotension, bradycardia) were numerically fewer in the ropivacaine group; differences were not statistically significant.


Conclusion: Intrathecal hyperbaric ropivacaine (18 mg) provided a comparable sensory block with significantly earlier onset and faster motor recovery than hyperbaric bupivacaine (12 mg) in elective CS, enabling earlier ambulation and potentially enhancing postoperative throughput—without compromising haemodynamic stability or safety.

Abstract 194 | Pdf Downloads 36

References

1. Sng, B. L., Siddiqui, F. J., Leong, W. L., Assam, P. N., Chan, E. S. Y., Tan, K. H., & Sia, A. T. (2016). Hyperbaric versus isobaric bupivacaine for spinal anaesthesia for caesarean section. Cochrane Database of Systematic Reviews, (9), CD005143. https://doi.org/10.1002/ 14651858.CD005143.pub3
2. Kuthiala, G., & Chaudhary, G. (2011). Ropivacaine: A review of its pharmacology and clinical use. Indian Journal of Anaesthesia, 55(2), 104–110. https://doi.org/10.4103/0019-5049.79875
3. Simpson, D., Curran, M. P., Oldfield, V., & Keating, G. M. (2005). Ropivacaine: A review of its use in regional anaesthesia and acute pain management. Drugs, 65(18), 2675–2717. https://doi.org/10.2165/00003495-200565180-00008
4. Halpern, S., & Preston, R. (1994). Postdural puncture headache and spinal needle design: Metaanalyses. Anesthesiology, 81(6), 1376–1383. https://doi.org/10.1097/00000542-19941200000012
5. Zaric, D., & Pace, N. L. (2009). Transient neurologic symptoms (TNS) following spinal anaesthesia with lidocaine versus other local anaesthetics. Cochrane Database of Systematic Reviews, (2), CD003006. https://doi.org/10.1002/14651858.CD003006.pub2
6. Olapour, A., Akhondzadeh, R., Rashidi, M., Gousheh, M., & Homayoon, R. (2020). Comparing the effect of bupivacaine and ropivacaine in caesarean delivery with spinal anesthesia. Anesthesiology and Pain Medicine, 10(1), e94155. https://doi.org/10.5812/aapm.94155
7. Dar, F. A., Mushtaq, M. B., & Khan, U. M. (2015). Hyperbaric spinal ropivacaine in lower limb and hip surgery: A comparison with hyperbaric bupivacaine. Journal of Anaesthesiology Clinical Pharmacology, 31(4), 466–470. https://doi.org/10.4103/0970-9185.169064
8. Kulkarni, K. R., Desai, S. N., & Kamat, K. (2014). A comparative evaluation of hyperbaric ropivacaine versus hyperbaric bupivacaine for elective surgery under spinal anesthesia. Journal of Anaesthesiology Clinical Pharmacology, 30(2), 238–242. https://doi.org/10.4103/09709185.130031
9. Chen, X.-Z., Chen, H., Lou, A.-F., & Lu, C.-C. (2006). Dose–response study of spinal hyperbaric ropivacaine for cesarean section. Journal of Zhejiang University SCIENCE B, 7(12), 992–997. https://doi.org/10.1631/jzus.2006.B0992
10. Whiteside, J. B., Burke, D., & Wildsmith, J. A. W. (2003). Comparison of ropivacaine 0.5% (in glucose 5%) with bupivacaine 0.5% (in glucose 8%) for spinal anaesthesia for elective surgery. British Journal of Anaesthesia, 90(3), 304–308. https://doi.org/10.1093/bja/aeg077
11. Zheng, T., Ye, P., Wu, W., Hu, B., Chen, L., Zheng, X., & Lin, M. (2020). Minimum local anesthetic dose of ropivacaine in real-time ultrasound-guided intraspinal anesthesia for lower extremity surgery: A randomized controlled trial. Annals of Translational Medicine, 8(14), 861.
https://doi.org/10.21037/atm-20-3805
12. Zheng, T., Zheng, C. Y., Yan, L.-P., Guo, H.-L., You, Y., Ye, P., Hu, B., & Zheng, X.-C. (2021). Comparing the minimum local anesthetic dose of ropivacaine in real-time ultrasound-guided versus landmark-guided spinal anesthesia: A randomized controlled trial. Annals of Translational Medicine, 9(19), 1492. https://doi.org/10.21037/atm-21-3888
13. Wang, H., Guo, Q., Xu, R., Ding, W., Zhang, Y., & Fang, J. (2019). The efficacy of ropivacaine and bupivacaine in caesarean section and effects on maternal haemodynamics. Saudi Journal of Biological Sciences, 26(8), 1991–1994. https://doi.org/10.1016/j.sjbs.2019.09.010
14. Kallio, H., Snäll, E.-V. T., Kero, M. P., & Rosenberg, P. H. (2004). A comparison of intrathecal plain solutions containing ropivacaine (15 or 20 mg) versus bupivacaine (10 mg). Anesthesia & Analgesia, 99(3), 713–717. https://doi.org/10.1213/01.ANE.0000122829.43184.34
15. Casati, A., & Putzu, M. (2005). Bupivacaine, levobupivacaine and ropivacaine: Are they clinically different? Best Practice & Research Clinical Anaesthesiology, 19(2), 247–268.
https://doi.org/10.1016/j.bpa.2005.02.008
16. Wulf, H. F. W. (1998). The centennial of spinal anesthesia. Anesthesiology, 89(2), 500–506.
https://doi.org/10.1097/00000542-199808000-00026
17. Mazoit, J.-X., Cao, L.-S., & Samii, K. (1996). Binding of bupivacaine to human serum proteins: Differences between enantiomers and evidence of cooperativity. Journal of Pharmacology and Experimental Therapeutics, 276(1), 109–115. https://doi.org/10.1124/jpet.276.1.109
18. Denson, D. D., Coyle, D. E., Thompson, G. A., & Myers, J. A. (1984). Alpha1-acid glycoprotein and albumin in human-serum bupivacaine binding. Clinical Pharmacology & Therapeutics, 35(3), 409–415. https://doi.org/10.1038/clpt.1984.49
19. Yeoh, S. B., Leong, S. B., & Sia, A. T. (2010). Anaesthesia for lower-segment caesarean section: An update. Indian Journal of Anaesthesia, 54(5), 409–414. https://doi.org/10.4103/00195049.71035
20. Lee, Y.-Y., Ngan Kee, W. D., Fong, S. Y., Liu, J. T.-C., & Gin, T. (2009). The median effective dose of bupivacaine, levobupivacaine, and ropivacaine after intrathecal injection in lower-limb surgery. Anesthesia & Analgesia, 109(4), 1331–1334. https://doi.org/10.1213/ane. 0b013e3181b5a30d