REVOLUTIONIZING IMPACT OF PHOTON COUNTING COMPUTED TOMOGRAPHY IN RADIOLOGICAL IMAGING TECHNIQUES

Main Article Content

Simran Tariq

Keywords

Energy Integrating Detectors, Spatial resolution, Contrast-to-Noise Ratio, Artifacts, Photon Counting Computed Tomography.

Abstract

Conventional Computed Tomography (CT) systems utilize Energy-Integrating Detectors that aggregate the energy of incoming X-ray photons, which often results in limited spatial resolution and diminished contrast in soft tissues, causing difficulties in material differentiation. By counting individual photons and detecting their energy levels, Photon Counting Computed Tomography (PCCT) has become a revolutionary imaging method intended to get beyond these restrictions. PCCT measures photon energy using semiconductor-based photon-counting detectors, usually based on cadmium telluride or cadmium zinc telluride, which directly transform X-ray photons into electrical signals. Compared to traditional CT systems, PCCT offers better tissue characterisation, lower radiation doses, and higher image quality, making it a major breakthrough in medical imaging technology. Superior spatial resolution, a higher contrast-to-noise ratio, and multi-energy imaging capabilities are made possible by this, enabling specialised diagnostic applications like material decomposition, plaque characterisation, and better tiny lesion detection. Furthermore, PCCT has the potential to improve soft tissue visualisation and lessen artifacts, which would help with more precise diagnosis and personalised patient treatment. With its increased diagnostic precision, dose-reduction benefits for patient safety, and potential for personalised imaging procedures, PCCT is a significant milestone in medical imaging. It is anticipated that its uses in musculoskeletal imaging, cardiovascular evaluation, oncology, and early illness detection would revolutionise radiology research and clinical practice.

Abstract 85 | Pdf Downloads 22

References

1. Alves, A. C., Soares, J. C., & Silva, D. H. (2024). Deep PCCT: Photon Counting Computed Tomography deep learning applications review (pp. 1–29). arXiv. https://doi.org/10.48550/arXiv.2402.04301
2. Aly, A. H., El-Raheem, I. D., & Hassan, A. M. (2023). A temperature sensor based on Si/PS/SiO₂ photonic crystals. Scientific Reports, 13(1), Article 48836. https://doi.org/10.1038/s41598-023-48836-5
3. Cademartiri, F., Miller, T., Rinaldi, A., & Mattesini, A. (2023). Dual source photon-counting computed tomography—Part II: Clinical overview of neurovascular applications. Journal of Clinical Medicine, 12(11), Article 3626. https://doi.org/10.3390/jcm12113626
4. Feng, J., Shen, B., Wang, X., & Li, J. (2020). Image-domain based material decomposition by multi-constraint optimization for spectral CT. IEEE Access, 8, 155450–155458. https://doi.org/10.1109/ACCESS.2020.3016675
5. Flohr, T., & Schmidt, B. (2023). Technical basics and clinical benefits of photon-counting CT. Investigative Radiology, 58(7), 441–450. https://doi.org/10.1097/RLI.0000000000000980
6. Flores, J. D., Patel, K., Gupta, R., & Kim, S. (2025). Optimization of low contrast detectability in abdominal imaging: A comparative analysis of PCCT, DECT, and SECT systems. Medical Physics, 52(5), 2832–2844. https://doi.org/10.1002/mp.17717
7. Heismann, B., Kreisler, B., & Fasbender, R. (2025). Photon-counting CT versus energy-integrating CT: A comparative evaluation of advances in image resolution, noise, and dose efficiency. Medical Physics, 52(3), 1526–1535. https://doi.org/10.1002/mp.17591
8. Horst, K. K., Jensen, A. L., & Sørensen, B. (2023). Pilot study to determine whether reduced dose photon counting detector chest CT can reliably display Brody II score imaging findings for children with cystic fibrosis at radiation doses that approximate radiographs. Pediatric Radiology, 53(6), 1049–1056. https://doi.org/10.1007/s00247-022-05574-6
9. Meloni, A., Costa, N., & Rossi, F. (2023). Photon-counting computed tomography (PCCT): Technical background and cardio vascular applications. Diagnostics, 13(4), Article 645. https://doi.org/10.3390/diagnostics13040645
10. Meloni, A., Bianchi, G., & Ferri, M. (2024). Technical principles, benefits, challenges, and applications of photon counting CT in coronary imaging: A narrative review. Cardiovascular Diagnosis and Therapy, 14(4), 698–724. https://doi.org/10.21037/cdt-24-52
11. Mese, I., Contaldi, C., & De Marchi, M. (2024). Innovative advances in pediatric radiology: CT reconstruction techniques, photon counting detector CT, and beyond. Pediatric Radiology, 54(1), 1–11. https://doi.org/10.1007/s00247-023-05823-2
12. Michael, A. E., Schmidt, B., & Flohr, T. (2023). Coronary stent imaging in photon counting computed tomography: Optimization of reconstruction kernels in a phantom. European Journal of Radiology, 166, 110983. https://doi.org/10.1016/j.ejrad.2023.110983
13. Rao, D., Patel, P., & Singh, A. (2024). Comprehensive review of external and middle ear anatomy on photon counting CT. American Journal of Neuroradiology, 45(12), 1857–1864. https://doi.org/10.3174/ajnr.A8359
14. Ruetters, M., Becker, C., & Hoffmann, A. (2022). Dental imaging using an ultra high resolution photon counting CT system. Scientific Reports, 12(1), Article 11281. https://doi.org/10.1038/s41598-022-11281-x
15. Shah, K. D., Lee, S. J., & Kim, H. (2025). Photon counting CT in cancer radiotherapy: Technological advances and clinical benefits. Physics in Medicine and Biology, 70(10), Article add4ba. https://doi.org/10.1088/1361-6560/add4ba
16. Stålhammar, F., Svensson, E., & Larsson, M. (2024). Photon counting CT for pediatric congenital heart defects yields images of high diagnostic quality with low radiation doses at both 70 kV and 90 kV. Pediatric Radiology, 54(7), 1187–1196. https://doi.org/10.1007/s00247-024-05939-z
17. Stein, T., Müller, J., & Wagner, H. (2022). Photon counting computed tomography: Basic principles, potential benefits, and initial clinical experience. RoFo – Fortschritte auf dem Gebiet der Rontgenstrahlen und der Bildgebenden Verfahren, 195(8), 691–698. https://doi.org/10.1055/a-2018-3396
18. Symons, R., Pourmorteza, A., Evers, R., Ulzheimer, S., & Rajendran, K. (2018). Photon Counting Computed Tomography for vascular imaging of the head and neck: First in vivo human results. Investigative Radiology, 53(3), 135–142. https://doi.org/10.1097/RLI.0000000000000439
19. Tortora, M., Z blooming, P., & Russo, C. (2022). Spectral photon counting computed tomography: A review on technical principles and clinical applications. Journal of Imaging, 8(4), Article 112. https://doi.org/10.3390/jimaging8040112
20. Wehrse, E., Jung, T., & Schulz, H. (2021). Photon counting detectors in computed tomography: From quantum physics to clinical practice. Der Radiologe, 61(1), 1–10. https://doi.org/10.1007/s00117-020-00807-3
21. Brendel, B., Kopp, F. K., Kachelrieß, M., & Flohr, T. G. (2021). Photon counting CT: Technology and clinical prospects. Investigative Radiology, 56(7), 479–486. https://doi.org/10.1097/RLI.0000000000000772
22. Leng, S., Yu, Z., Halaweish, A., Kappler, S., Hahn, K., Henning, A., & McCollough, C. H. (2019). Dose efficient ultrahigh resolution scan mode using a photon counting detector CT system. Journal of Computer Assisted Tomography, 43(1), 8–14. https://doi.org/10.1097/RCT.0000000000000815
23. Pourmorteza, A., Symons, R., Sandfort, V., Mallek, M., Fuld, M. K., Henderson, G., & McClelland, R. L. (2020). Abdominal imaging with contrast enhanced photon counting CT: First human experience. Radiology, 293(2), 529–537. https://doi.org/10.1148/radiol.2020200789
24. Rajendran, K., Petersilka, M., Henning, A., Shanbhag, D., Flohr, T., & Schmidt, B. (2021). First clinical experience with a novel dual source photon counting CT system. European Radiology, 31(9), 7404–7412. https://doi.org/10.1007/s00330-021-07883-0
25. Si Mohamed, S., Boccalini, S., Rodesch, P. A., Dessouky, R., Coulon, P., Clemessy, M., & Douek, P. (2021). Clinical results of photon counting CT: First multicentric experience. European Radiology Experimental, 5(1), 1–10. https://doi.org/10.1186/s41747-021-00217-4
26. Symons, R., Pourmorteza, A., Evers, R., Ulzheimer, S., & Rajendran, K. (2020). Clinical applications of photon counting CT: State of the art and future directions. Radiology: Artificial Intelligence, 2(5), Article e190091. https://doi.org/10.1148/ryai.2020190091
27. Willemink, M. J., Persson, M., Pourmorteza, A., Pelc, N. J., & Fleischmann, D. (2018). Photon counting CT: Technical principles and clinical prospects. Radiology, 289(2), 293–312. https://doi.org/10.1148/radiol.2018172656