THE SYNERGISTIC ROLE OF HISTOPATHOLOGY AND GENOMICS IN PERSONALIZED CANCER THERAPY

Main Article Content

Dr. Kalpesh Hathi

Keywords

Histopathology, Genomics, Precision Oncology, Integrative Diagnostics, Artificial Intelligence

Abstract

The evolution of precision oncology has necessitated the integration of histopathological and genomic data to achieve greater diagnostic, prognostic, and therapeutic accuracy. Histopathology provides essential morphological insights into tumor architecture, cellular differentiation, and microenvironmental features, forming the diagnostic foundation in oncology. Genomic profiling complements this by uncovering the molecular alterations that drive oncogenesis, influence therapeutic response, and determine disease progression. The convergence of these two modalities offers a synergistic diagnostic framework that enhances clinical decision-making across diverse cancer types. Current clinical models demonstrate the efficacy of this integration, such as the WHO’s molecular reclassification of central nervous system tumors and the routine pairing of immunohistochemistry with genomic biomarker profiling in lung and breast cancers. Technological advancements, particularly in artificial intelligence, digital pathology, spatial transcriptomics, and proteogenomics, have further enabled high-resolution, real-time interpretation of tumor biology. These innovations facilitate the transition from conventional diagnostic pathways to comprehensive, multimodal cancer profiling. The Key challenges remain, including the harmonization of multimodal data, standardization of integrative workflows, and equitable access to diagnostic innovations in resource-limited settings. Addressing these barriers is essential for the widespread implementation of integrative oncology practices. The review outlines the clinical significance, technological progress, and translational impact of histogenomic synergy, positioning it as a cornerstone of next-generation personalized oncology. The strategic unification of disciplines across pathology, genomics, and computational science is essential for delivering precise, individualized cancer care on a global scale.

Abstract 125 | PDF Downloads 52

References

1. Wood SL, Pernemalm M, Crosbie PA, Whetton AD. Molecular histology of lung cancer: from targets to treatments. Cancer Treat Rev. 2015 Apr 1;41(4):361–75.
2. Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol. 2021;23(8):1231–51.
3. Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov. 2022 Jan 1;12(1):31–46.
4. Dienstmann R, Rodon J, Barretina J, Tabernero J. Genomic medicine frontier in human solid tumors: prospects and challenges. J Clin Oncol. 2013;31(15):1874–84.
5. Garraway LA, Verweij J, Ballman KV. Precision oncology: an overview. J Clin Oncol. 2013;31(15):1803–5
6. Jain KK. Personalized medicine for cancer: from drug development into clinical practice. Expert Opin Pharmacother. 2005;6(9):1463–76.
7. Chakravarty D, Gao J, Phillips SM, Kundra R, Zhang H, Wang J, et al. OncoKB: a precision oncology knowledge base. JCO Precis Oncol. 2017;2017:PO.17.00011.
8. Roychowdhury S, Chinnaiyan AM. Translating genomics for precision cancer medicine. Annu Rev Genomics Hum Genet. 2014;15:395–415.
9. Massard C, Michiels S, Ferté C, Le Deley MC, Lacroix L, Hollebecque A, et al. High-throughput genomics and clinical outcome in hard-to-treat advanced cancers: results of the MOSCATO 01 trial. Cancer Discov. 2017;7(6):586–95.
10. Yap TA, Jacobs I, Baumfeld Andre E, Lee LJ, et al. Application of real-world data to external control groups in oncology clinical trial drug development. Front Oncol. 2022;11:695936.
11. Kumar V, Abbas AK, Aster JC. Robbins and Cotran Pathologic Basis of Disease. 10th ed. Philadelphia: Elsevier; 2020.
12. Goldblum JR, Lamps LW, McKenney JK, Myers JL. Rosai and Ackerman's Surgical Pathology. 11th ed. Philadelphia: Elsevier; 2018.
13. Tsao MS, Nicholson AG, Mauer D, Hirsch FR. IASLC Atlas of PD-L1 Immunohistochemistry Testing in Lung Cancer. 2nd ed. Aurora: IASLC; 2021.
14. Rakha EA, Reis-Filho JS, Ellis IO. Basal-like breast cancer: a critical review. J Clin Oncol. 2008;26(15):2568–81. doi:10.1200/JCO.2007.13.1746
15. Galon J, Bruni D. Approaches to treat immune hot, altered, and cold tumors with combination immunotherapies. Nat Rev Drug Discov. 2019 Mar;18(3):197–218. doi:10.1038/s41573-018-0007-y
16. Ueno H, Shinto E, Shimazaki H, Kajiwara Y, Sueyoshi K, Yamamoto J, et al. Histologic indices in colorectal cancer: intratumoral budding, immune cell infiltration, and micropapillary pattern. Mod Pathol. 2011;24(5):614–23. doi:10.1038/modpathol.2010.228
17. Nagtegaal ID, Odze RD, Klimstra D, Paradis V, Rugge M, Schirmacher P, Washington KM, Carneiro F, Cree IA. The 2019 WHO classification of tumours of the digestive system. Histopathology. 2019 Nov 13;76(2):182.
18. Khoury JD, Solary E, Abla O, Akashi K, Chan WC, Ghobrial IM, et al. The 5th edition of the WHO Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia. 2022;36(7):1701–12. doi:10.1038/s41375-022-01613-1
19. van der Laak JAWM, Litjens G, Ciompi F. Deep learning in histopathology: the path to the clinic. Nat Med. 2021;27(5):775–84. doi:10.1038/s41591-021-01305-4
20. Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet. 2016;17(6):333–351.
21. Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole genomes. Nature. 2020;578(7793):82–93.
22. Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med. 2015;372(9):793–795.
23. Wan JCM, Massie C, Garcia-Corbacho J, Mouliere F, Brenton JD, Caldas C, et al. Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev Cancer. 2017;17(4):223–238.
24. Lindeman NI, Cagle PT, Aisner DL, Arcila ME, et al. Updated molecular testing guideline for the selection of lung cancer patients for treatment with targeted tyrosine kinase inhibitors: guideline from the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology. Arch Pathol Lab Med. 2018 Mar 1;142(3):321-46.
25. Gopal N, Yazdian Anari P, Turkbey E, Jones EC, et al. The next paradigm shift in the management of clear cell renal cancer: radiogenomics—definition, current advances, and future directions. Cancers. 2022 Jan;14(3):793.
26. Heng HH. The genomic landscape of cancers. InEcology and evolution of cancer 2017 Jan 1 (pp. 69-86). Academic Press.
27. Denkert C, Liedtke C, Tutt A, von Minckwitz G. Molecular alterations in triple-negative breast cancer—The road to new treatment strategies. Lancet. 2017;389(10087):2430–2442.
28. Moreira L, Balaguer F, Lindor N, de la Chapelle A, Hampel H, Aaltonen LA, et al. Identification of Lynch syndrome among patients with colorectal cancer. JAMA. 2012;308(15):1555–1565.
29. Campanella G, Hanna MG, Geneslaw L, Miraflor A, Werneck Krauss Silva V, Busam KJ, et al. Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat Med. 2019;25(8):1301–9. doi:10.1038/s41591-019-0508-1
30. Liu Y, Kohlberger T, Norouzi M, Dahl GE, Smith JL, Mohtashamian A, et al. Artificial intelligence–based breast cancer nodal metastasis detection: insights into the black box for pathologists. Arch Pathol Lab Med. 2019;143(7):859–68. doi:10.5858/arpa.2018-0147-OA
31. Moncada R, Barkley D, Wagner F, Chiodin M, Devlin JC, Baron M, et al. Integrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomas. Nat Biotechnol. 2020;38(3):333–42. doi:10.1038/s41587-019-0392-8
32. Snyder A, Nathanson T, Funt SA, Ahuja A, Buros Novik J, Hellmann MD, et al. Contribution of systemic and somatic factors to clinical response and resistance in urothelial cancer: An exploratory multi-omic analysis. Cell. 2021;184(3):790–803.e13.
33. Pleasance E, Bohm A, Williamson LM, Nelson JM, et al. Whole-genome and transcriptome analysis enhances precision cancer treatment options. Ann. Oncol. 2022 Sep 1;33(9):939-49.
34. Cieślik M, Chinnaiyan AM. Cancer transcriptome profiling at the juncture of clinical translation. Nat Rev Genet. 2018;19(2):93–109.
35. Grossman RL, Heath AP, Ferretti V, Varmus HE, Lowy DR, Kibbe WA, et al. Toward a shared vision for cancer genomic data. N Engl J Med. 2016;375(12):1109–12.
36. Groenen PJ, Blokx WA, Diepenbroek C, Burgers L, Visinoni F, Wesseling P, van Krieken JH. Preparing pathology for personalized medicine: possibilities for improvement of the pre‐analytical phase. Histopathology. 2011 Jul;59(1):1-7.
37. Elmore JG, Longton GM, Carney PA, Geller BM, et al. Diagnostic concordance among pathologists interpreting breast biopsy specimens. Jama. 2015 Mar 17;313(11):1122-32.
38. Deans ZC, Costa JL, Cree I, Dequeker E, et al. Integration of next-generation sequencing in clinical diagnostic molecular pathology laboratories for analysis of solid tumours; an expert opinion on behalf of IQN Path ASBL. Virchows Archiv. 2017 Jan;470:5-20.
39. Ganeshpurkar A, Ganeshpurkar A, Prajapati H, Saxena N, Jain S, Dubey N. Regulatory Aspects of Cancer Immunotherapy. InNanotechnology Based Strategies for Cancer Immunotherapy: Concepts, Design, and Clinical Applications 2025 Feb 8 (pp. 439-470). Singapore: Springer Nature Singapore.
40. Echle A, Rindtorff NT, Brinker TJ, Luedde T, Pearson AT, Kather JN. Deep learning in cancer pathology: a new generation of clinical biomarkers. Br J Cancer.
41. Mertins P, Mani DR, Ruggles KV, Gillette MA, Clauser KR, Wang P, et al. Proteogenomics connects somatic mutations to signalling in breast cancer. Nature. 2016;534(7605):55–62. doi:10.1038/nature18003
42. Raj-Kumar PK, Lin X, Liu T, Sturtz LA, et al. Proteogenomic characterization of difficult-to-treat breast cancer with tumor cells enriched through laser microdissection. Breast Cancer Research. 2024 May 14;26(1):76.
43. Chen R, Snyder M. Promise of personalized omics to precision medicine. Wiley Interdisciplinary Reviews: Systems Biology and Medicine. 2013 Jan;5(1):73-82.
44. Grossman RL, Heath AP, Ferretti V, Varmus HE, Lowy DR, Kibbe WA, et al. Toward a shared vision for cancer genomic data. N Engl J Med. 2016;375(12):1109–1112. doi:10.1056/NEJMp1607591