NOVEL DRUG DELIVERY SYSTEMS: ENHANCING BIOAVAILABILITY THROUGH NANOCARRIER TECHNOLOGIES

Main Article Content

Dr. Jenish Paul
Ms. Anaswara E.R
Dr. Anirban Bhaduri
Chethan Kumar R M
Bhavyashree M
Johny Lakra

Keywords

Nanocarriers, bioavailability, oral drug delivery, sustained release, pharmacokinetics, nanoparticles.

Abstract

 Oral administration of poorly soluble drugs often results in low bioavailability due to limited solubility, poor permeability, and extensive first-pass metabolism. Overcoming these challenges is essential to improving therapeutic outcomes and patient adherence.


Objectives: This study aimed to formulate nanocarriers capable of sustaining drug release and evaluate their pharmacokinetic performance compared to conventional drug suspensions.


Methods: The solvent evaporation method was used to create the nanocarriers, which were then thoroughly physicochemically characterized. This included evaluating the drug loading, zeta potential, polydispersity index, particle size, and encapsulation efficiency. Ex vivo intestinal permeation tests were carried out utilizing rat intestinal membranes, while in vitro drug release was evaluated over 48 hours. Wistar rats were used in in vivo pharmacokinetic experiments to assess relative bioavailability and systemic exposure.


Results: Nanocarriers exhibited uniform particle size (178.4 ± 5.6 nm), high encapsulation efficiency (79.6%), and good colloidal stability. Sustained drug release was observed over 48 hours. Ex vivo permeation studies showed nearly double the permeability compared to free drug suspensions. Pharmacokinetic analysis revealed a 268% increase in relative bioavailability, prolonged half-life, and significantly higher Cmax.


Conclusion: Nanocarrier-based systems effectively improved bioavailability and sustained therapeutic concentrations. This study offers a reproducible framework for developing oral nanocarrier formulations and provides a foundation for future research in targeted and scalable drug delivery.

Abstract 123 | Pdf Downloads 70

References

[1]. Cheng Z, Li M, Dey R, Chen Y. Nanomaterials for cancer therapy: current progress and perspectives. J Hematol Oncol. 2021;14(1):85. doi:10.1186/s13045-021-01096-0
[2]. Alqahtani MS, Kazi M, Alsenaidy MA, Ahmad MZ. Advances in oral drug delivery. Front Pharmacol. 2021;12:618411. doi:10.3389/fphar.2021.618411
[3]. Pozos-Nonato S, Domínguez-Delgado CL, Campos-Santander KA, Benavides AA, Pacheco-Ortin SM, Higuera-Piedrahita RI, Resendiz-González G, Molina-Trinidad EM. Novel nanotechnological strategies for skin anti-aging. Curr Pharm Biotechnol. 2023;24(11):1397-1419. doi:10.2174/1389201024666221223095315
[4]. Rathi R, Mehetre NM, Goyal S, Singh I, Huanbutta K, Sangnim T. Advanced drug delivery technologies for enhancing bioavailability and efficacy of risperidone. Int J Nanomedicine. 2024;19:12871-12887. doi:10.2147/IJN.S492684
[5]. Tang L, Li J, Zhao Q, Pan T, Zhong H, Wang W. Advanced and innovative nano-systems for anticancer targeted drug delivery. Pharmaceutics. 2021;13(8):1151. doi:10.3390/ pharmaceutics13081151
[6]. Zhao F, Fan M, Jing Z, Zhang Y, Wang Y, Zhou C, Liu Y, Aitken RJ, Xia X. Engineered nanoparticles potentials in male reproduction. Andrology. 2025;13(4):694-705. doi:10.1111/ andr.13729
[7]. Liu M, Fang X, Yang Y, Wang C. Peptide-enabled targeted delivery systems for therapeutic applications. Front Bioeng Biotechnol. 2021;9:701504. doi:10.3389/fbioe.2021.701504
[8]. Rojekar S, Gholap AD, Togre N, Bhoj P, Haeck C, Hatvate N, Singh N, Vitore J, Dhoble S, Kashid S, Patravale V. Current status of mannose receptor-targeted drug delivery for improved anti-HIV therapy. J Control Release. 2024;372:494-521. doi:10.1016/j.jconrel.2024.06.002
[9]. Jan N, Shah H, Khan S, Nasar F, Madni A, Badshah SF, Ali A, Bostanudin MF. Old drug, new tricks: polymer-based nanoscale systems for effective cytarabine delivery. Naunyn Schmiedebergs Arch Pharmacol. 2024;397(6):3565-3584. doi:10.1007/s00210-023-02865-z
[10]. Wang J, Viola M, Migliorini C, Paoletti L, Arpicco S, Di Meo C, Matricardi P. Polysaccharide-based nanogels to overcome mucus, skin, cornea, and blood-brain barriers: a review. Pharmaceutics. 2023;15(10):2508. doi:10.3390/pharmaceutics15102508
[11]. Rakotondrabe TF, Fan MX, Muema FW, Guo MQ. Modulating inflammation-mediated diseases via natural phenolic compounds loaded in nanocarrier systems. Pharmaceutics. 2023;15(2):699. doi:10.3390/pharmaceutics15020699
[12]. Quadir SS, Saharan V, Choudhary D, Harish, Jain CP, Joshi G. Nano-strategies as oral drug delivery platforms for treatment of cancer: challenges and future perspectives. AAPS PharmSciTech. 2022;23(5):152. doi:10.1208/s12249-022-02301-0
[13]. Kathuria T, Saharan R, Dhankhar S, Mahajan S, Beniwal SK, Chauhan S, Dahiya P, Verma I, Yasmin S. Transdermal drug delivery systems: integrating modern technology for enhanced therapeutics. Curr Drug Saf. 2025. doi:10.2174/0115748863362068250122102544
[14]. Pandey A, Rath G, Chawala R, Goyal AK. A comprehensive review on liraglutide and novel nanocarrier-based systems for the effective delivery of liraglutide. Naunyn Schmiedebergs Arch Pharmacol. 2025. doi:10.1007/s00210-025-03918-1
[15]. Choukaife H, Seyam S, Alallam B, Doolaanea AA, Alfatama M. Current advances in chitosan nanoparticles-based oral drug delivery for colorectal cancer treatment. Int J Nanomedicine. 2022;17:3933-3966. doi:10.2147/IJN.S375229
[16]. Fidan Y, Muçaj S, Timur SS, Gürsoy RN. Recent advances in liposome-based targeted cancer therapy. J Liposome Res. 2024;34(2):316-334. doi:10.1080/08982104.2023.2268710
[17]. Bhadouria N, Alam A, Kaur A. Nanotechnology-based herbal drug formulation in the treatment of diabetes mellitus. Curr Diabetes Rev. 2024;21(1):e310124226554.
doi:10.2174/0115733998282162240116202813
[18]. Santhanakrishnan KR, Koilpillai J, Narayanasamy D. PEGylation in pharmaceutical development: current status and emerging trends in macromolecular and immunotherapeutic drugs. Cureus. 2024;16(8):e66669. doi:10.7759/cureus.66669
[19]. Ranch K, Chawnani D, Jani H, Acharya D, Patel CA, Jacob S, Babu RJ, Tiwari AK, Al-Tabakha MM, Boddu SHS. An update on the latest strategies in retinal drug delivery. Expert Opin Drug Deliv. 2024;21(5):695-712. doi:10.1080/17425247.2024.2358886
[20]. Lagoa R, Rajan L, Violante C, Babiaka SB, Marques-da-Silva D, Kapoor B, Reis F, Atanasov AG. Application of curcuminoids in inflammatory, neurodegenerative and aging conditions: pharmacological potential and bioengineering approaches to improve efficiency. Biotechnol Adv. 2025;82:108568. doi:10.1016/j.biotechadv.2025.108568
[21]. Shree D, Patra CN, Sahoo BM. Applications of nanotechnology-mediated herbal nanosystems for ophthalmic drug. Pharm Nanotechnol. 2024;12(3):229-250.
doi:10.2174/2211738511666230816090046
[22]. Hari Priya VM, Ganapathy AA, Veeran MG, Raphael MS, Kumaran A. Nanotechnology-based drug delivery platforms for erectile dysfunction: addressing efficacy, safety, and bioavailability concerns. Pharm Dev Technol. 2024;29(9):996-1015. doi:10.1080/10837450.2024.2414379
[23]. Srivastava R, Rawat AKS, Mishra MK, Patel AK. Advancements in nanotechnology for enhanced antifungal drug delivery: a comprehensive review. Infect Disord Drug Targets. 2024;24(2):e021123223053. doi:10.2174/0118715265266257231022134933
[24]. Zhu T, Liu B, Chen N, Liu Y, Wang Z, Tian X. Artificial intelligence-driven innovations in pharmaceutical development and drug delivery systems. Curr Top Med Chem. 2025. doi:10.2174/0115680266373236250411060857
[25]. Kumar DN, Chaudhuri A, Dehari D, Gamper AM, Kumar D, Agrawal AK. Enhanced therapeutic efficacy against melanoma through exosomal delivery of hesperidin. Mol Pharm. 2024;21(6):3061-3076. doi:10.1021/acs.molpharmaceut.4c00490
[26]. Chavda VP, Balar PC. Oral delivery of protein and peptide therapeutics. Prog Mol Biol Transl Sci. 2025;212:355-387. doi:10.1016/bs.pmbts.2024.11.003