ORGAN-SPECIFIC APPLICATIONS OF NANOMEDICINE: A REVIEW OF TARGETED DELIVERY SYSTEMS IN MAJOR HUMAN ORGANS
Main Article Content
Keywords
Nanomedicine, drug delivery, toxicity, nanoparticle (NP), liposomes, blood-brain barrier
Abstract
Nanomedicine represents an innovative therapeutic strategy, offering targeted drug delivery with greater efficacy and reduced systemic toxicity. In this review we investigate organ-specific applications of nanomedicine; specifically targeting delivery systems designed for major human organs including heart, lung, brain, liver kidney and digestive tract. Each organ presents distinct anatomical and physiological barriers which must be navigated using specific nanoparticle (NP) systems designed for each one.Organic nanoparticles like liposomes, dendrimers and polymeric micelles offer superior biocompatibility and flexibility when it comes to drug delivery and functionalization. Meanwhile inorganic nanoparticles like gold, silver and mesoporous silica possess highly adjustable physical and chemical properties useful in diagnosis as well as therapy applications. Hybrid nanoparticles which combine organic with inorganic components have become promising platforms due to their multifunctionality and structural versatility for use as theranostic platforms.Organ-targeted nanomedicine has enjoyed significant preclinical success. Cardiac-targeting nanoparticles aid myocardial repair post-infarction; brain-targeted systems deliver drugs across the blood-brain barrier; while kidney-targeted nanomedicine may treat glomerular or fibrotic diseases. Yet several challenges still persist regarding long-term biocompatibility, off-target toxicity concerns, regulatory uncertainties etc.This review highlights recent advancements in organ-specific nanomedicine, targeting mechanisms and therapeutic implications. Further improvements in nanoparticle design, targeting strategies, safety evaluation and application to clinical therapies is vital to making them truly useful therapies.
References
2. Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res. 2016;33(10):2373–87.
3. Hare JI, Lammers T, Ashford MB, Puri S, Storm G, Barry ST. Challenges and strategies in anti-cancer nanomedicine development: an industry perspective. Adv Drug Deliv Rev. 2017;108:25–38.
4. Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater. 2013;12(11):991–1003.
5. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release. 2000;65(1–2):271–84.
6. Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm. 2008;5(4):505–15.
7. Wang AZ, Langer R, Farokhzad OC. Nanoparticle delivery of cancer drugs. Annu Rev Med. 2012;63:185–98.
8. Allen TM, Cullis PR. Drug delivery systems: entering the mainstream. Science. 2004;303(5665):1818–22.
9. Zhang RX, Wong HL, Xue HY, Eoh JY, Tang X. Nanomedicine-based delivery of RNAi therapeutics: progress and challenges. Pharm Res. 2016;33(6):1277–88.
10. Saraiva C, Praça C, Ferreira R, Santos T, Ferreira L, Bernardino L. Nanoparticle-mediated brain drug delivery: overcoming blood–brain barrier to treat neurodegenerative diseases. J Control Release. 2016;235:34–47.
11. Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S. Advances and challenges of liposome assisted drug delivery. Front Pharmacol. 2015;6:286.
12. Gaucher G, Marchessault RH, Leroux JC. Polymeric micelles for oral drug delivery. Eur J Pharm Biopharm. 2010;76(2):147–58.
13. Tekade RK, Kumar PV, Jain NK. Dendrimers in oncology: an expanding horizon. Chem Rev. 2009;109(1):49–87.
14. Boisselier E, Astruc D. Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev. 2009;38(6):1759–82.
15. Slowing II, Vivero-Escoto JL, Wu CW, Lin VSY. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev. 2008;60(11):1278–88.
16. Liu Z, Tabakman S, Welsher K, Dai H. Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res. 2009;2(2):85–120.
17. Yang K, Feng L, Hong H, Cai W, Liu Z. Preparation and functionalization of graphene nanocomposites for biomedical applications. Nat Protoc. 2013;8(12):2392–403.
18. Rzigalinski BA, Strobl JS. Cadmium-containing nanoparticles: perspectives on pharmacology and toxicology of quantum dots. Toxicol Appl Pharmacol. 2009;238(3):280–8.
19. Chen Y, Chen H, Shi J. In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles. Adv Mater. 2013;25(23):3144–76.
20. Sanvicens N, Marco MP. Multifunctional nanoparticles–properties and prospects for their use in human medicine. TrAC Trends Anal Chem. 2008;27(8):568–76.
21. Wickline SA, Neubauer AM, Winter PM, Caruthers SD, Lanza GM. Molecular imaging and therapy of atherosclerosis with targeted nanoparticles. J Magn Reson Imaging. 2007;25(4):667–80.
22. Formiga FR, Pelacho B, Garbayo E, Abizanda G, Gavira JJ, Simon-Yarza T, et al. Sustained release of VEGF through PLGA microparticles improves vasculogenesis and tissue remodeling in an acute myocardial ischemia–reperfusion model. J Control Release. 2010;147(1):30–7.
23. Zare EN, Larranaga A, Rzhevskiy AS, Webster TJ, Mujtaba M, Ramakrishna S. Nanotechnology-based delivery systems for myocardial infarction tissue regeneration. Mater Sci Eng C Mater Biol Appl. 2021;122:111916.
24. Wang Y, Zhang K, Qin X, Li T, Qiu J, Yin T, et al. Biomimetic nanotherapies: Red blood cell based core–shell structured nanocomplexes for atherosclerosis management. Adv Sci. 2019;6(13):1900172.
25. Das S, Dowding JM, Klump KE, McGinnis JF, Self WT, Seal S. Cerium oxide nanoparticles: applications and prospects in nanomedicine. Nanomedicine. 2013;8(9):1483–508.
26. Majmudar MD, Yoo J, Keliher EJ, Truelove J, Iwamoto Y, Sena BF, et al. Polymeric nanoparticle PET/MR imaging allows macrophage detection in atherosclerotic plaques. Circ Res. 2013;112(5):755–61.
27.Mulder WJ, Jaffer FA, Fayad ZA, Nahrendorf M. Imaging and nanomedicine in inflammatory atherosclerosis. Sci Transl Med. 2014;6(239):239sr1.
28. Winter PM, Caruthers SD, Wickline SA, Lanza GM. Nanomedicine and cardiovascular disease. Curr Drug Targets. 2008;9(2):175–84.
29. Patil JS, Sarasija S. Pulmonary drug delivery strategies: a concise, systematic review. Lung India. 2012;29(1):44–9.
30. Oliveira CP, Rodrigues JO, Sarmento B. Therapeutic advances in chronic obstructive pulmonary disease via nanotechnology-based drug delivery. J Control Release. 2020;328:952–75.
31. Yang W, Peters JI, Williams RO 3rd. Inhaled nanoparticles—A current review. Int J Pharm. 2008;356(1–2):239–47.
32. Pandey R, Ahmad Z, Sharma S, Khuller GK. Nano-encapsulation of azole antifungals: potential applications to improve oral drug delivery. Int J Pharm. 2005;301(1–2):268–76.
33. Garbuzenko OB, Mainelis G, Taratula O, Minko T. Inhalation treatment of lung cancer: the influence of composition and treatment schedule of targeted liposomes on therapeutic efficacy. J Control Release. 2013;172(1):65–75.
34. Wang Y, Zhao Q, Han N, Bai L, Li J, Liu J, et al. Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomedicine. 2015;11(2):313–27.
35. Cipolla D, Gonda I, Chan H-K. Liposomal formulations for inhalation. Ther Deliv. 2013;4(8):1047–72
36. Pardridge WM. Drug transport across the blood–brain barrier. J Cereb Blood Flow Metab. 2012;32(11):1959–72.
37. Wohlfart S, Gelperina S, Kreuter J. Transport of drugs across the blood–brain barrier by nanoparticles. J Control Release. 2012;161(2):264–73.
38. Tosi G, Vergoni AV, Ruozi B, et al. Nanomedicine for brain delivery: targeting neuroinflammation in neurodegenerative diseases. Int J Mol Sci. 2013;14(3): 5411–38.
39. Wilson B, Samanta MK, Santhi K, Kumar KP, Ramasamy M, Suresh B. Poly(n-butylcyanoacrylate) nanoparticles coated with polysorbate 80 for the targeted delivery of rivastigmine into the brain to treat Alzheimer’s disease. Brain Res. 2008;1200:159–68.
40. Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications and toxicities. Arab J Chem. 2019;12(7):908–31.
41. Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33(9):941–51.
42. Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev. 2014;66:2–25.
43. Ensign LM, Cone R, Hanes J. Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv Drug Deliv Rev. 2012;64(6):557–70.
44. Bernkop-Schnürch A, Dünnhaupt S. Chitosan-based drug delivery systems. Eur J Pharm Biopharm. 2012;81(3):463–9.
45. Dodane V, Khan MA, Merwin JR. Effect of chitosan on epithelial permeability and structure. Int J Pharm. 1999;182(1):21–32.
46. Hashem FM, Nasr M, Fathy G, Ismail A, Ghorab MK. Bioadhesive chitosan-coated nanoparticles for improved oral delivery of silymarin. Eur J Pharm Biopharm. 2018;126:121–30.
47. Pathak S, Katiyar SS, Tiwari S, et al. Targeting of Helicobacter pylori using oral delivery of mucoadhesive nanoparticles. Drug Deliv. 2015;22(6):687–96.
48. Zhang N, Ping Q, Huang G, Xu W. Investigation of lectin-modified insulin liposomes as carriers for oral insulin delivery. Int J Pharm. 2005;294(1–2):247–59.
49. Hua S. Physiological and pharmaceutical considerations for the oral delivery of insulin. Yale J Biol Med. 2015;88(3):289–300.
50. Longmire M, Choyke PL, Kobayashi H. Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine (Lond). 2008;3(5):703–17.
51. Williams RM, Shah J, Tian HS, et al. Selective nanoparticle targeting of the renal tubules. Am J Physiol Renal Physiol. 2018;314(6):F1207–F1215.
52. Godwin HA, Chopra K, Moon J. Nanomedicine for glomerular disease: barriers and opportunities. Kidney Int. 2020;97(2):252–64.
53. Zhang X, Li Y, Chen Y, et al. Targeting renal fibrosis using anti-fibrotic nanomedicine. Biomaterials. 2019;219:119366.
54. Choi HS, Liu W, Misra P, et al. Renal clearance of quantum dots. Nat Biotechnol. 2007;25(10):1165–70.
55. Larese Filon F, Crosera M, Timeus E, et al. Human skin penetration of silver nanoparticles through intact and damaged skin. Toxicol In Vitro. 2011;25(8):2316–23.
56. Du B, Jiang X, Das A, Zhou Q, Yu M, Jin R. Glomerular barrier behaves as an atomically precise bandpass filter in a sub-nanometre regime. Nat Nanotechnol. 2017;12(11):1096–1102.
57. Zuo L, Prather ER, Stetskiv M, et al. Inhibition of renal oxidative stress by nanoparticle-based antioxidants in kidney disease. Nanomedicine. 2019;20:102022.
58. Nel AE, Mädler L, Velegol D, et al. Understanding biophysicochemical interactions at the nano–bio interface. Nat Mater. 2009;8(7):543–57.
59. Chen YS, Hung YC, Liau I, Huang GS. Assessment of the in vivo toxicity of gold nanoparticles. Nanoscale Res Lett. 2009;4(8):858–64.
60. Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel). 2011;3(3):1377–97.
61. Pita R, Ehmann F, Papaluca M. Nanomedicines in the EU: regulatory overview. Nat Rev Drug Discov. 2016;15(2):93–4.
62. Tinkle S, McNeil SE, Mühlebach S, et al. Nanomedicines: addressing the scientific and regulatory gap. Ann N Y Acad Sci. 2014;1313(1):35–56.
63. Park K. Facing the truth about nanotechnology in drug delivery. ACS Nano. 2013;7(9):7442–7.
64. Torchilin VP. Multifunctional and stimuli-sensitive pharmaceutical nanocarriers. Eur J Pharm Biopharm. 2009;71(3):431–44.
65. Zhang Y, Chan HF, Leong KW. Advanced materials and processing for drug delivery: the past and the future. Adv Drug Deliv Rev. 2013;65(1):104–20.
66. Lee ES, Na K, Bae YH. Polymeric micelle for tumor pH and folate-mediated targeting. J Control Release. 2003;91(1–2):103–13.
67. Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2021;20(2):101–24.
68. Wilhelm S, Tavares AJ, Dai Q, et al. Analysis of nanoparticle delivery to tumours. Nat Rev Mater. 2016;1(5):16014.
69. Chen H, Zhang W, Zhu G, Xie J, Chen X. Rethinking cancer nanotheranostics. Nat Rev Mater. 2017;2(7):17024.
70. Kelkar SS, Reineke TM. Theranostics: combining imaging and therapy. Bioconjug Chem. 2011;22(10):1879–903.
71. Lim EK, Kim T, Paik S, Haam S, Huh YM, Lee K. Nanomaterials for theranostics: recent advances and future challenges. Chem Rev. 2015;115(1):327–94.
72. Jokerst JV, Gambhir SS. Molecular imaging with theranostic nanoparticles. Acc Chem Res. 2011;44(10):1050–60.