POLYMERS AND PATCH TECHNOLOGIES IN TRANSDERMAL DRUG DELIVERY: A COMPREHENSIVE REVIEW

Main Article Content

Susmita Ghosh
Soumik Bhunia
Souvik De
Arunima Nag
Annesha Chakraborty
Trisha Chatterjee
Raja Majumder

Keywords

Transdermal, Micro-reservoirs, Vapor-patch, Permeation-enhancer, Transdermal-Polymer

Abstract

Transdermal drug delivery systems (TDDS) are advanced therapeutic platforms designed to deliver drugs across the skin into systemic circulation. They offer several advantages over traditional routes, such as oral or injectable administration, including avoidance of first-pass metabolism, sustained and controlled drug release, reduced dosing frequency, and enhanced patient compliance. The effectiveness of TDDS is largely dependent on its key components like, the choice of polymers, pressure-sensitive adhesives (PSA), penetration enhancers, membranes, backing layers, and release liners. Each component contributes uniquely to the overall performance, with polymers playing a particularly crucial role. The incorporation of PSAs ensures intimate skin contact, while penetration enhancers temporarily reduce the stratum corneum barrier to increase drug permeation. Polymers form the matrix or reservoir that governs drug entrapment, release, and stability. Their physicochemical properties - such as molecular weight, hydrophilicity or hydrophobicity, and compatibility with the drug and other excipients - significantly influence drug diffusion rates and therapeutic outcomes. A balanced hydrophilic-lipophilic polymer blend is essential to modulate drug release, ensuring neither a burst release nor overly slow diffusion. Among the various types of transdermal patches, matrix-type drug-in-adhesive patches are generally preferred due to their simple design, ease of manufacturing, uniform drug distribution, and reliable adhesion to the skin. These patches integrate the drug within a polymer-adhesive matrix, eliminating the need for a separate reservoir or membrane. Other types, such as reservoirs, micro-reservoirs, and vapor patches, are also used based on specific therapeutic goals but involve more complex fabrication. Recent advancements in patch design and permeation technologies continue to enhance the efficiency and applicability of transdermal drug delivery systems (TDDS) across a wide range of therapeutic areas. This review highlights the essential components and design considerations critical to optimizing TDDS performance. TDDS continues to evolve, expanding its application across diverse medical conditions.


 

Abstract 222 | Pdf Downloads 70

References

[1] L. F. Santos, I. J. Correia, A. S. Silva, and J. F. Mano, ‘Biomaterials for drug delivery patches’, European Journal of Pharmaceutical Sciences, vol. 118, no. January, pp. 49–66, 2018, https://doi.org/10.1016/j.ejps.2018.03.020.
[2] T. M. Allen and P. R. Cullis, ‘Drug Delivery Systems: Entering the Mainstream’, Science (1979), vol. 303, no. 5665, pp. 1818–1822, 2004, https://doi.org/10.1126/science.1095833.
[3] M. R. Prausnitz, ‘Microneedles for transdermal drug delivery’, Adv Drug Deliv Rev, vol. 56, no. 5, pp. 581–587, 2004, https://doi.org/10.1016/j.addr.2003.10.023.
[4] M. R. Prausnitz, S. Mitragotri, and R. Langer, ‘Current status and future potential of transdermal drug delivery’, Nat Rev Drug Discov, vol. 3, no. 2, pp. 115–124, 2004, https://doi.org/10. 1038/nrd1304.
[5] A. J. Guillot, M. Martínez-Navarrete, T. M. Garrigues, and A. Melero, ‘Skin drug delivery using lipid vesicles: A starting guideline for their development’, Journal of Controlled Release, vol. 355, no. February, pp. 624–654, 2023, https://doi.org/10.1016/j.jconrel.2023.02.006.
[6] K. Kathe and H. Kathpalia, ‘Film forming systems for topical and transdermal drug delivery’, Asian J Pharm Sci, vol. 12, no. 6, pp. 487–497, 2017, https://doi.org/10.1016/j.ajps.2017.07.004.
[7] A. Waves, T. Delivery, B. Godin, E. Touitou, and T. Methodist, Encyclopedia of Nanotechnology. 2012. https://doi.org/10.1007/978-90-481-9751-4.
[8] A. Melero et al., ‘Caffeine analysis and extraction from a topical cream intended for UV-skin protection’, J Dispers Sci Technol, vol. 43, no. 2, pp. 157–163, 2022, https://doi.org/10.1080/ 01932691.2020.1838919.
[9] M. Megna, G. Fabbrocini, C. Marasca, and G. Monfrecola, ‘Photodynamic Therapy and Skin Appendage Disorders: A Review’, Skin Appendage Disord, vol. 2, no. 3–4, pp. 166–176, 2016, https://doi.org/10.1159/000453273.
[10] A. Samad, Z. Ullah, M. Alam, M. Wais, and M. Shams, ‘Transdermal Drug Delivery System: Patent Reviews’, Recent Pat Drug Deliv Formul, vol. 3, no. 2, pp. 143–152, 2009, https://doi.org/10.2174/187221109788452294.
[11] M. Intakhab Alam et al., ‘Type, Preparation and Evaluation of Transdermal Patch: a Review’, World J Pharm Pharm Sci, vol. 2, no. 4, pp. 2199–2233, 2013.
[12] S. Das, P. Sarkar, and S. B. Majee, ‘Polymers in Matrix Type Transdermal Patch’, Int. J Pharm Sci Rev Res, vol. 73, no. 14, pp. 77–86, 2022, https://doi.org/10.47583/ijpsrr.2022.v73i01.014.
[13] M. Kumar, V. Trivedi, A. K. Shukla, and S. K. Dev, ‘Effect of polymers on the physicochemical and drug release properties of transdermal patches of atenolol’, International Journal of Applied Pharmaceutics, vol. 10, no. 4, pp. 68–73, 2018, https://doi.org/10.22159/ijap.2018v10i4.24916.
[14] W. F. Wong, K. P. Ang, G. Sethi, and C. Y. Looi, ‘Recent Advancement of Medical Patch for Transdermal Drug Delivery’, Medicina (Lithuania), vol. 59, no. 4, pp. 1–20, 2023, https://doi.org/10.3390/medicina59040778.
[15] O. A. Al Hanbali, H. M. S. Khan, M. Sarfraz, M. Arafat, S. Ijaz, and A. Hameed, ‘Transdermal patches: Design and current approaches to painless drug delivery’, Acta Pharmaceutica, vol. 69, no. 2, pp. 197–215, 2019, https://doi.org/10.2478/acph-2019-0016.
[16] B. J. Thomas and B. C. Finnin, ‘The transdermal revolution’, Drug Discov Today, vol. 9, no. 16, pp. 697–703, 2004, https://doi.org/10.1016/S1359-6446(04)03180-0.
[17] N. Shaikh and R. Srivastava, ‘A review on transdermal drug delivery through patches’, IP Indian Journal of Clinical and Experimental Dermatology, vol. 10, no. 2, pp. 113–121, 2024, https://doi.org/10.18231/j.ijced.2024.022.
[18] N. Bibi, N. Ahmed, and G. M. Khan, Nanostructures in transdermal drug delivery systems. Elsevier Inc., 2017. https://doi.org/10.1016/B978-0-323-46143-6.00021-X.
[19] R. Rao and S. Nanda, ‘Sonophoresis: recent advancements and future trends’, Journal of Pharmacy and Pharmacology, vol. 61, no. 6, pp. 689–705, Jan. 2010, https://doi.org/10.1211/jpp .61.06.0001.
[20] A. Naik, Y. N. Kalia, and R. H. Guy, ‘Transdermal drug delivery: Overcoming the skin’s barrier function’, Pharm Sci Technol Today, vol. 3, no. 9, pp. 318–326, 2000, https://doi.org/10.1016/S1461-5347(00)00295-9.
[21] I. Factor et al., ‘International Journal of Pharmaceutical and Development, Recent Inventions and Evaluation Techniques of Transdermal Drug Delivery System - A Review’, Int. J. Pharm. Phytopharmacol. Res, vol. 3, no. 2, pp. 152–160, 2013, [Online]. Available: www.eijppr.com
[22] K. Ita, ‘Anatomy of the human skin’, Transdermal Drug Delivery, pp. 9–18, 2020, https://doi.org/10.1016/b978-0-12-822550-9.00002-8.
[23] Y. Wang et al., ‘NF-κB signaling in skin aging’, Mech Ageing Dev, vol. 184, 2019, https://doi.org/10.1016/j.mad.2019.111160.
[24] Z. Chen, Y. Lv, J. Qi, Q. Zhu, Y. Lu, and W. Wu, ‘Overcoming or circumventing the stratum corneum barrier for efficient transcutaneous immunization’, Drug Discov Today, vol. 23, no. 1, pp. 181–186, 2018, https://doi.org/10.1016/j.drudis.2017.09.017.
[25] X. Chen, ‘Current and future technological advances in transdermal gene delivery’, Adv Drug Deliv Rev, vol. 127, pp. 85–105, 2018, https://doi.org/10.1016/j.addr.2017.12.014.
[26] T. Schmitt et al., ‘Impact of the ceramide subspecies on the nanostructure of stratum corneum lipids using neutron scattering and molecular dynamics simulations. Part I: impact of CER[NS]’, Chem Phys Lipids, vol. 214, pp. 58–68, 2018, https://doi.org/10.1016/j.chemphyslip. 2018.05.006.
[27] Y. Gilaberte, L. Prieto-Torres, I. Pastushenko, and Á. Juarranz, Anatomy and Function of the Skin. Elsevier Inc., 2016. https://doi.org/10.1016/B978-0-12-802926-8.00001-X.
[28] L. Celleno and F. Tamburi, Structure and Function of the Skin. 2009. https://doi.org/10.1016/B978-0-8155-2029-0.50008-9.
[29] M. Venus, J. Waterman, and I. McNab, ‘Basic physiology of the skin’, Surgery, vol. 29, no. 10, pp. 471–474, 2011, https://doi.org/10.1016/j.mpsur.2011.06.010.
[30] H. Tanwar and R. Sachdeva Guru Jambheshwar, ‘TRANSDERMAL DRUG DELIVERY SYSTEM: A REVIEW’, Int J Pharm Sci Res, vol. 7, no. 6, p. 2274, 2016, https://doi.org/10.13040/IJPSR.0975-8232.7(6).2274-90.
[31] M. Srinivas, M. Uddin, M. Goud, I. V Year, and B. Pharmacy, ‘AN OVERALL REVIEW OF THE TRANSDERMAL DRUG DELIVERY SYSTEM’, International Journal of Scientific Development and Research, vol. 6, no. 12, pp. 274–283, 2021, [Online]. Available: www.ijsdr.org
[32] K. Ita, ‘Ceramic microneedles and hollow microneedles for transdermal drug delivery: Two decades of research’, J Drug Deliv Sci Technol, vol. 44, pp. 314–322, 2018, https://doi.org/10.1016/j.jddst.2018.01.004.
[33] A. Alexander et al., ‘Approaches for breaking the barriers of drug permeation through transdermal drug delivery’, Journal of Controlled Release, vol. 164, no. 1, pp. 26–40, 2012, https://doi.org/10.1016/j.jconrel.2012.09.017.
[34] O. G. Jepps, Y. Dancik, Y. G. Anissimov, and M. S. Roberts, ‘Modeling the human skin barrier - Towards a better understanding of dermal absorption’, Adv Drug Deliv Rev, vol. 65, no. 2, pp. 152–168, 2013, https://doi.org/10.1016/j.addr.2012.04.003.
[35] J. A. Bouwstra and M. Ponec, ‘The skin barrier in healthy and diseased state’, Biochim Biophys Acta Biomembr, vol. 1758, no. 12, pp. 2080–2095, 2006, https://doi.org/10.1016/j.bbamem. 2006.06.021.
[36] A. T. Slominski, P. R. Manna, and R. C. Tuckey, ‘On the role of skin in the regulation of local and systemic steroidogenic activities’, Steroids, vol. 103, no. April, pp. 72–88, 2015, https://doi.org/10.1016/j.steroids.2015.04.006.
[37] M. Roger et al., ‘Bioengineering the microanatomy of human skin’, J Anat, vol. 234, no. 4, pp. 438–455, 2019, https://doi.org/10.1111/joa.12942.
[38] A. Pérez-Sánchez, E. Barrajón-Catalán, M. Herranz-López, and V. Micol, ‘Nutraceuticals for skin care: A comprehensive review of human clinical studies’, Nutrients, vol. 10, no. 4, pp. 1–22, 2018, https://doi.org/10.3390/nu10040403.
[39] D. Ramadon, M. T. C. McCrudden, A. J. Courtenay, and R. F. Donnelly, ‘Enhancement strategies for transdermal drug delivery systems: current trends and applications’, Drug Deliv Transl Res, vol. 12, no. 4, pp. 758–791, Apr. 2022, https://doi.org/10.1007/s13346-021-00909-6.
[40] J. Ashok Kumar, N. Pullakandam, S. Lakshmana Prabu, and V. Gopal, ‘TRANSDERMAL DRUG DELIVERY SYSTEM: AN OVERVIEW’, 2010. [Online]. Available: www.globalresearchonline.net
[41] P. Bose, A. Jana, and S. Chandra, ‘Transdermal Drug Delivery System: Review and Future’, Ann Rom Soc Cell Biol, vol. 25, no. 2, pp. 3420–3436, 2021, [Online]. Available: http://annalsofrscb.ro
[42] V. Rastogi and P. Yadav, ‘Transdermal drug delivery system: An overview’, Jul. 2012. https://doi.org/10.4103/0973-8398.104828.
[43] S. Karki, H. Kim, S. J. Na, D. Shin, K. Jo, and J. Lee, ‘Thin films as an emerging platform for drug delivery’, Asian J Pharm Sci, vol. 11, no. 5, pp. 559–574, 2016, https://doi.org/10.1016/j.ajps.2016.05.004.
[44] G. Hemanth kumar, ‘Transdermal drug delivery system: An overview’, International Journal of Research in Pharmaceutical Sciences, vol. 3, no. 3, pp. 451–457, 2012, https://doi.org/10.7439/ijbar.v2i1.21.
[45] R. J. Babu and J. K. Pandit, ‘Effect of penetration enhancers on the release and skin permeation of bupranolol from reservoir-type transdermal delivery systems’, Int J Pharm, vol. 288, no. 2, pp. 325–334, 2005, https://doi.org/10.1016/j.ijpharm.2004.10.008.
[46] R. H. Guy and J. Hadgraft, ‘Transdermal drug delivery: a simplified pharmacokinetic approach’, Int J Pharm, vol. 24, no. 2–3, pp. 267–274, 1985, https://doi.org/10.1016/0378-5173(85)90026-2.
[47] A. C. Williams and B. W. Barry, ‘Penetration enhancers’, Adv Drug Deliv Rev, vol. 56, no. 5, pp. 603–618, 2004, https://doi.org/10.1016/j.addr.2003.10.025.
[48] P. Karande, A. Jain, K. Ergun, V. Kispersky, and S. Mitragotri, ‘Design principles of chemical penetration enhancers for transdermal drug delivery’, Proc Natl Acad Sci U S A, vol. 102, no. 13, pp. 4688–4693, 2005, https://doi.org/10.1073/pnas.0501176102.
[49] M. E. Lane, ‘Skin penetration enhancers’, Int J Pharm, vol. 447, no. 1–2, pp. 12–21, 2013, https://doi.org/10.1016/j.ijpharm.2013.02.040.
[50] K. Bavaskar, A. Jain, M. Patil, R. Kalamkar Pharmaceutics Department, R. Shikshan Prasarak Mandal, and S. D. D, ‘The Impact of Penetration Enhancers on Transdermal Drug Delivery System: Physical and Chemical Approach’, Int J Pharma Res Rev, vol. 4, no. 7, pp. 14–24, 2015.
[51] V. Mathur, Y. Satrawala, and M. S. Rajput, ‘Physical and chemical penetration enhancers in transdermal drug delivery system’, Asian J Pharm, vol. 4, no. 3, pp. 173–183, 2010, https://doi.org/10.4103/0973-8398.72115.
[52] K. Gandhi, A. Dahiya, Monika, T. Kalra, and K. Singh, ‘Transdermal drug delivery - A review’, International Journal of Research in Pharmaceutical Sciences, vol. 3, no. 3, pp. 379–388, 2012.
[53] Q. D. Pham, S. Björklund, J. Engblom, D. Topgaard, and E. Sparr, ‘Chemical penetration enhancers in stratum corneum - Relation between molecular effects and barrier function’, Journal of Controlled Release, vol. 232, pp. 175–187, 2016, https://doi.org/10.1016/j.jconrel. n2016.04.030.
[54] P. Minghetti, F. Cilurzo, and L. Montanari, ‘Evaluation of adhesive properties of patches based on acrylic matrices’, Drug Dev Ind Pharm, vol. 25, no. 1, pp. 1–6, 1999, https://doi.org/10.1081/DDC-100102135.
[55] S. S. Baek and S. H. Hwang, ‘Eco-friendly UV-curable pressure sensitive adhesives containing acryloyl derivatives of monosaccharides and their adhesive performances’, Int J Adhes Adhes, vol. 70, pp. 110–116, 2016, https://doi.org/10.1016/j.ijadhadh.2016.06.002.
[56] S. Banerjee, P. Chattopadhyay, A. Ghosh, P. Datta, and V. Veer, ‘Aspect of adhesives in transdermal drug delivery systems’, Int J Adhes Adhes, vol. 50, pp. 70–84, 2014, https://doi.org/10.1016/j.ijadhadh.2014.01.001.
[57] X. Tong, Q. Wang, H. X. Wang, X. H. Li, W. Wu, and X. Y. Che, ‘Fabrication of pH sensitive amphiphilic hot-melt pressure sensitive adhesives for transdermal drug delivery system’, Int J Adhes Adhes, vol. 48, pp. 217–223, 2014, https://doi.org/10.1016/j.ijadhadh.2013.09.025.
[58] V. R. Sinha and M. Pal Kaur, ‘Permeation enhancers for transdermal drug delivery’, Drug Dev Ind Pharm, vol. 26, no. 11, pp. 1131–1140, 2000, https://doi.org/10.1081/DDC-100100984.
[59] H. Törmä, M. Lindberg, and B. Berne, ‘Skin barrier disruption by sodium lauryl sulfate-exposure alters the expressions of involucrin, transglutaminase 1, profilaggrin, and kallikreins during the repair phase in human skin in vivo’, Journal of Investigative Dermatology, vol. 128, no. 5, pp. 1212–1219, 2008, https://doi.org/10.1038/sj.jid.5701170.
[60] S. H. Roth and P. Fuller, ‘Diclofenac sodium topical solution 1.5% w/w with dimethyl sulfoxide compared with placebo for the treatment of osteoarthritis: Pooled safety results’, Postgrad Med, vol. 123, no. 6, pp. 180–188, 2011, https://doi.org/10.3810/pgm.2011.11.2507.
[61] Q. D. Pham, D. Topgaard, and E. Sparr, ‘Cyclic and Linear Monoterpenes in Phospholipid Membranes: Phase Behavior, Bilayer Structure, and Molecular Dynamics’, Langmuir, vol. 31, no. 40, pp. 11067–11077, 2015, https://doi.org/10.1021/acs.langmuir.5b00856.
[62] C. Amnuaikit, I. Ikeuchi, K. I. Ogawara, K. Higaki, and T. Kimura, ‘Skin permeation of propranolol from polymeric film containing terpene enhancers for transdermal use’, Int J Pharm, vol. 289, no. 1–2, pp. 167–178, 2005, https://doi.org/10.1016/j.ijpharm.2004.11.007.
[63] R. R. Crawford and O. K. Esmerian, ‘Effect of plasticizers on some physical properties of cellulose acetate phthalate films’, J Pharm Sci, vol. 60, no. 2, pp. 312–314, 1971, https://doi.org/10.1002/jps.2600600238.
[64] A. Hafeez, J. Singh, A. Maurya, L. Rana, and U. Jain, ‘Recent Advances in Transdermal Drug Delivery System (TDDS): An Overview’, Journal of Scientific and Innovative Research, vol. 2, no. 3, pp. 695–709, 2013, [Online]. Available: www.jsirjournal.com
[65] D. R. Friend, S. J. Phillips, and J. R. Hill, ‘Cutaneous effects of transdermal levonorgestrel’, Food and Chemical Toxicology, vol. 29, no. 9, pp. 639–646, 1991, https://doi.org/10.1016/0278-6915(91)90147-Y.
[66] K. I. Al-Khamis, S. S. Davis, and J. Hadgraft, ‘Microviscosity and drug release from topical gel formulations’, 1986. https://doi.org/10.1023/A:1016386613239.
[67] X. Yan-yu, S. Yun-mei, C. Zhi-peng, and P. Qi-neng, ‘Preparation of silymarin proliposome: A new way to increase oral bioavailability of silymarin in beagle dogs’, Int J Pharm, vol. 319, no. 1–2, pp. 162–168, 2006, https://doi.org/10.1016/j.ijpharm.2006.03.037.
[68] B. U. Deo MR, Sant VP, Parekh SR, Khopade AJ, ‘Levonorgestrol proliposomes’, Journal of Biomaterial application, vol. 12, no. 1, pp. 77–88, 1997, https://doi.org/10.1177/088532829701200105.
[69] S. Dhiman, T. G. Singh, and A. K. Rehni, ‘TRANSDERMAL PATCHES: A RECENT APPROCH TO NEW DRUG DELIVERY SYSTEM’, Int J Pharm Pharm Sci, vol. 3, no. 5, pp. 26–34, 2011.
[70] B. K. Dubey, O. P. Katare, R. Singh, and S. K. Jain, ‘Lyophilized aqueous based polymer matrices for transdermal delivery of captopril’, J Dermatol Sci, vol. 10, no. 3, pp. 191–195, 1995, https://doi.org/10.1016/0923-1811(95)00403-F.
[71] B. Berner and V. A. John, ‘Pharmacokinetic Characterisation of Transdermal Delivery Systems’, Clin Pharmacokinet, vol. 26, no. 2, pp. 121–134, 1994, https://doi.org/10.2165/00003088-199426020-00005.
[72] P. J. Hughes, M. K. Freeman, and T. M. Wensel, ‘Appropriate use of transdermal drug delivery systems’, J Nurs Educ Pract, vol. 3, no. 10, pp. 129–138, 2013, https://doi.org/10.5430/jnep.v3n10p129.
[73] H. Lim and S. W. Hoag, ‘Plasticizer effects on physical-mechanical properties of solvent cast Soluplus® films’, AAPS PharmSciTech, vol. 14, no. 3, pp. 903–910, 2013, https://doi.org/10.1208/s12249-013-9971-z.
[74] R. P. Patel, G. Patel, and A. Baria, ‘Formulation and evaluation of transdermal patch of Aceclofenac’, International Journal of Drug Delivery, vol. 1, no. 1, pp. 41–51, 2011, https://doi.org/10.5138/ijdd.2009.0975.0215.01005.
[75] S. Bhujbal et al., ‘A novel herbal formulation in the management of diabetes’, Int J Pharm Investig, vol. 1, no. 4, p. 222, 2011, https://doi.org/10.4103/2230-973x.93009.
[76] M. Uthaman and M. Koland, ‘Investigation of Polymeric Micellar Nanoparticles of Amlodipine Besylatefor Transdermal Delivery’, Journal of Young Pharmacists, vol. 12, no. 4, pp. 314–320, 2020, https://doi.org/10.5530/jyp.2020.12.84.
[77] A. V. Yadav and M. N. Urade, ‘Formulation and evaluation of chitosan based transdermal patches of lornoxicam for prolonged drug release and to study the effect of permeation enhancer’, Indian Journal of Pharmaceutical Education and Research, vol. 53, no. 1, pp. 88–96, 2019, https://doi.org/10.5530/ijper.53.1.12.
[78] V. Sateesh Kumar, ‘Formulation and Evaluation of Transdermal Films of Ondansetron Hydrochloride’, MOJ Bioequivalence & Bioavailability, vol. 3, no. 4, pp. 86–92, 2017, https://doi.org/10.15406/mojbb.2017.03.00039.
[79] V. Kusum Devi, S. Saisivam, G. R. Maria, and P. U. Deepti, ‘Design and evaluation of matrix diffusion controlled transdermal patches of verapamil hydrochloride’, Drug Dev Ind Pharm, vol. 29, no. 5, pp. 495–503, 2003, https://doi.org/10.1081/DDC-120018638.
[80] S. B. Chauhan and S. Saini, ‘Formulation and evaluation of transdermal patches of metoprolol tartrate using permeation enhancers of natural and synthetic origin’, International Journal of Applied Pharmaceutics, vol. 11, no. 5, pp. 293–298, 2019, https://doi.org/10.22159/ijap.2019v11i5.32759.
[81] V. C. Jhawat, V. Saini, Sunil Kamboj, and Nancy Maggon, ‘Transepidermal drug delivery system: Approaches and advancements in drug absrobstion through skin’, Int. J. Pharm. Sci. Rev. Res, vol. 20, no. 1, pp. 47–56, 2013.
[82] S. S. Jalajakshi. M. N, V. Chandrakala, ‘Preparation and Evaluation of Transdermal Patches of an Anti-inflammatory Drug’, Int. J Pharm Sci Rev Res, vol. 82, no. 2, pp. 129–138, 2023, https://doi.org/10.47583/ijpsrr.2023.v82i02.001.
[83] P. DM. Oza NA , PatadiyaDD , Patel PU, ‘Formulation and Evaluation of Carvedilol Transdermal Patches by Using Hydrophilic & Hydrophobic Polymers’, International Journal for Pharmaceutical Research Scholars (IJPRS), vol. 2, no. 1, pp. 151–162, 2013.
[84] A. M. Wokovich, S. Prodduturi, W. H. Doub, A. S. Hussain, and L. F. Buhse, ‘Transdermal drug delivery system (TDDS) adhesion as a critical safety, efficacy and quality attribute’, European Journal of Pharmaceutics and Biopharmaceutics, vol. 64, no. 1, pp. 1–8, 2006, https://doi.org/10.1016/j.ejpb.2006.03.009.
[85] Z. Peng, C. Wang, L. Chen, and S. Chen, ‘Peeling behavior of a viscoelastic thin-film on a rigid substrate’, Int J Solids Struct, vol. 51, no. 25–26, pp. 4596–4603, 2014, https://doi.org/10.1016/j.ijsolstr.2014.10.011.
[86] A. Singh and A. Bali, ‘Formulation and characterization of transdermal patches for controlled delivery of duloxetine hydrochloride’, J Anal Sci Technol, vol. 7, no. 1, 2016, https://doi.org/10.1186/s40543-016-0105-6.
[87] E. Gutschke, S. Bracht, S. Nagel, and W. Weitschies, ‘Adhesion testing of transdermal matrix patches with a probe tack test - In vitro and in vivo evaluation’, European Journal of Pharmaceutics and Biopharmaceutics, vol. 75, no. 3, pp. 399–404, 2010, https://doi.org/10.1016/j.ejpb.2010.03.016.
[88] Y. Takeuchi, T. Nishimatsu, K. Tahara, and H. Takeuchi, ‘Novel use of insoluble particles as disintegration enhancers for orally disintegrating films’, J Drug Deliv Sci Technol, vol. 54, no. September, p. 101310, 2019, https://doi.org/10.1016/j.jddst.2019.101310.
[89] Y. Takeuchi, K. Umemura, K. Tahara, and H. Takeuchi, ‘Formulation design of hydroxypropyl cellulose films for use as orally disintegrating dosage forms’, J Drug Deliv Sci Technol, vol. 46, pp. 93–100, 2018, https://doi.org/10.1016/j.jddst.2018.05.002.
[90] G. Thakur, A. Singh, and I. Singh, ‘Formulation and evaluation of transdermal composite films of chitosan-montmorillonite for the delivery of curcumin’, Int J Pharm Investig, vol. 6, no. 1, p. 23, 2016, https://doi.org/10.4103/2230-973x.176468.
[91] K. Gato, M. Y. Fujii, H. Hisada, J. Carriere, T. Koide, and T. Fukami, ‘Molecular state evaluation of active pharmaceutical ingredients in adhesive patches for transdermal drug delivery’, J Drug Deliv Sci Technol, vol. 58, no. May, p. 101800, 2020, https://doi.org/10.1016/j.jddst.2020.101800.
[92] R. Parhi and S. Padilam, ‘In vitro permeation and stability studies on developed drug-in-adhesive transdermal patch of simvastatin’, Bulletin of Faculty of Pharmacy, Cairo University, vol. 56, no. 1, pp. 26–33, 2018, https://doi.org/10.1016/j.bfopcu.2018.04.001.
[93] J. Suksaeree, P. Boonme, W. Taweepreda, G. C. Ritthidej, and W. Pichayakorn, ‘Characterization, in vitro release and permeation studies of nicotine transdermal patches prepared from deproteinized natural rubber latex blends’, Chemical Engineering Research and Design, vol. 90, no. 7, pp. 906–914, 2012, https://doi.org/10.1016/j.cherd.2011.11.002.
[94] T. Pongjanyakul, S. Prakongpan, and A. Priprem, ‘Acrylic matrix type nicotine transdermal patches: In vitro evaluations and batch-to-batch uniformity’, Drug Dev Ind Pharm, vol. 29, no. 8, pp. 843–853, 2003, https://doi.org/10.1081/DDC-120024180.
[95] V. Vijayan, K. R. Reddy, S. Sakthivel, and C. Swetha, ‘Optimization and charaterization of repaglinide biodegradable polymeric nanoparticle loaded transdermal patchs: In vitro and in vivo studies’, Colloids Surf B Biointerfaces, vol. 111, pp. 150–155, 2013, https://doi.org/10.1016/j.colsurfb.2013.05.020.
[96] M. K. Chauhan and P. K. Sharma, ‘Optimization and characterization of rivastigmine nanolipid carrier loaded transdermal patches for the treatment of dementia’, Chem Phys Lipids, vol. 224, no. May, p. 104794, 2019, https://doi.org/10.1016/j.chemphyslip.2019.104794.
[97] I. I. A. Hashim, N. F. A. El-Magd, A. R. El-Sheakh, M. F. Hamed, and A. E. G. H. A. El-Gawad, ‘Pivotal role of acitretin nanovesicular gel for effective treatment of psoriasis: Ex vivo–in vivo evaluation study’, Int J Nanomedicine, vol. 13, pp. 1059–1079, 2018, https://doi.org/10.2147/IJN.S156412.
[98] A. Manosroi, C. Chankhampan, W. Manosroi, and J. Manosroi, ‘Transdermal absorption enhancement of papain loaded in elastic niosomes incorporated in gel for scar treatment’, European Journal of Pharmaceutical Sciences, vol. 48, no. 3, pp. 474–483, 2013, https://doi.org/10.1016/j.ejps.2012.12.010.
[99] S. Talib, N. Ahmed, D. Khan, G. M. Khan, and A. ur Rehman, ‘Chitosan-chondroitin based artemether loaded nanoparticles for transdermal drug delivery system’, J Drug Deliv Sci Technol, vol. 61, p. 102281, 2021, https://doi.org/10.1016/j.jddst.2020.102281.
[100] S. R. Srikakulam et al., ‘A Novel Targeted Nanoliposomal Atorvastatin Transdermal Patch Assisted with Solid Microneedles for Improved Bioavailability’, Indian Journal of Pharmaceutical Education and Research, vol. 58, no. 3, pp. 736–750, 2024, https://doi.org/10.5530/ijper.58.3.82.