RECENT DEVELOPMENTS IN SCREENING HEPATITIS B VIRUS BY MOLECULAR TECHNIQUES
Main Article Content
Keywords
Hepatitis B virus, Molecular diagnostics, PCR, CRISPR, Point-of-care testing
Abstract
Hepatitis B virus is a sickness that still causes a lot of health problems around the world. It is especially common in countries that are still developing. When doctors find out about this sickness late, people can get very sick or even die. Finding out early if someone has this sickness is very important. This helps doctors give the right treatment, stop the sickness from spreading to others, and work towards completely getting rid of it. This review talks about new and better ways to find the Hepatitis B virus. It explains how these methods work, how they are used, what is good about them, and what problems they might have. Old ways of finding the sickness by testing blood are helpful but sometimes miss the virus, especially when the sickness just started or if the virus is hiding. New tests that look at the virus’s tiny parts (like its genetic material) are better at finding even very small amounts of the virus. These tests can also find changes in the virus and check if treatment is working. There are special tools that doctors can use anywhere to test quickly. Some tools use smart technology to help understand the test results better. Comparing these methods shows that we need tests that are not too expensive, are fast, and give correct answers. New ideas like tiny labs on a chip or sensors that people can wear are coming soon and may change how we find this virus. This review also points out what is missing in current tests and suggests ideas for future research to create easy, cheap, and accurate tests that everyone in the world can use.
References
2. Andersen, K., Salachan, P. V., Borre, M., Ulhøi, B., Stougaard, M., Sørensen, K. D., & Steiniche, T. (2024). Highly sensitive deep panel sequencing of 27 HPV genotypes in prostate cancer biopsies results in very low detection rates and indicates that HPV is not a major etiological driver of this malignancy. Infectious Agents and Cancer, 19(1), 57. https://link.springer.com/article/10.1186/s13027-024-00619-x
3. Bagheri, S., Fard, G. B., Talkhi, N., Rashidi Zadeh, D., Mobarra, N., Mousavinezhad, S., ... & Hosseini Bafghi, M. (2024). Laboratory Biochemical and Hematological Parameters: Early Predictive Biomarkers for Diagnosing Hepatitis C Virus Infection. Journal of Clinical Laboratory Analysis, 38(24), e25127. https://onlinelibrary.wiley.com/doi /abs/10. 1002/jcla.25127
4. Bai, H., Wang, Y., Li, X., & Guo, J. (2023). Electrochemical nucleic acid sensors: Competent pathways for mobile molecular diagnostics. Biosensors and Bioelectronics, 237, 115407. https://www.sciencedirect.com/science/article/pii/S0956566323003494
5. Bakhshinejad, B., & Sadeghizadeh, M. (2014). Bacteriophages and their applications in the diagnosis and treatment of hepatitis B virus infection. World Journal of Gastroenterology: WJG, 20(33), 11671. https://pmc.ncbi.nlm.nih.gov/articles/PMC4155358/
6. Barulin, A., Nguyen, D. D., Kim, Y., Ko, C., & Kim, I. (2024). Metasurfaces for quantitative biosciences of molecules, cells, and tissues: sensing and diagnostics. ACS Photonics, 11(3), 904–916. https://pubs.acs.org/doi/abs/10.1021/acsphotonics.3c01576
7. Bayliss, J., Nguyen, T., Lesmana, C. R. A., Bowden, S., & Revill, P. (2013, May). Advances in the molecular diagnosis of hepatitis B infection: providing insight into the next generation of disease. In Seminars in liver disease (Vol. 33, No. 02, pp. 113-121). Thieme Medical Publishers. https://www.thieme-connect.com/products/ejournals/html/10.1055/s-0033-1345714
8. Betz, U. A., Arora, L., Assal, R. A., Azevedo, H., Baldwin, J., Becker, M. S., ... & Zhao, G. (2023). Game changers in science and technology—now and beyond. Technological Forecasting and Social Change, 193, 122588. https://www.sciencedirect.com/science/ article/pii/S0040162523002731
9. Candotti, D., & Allain, J. P. (2009). Transfusion-transmitted hepatitis B virus infection. Journal of Hepatology, 51(4), 798–809. https://www.sciencedirect.com /science/article /pii/ S0168827809003912
10. Camargo, M., Muñoz, M., Patiño, L. H., & Ramírez, J. D. (2025). Strengthening molecular testing capacity in Colombia: Challenges and opportunities. Diagnostic Microbiology and Infectious Disease, 116716. https://www.sciencedirect.com/science/article/pii/S0732889325000392
11. Caviglia, G. P., Abate, M. L., Tandoi, F., Ciancio, A., Amoroso, A., Salizzoni, M., ... & Smedile, A. (2018). Quantitation of HBV cccDNA in anti-HBc-positive liver donors by droplet digital PCR: A new tool to detect occult infection. Journal of Hepatology, 69(2), 301–307. https://www.sciencedirect.com/science/article/pii/S0168827818319639
12. Chakraborty, S. (2024). Democratizing nucleic acid-based molecular diagnostic tests for infectious diseases at resource-limited settings—From point of care to extreme point of care. Sensors & Diagnostics, 3(4), 536–561. https://pubs.rsc.org/en/conten t/articleh tml/2024 /sd/d3sd00304c
13. Chevaliez, S., & Pawlotsky, J. M. (2018). New virological tools for screening, diagnosis and monitoring of hepatitis B and C in resource-limited settings. Journal of hepatology, 69(4), 916-926. https://www.sciencedirect.com/science/article/pii/S0168827818320634
14. Chevaliez, S., Rodriguez, C., & Pawlotsky, J. M. (2012). New virologic tools for management of chronic hepatitis B and C. Gastroenterology, 142(6), 1303-1313. https://www.sciencedirect .com/science/article/pii/S0016508512002405
15. Chen, H., Feng, Y., Liu, F., Tan, C., Xu, N., Jiang, Y., & Tan, Y. (2024). Universal smartphone-assisted label-free CRISPR/Cas12a-DNAzyme chemiluminescence biosensing platform for on-site detection of nucleic acid and non-nucleic acid targets. Biosensors and Bioelectronics, 247, 115929. https://www.sciencedirect.com/science/ article/pii/S09565663 23008710
16. Chen, J. S., Ma, E., Harrington, L. B., Da Costa, M., Tian, X., Palefsky, J. M., & Doudna, J. A. (2018). CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science, 360(6387), 436–439. https://www.science.org/doi/abs/10 .1126/science. aar6245
17. Chen, P. J. (2024). Challenges for hepatitis B control in Asia-Pacific areas: Consolidating vaccination and rolling-out antiviral therapies. Journal of Gastroenterology and Hepatology, 39(6), 1033–1039. https://onlinelibrary.wiley.com/doi/abs/10.1111/jgh.16528
18. Chevaliez, S., Roudot-Thoraval, F., Hézode, C., Pawlotsky, J. M., & Njouom, R. (2021). Performance of rapid diagnostic tests for hepatitis B surface antigen detection in serum or plasma. Diagnostic Microbiology and Infectious Disease, 100(2), 115353. https://www.sciencedirect.com/science/article/pii/S0732889321000468
19. Datta, S., Chatterjee, S., & Veer, V. (2014). Recent advances in molecular diagnostics of hepatitis B virus. World Journal of Gastroenterology: WJG, 20(40), 14615. https://pmc.ncbi.nlm.nih.gov/articles/PMC4209528/
20. Elnifro, E. M., Ashshi, A. M., Cooper, R. J., & Klapper, P. E. (2000). Multiplex PCR: optimization and application in diagnostic virology. Clinical Microbiology Reviews, 13(4), 559–570. https://journals.asm.org/doi/abs/10.1128/cmr.13.4.559
21. Erken, R., Loukachov, V., van Dort, K., van den Hurk, A., Takkenberg, R. B., de Niet, A., ... & Kootstra, N. (2022). Quantified integrated hepatitis B virus is related to viral activity in patients with chronic hepatitis B. Hepatology, 76(1), 196–206. https://aasldpubs.onlinelibrary. wiley.com/doi/pdf/10.1002/hep.32352
22. Garcia-Garcia, S., Cortese, M. F., Rodriguez-Algarra, F., Tabernero, D., Rando-Segura, A., Quer, J., ... & Rodriguez-Frias, F. (2021). Next-generation sequencing for the diagnosis of hepatitis B: current status and future prospects. Expert Review of Molecular Diagnostics, 21(4), 381–396. https://www.tandfonline.com/doi/abs/10.1080/14737159.2021.1913055
23. Ganem, D., & Prince, A. M. (2004). Hepatitis B virus infection—Natural history and clinical consequences. New England Journal of Medicine, 350(11), 1118–1129. https://www.nejm.org/doi/abs/10.1056/NEJMra031087
24. Gerlich, W. H. (2013). Medical virology of hepatitis B: how it began and where we are now. Virology journal, 10, 1-25. https://link.springer.com/article/10.1186/1743-422X-10-239
25. Ghorbani, A., Rostami, M., & Guzzi, P. H. (2024). AI-enabled pipeline for virus detection, validation, and SNP discovery from next-generation sequencing data. Frontiers in Genetics, 15, 1492752. https://www.frontiersin.org/journals/genetics/articles/10.3389/fgene.2024.1492752/full
26. Gootenberg, J. S., Abudayyeh, O. O., Kellner, M. J., Joung, J., Collins, J. J., & Zhang, F. (2018). Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science, 360(6387), 439–444. https://www.science.org/doi/abs/10.1126/science.aaq0179
27. Garg, N., Ahmad, F. J., & Kar, S. (2022). Recent advances in loop-mediated isothermal amplification (LAMP) for rapid and efficient detection of pathogens. Current Research in Microbial Sciences, 3, 100120. https://www.sciencedirect.com /science/article/pii /S266 6517422000177
28. Gupta, E., Khodare, A., Rani, N., Singh, G., Aggarwal, K., & Sharma, M. (2021). Performance evaluation of Xpert HBV viral load (VL) assay: Point-of-care molecular test to strengthen and decentralize management of chronic hepatitis B (CHB) infection. Journal of Virological Methods, 290, 114063. https://www.sciencedirect.com/science/article/pii/S0166093421000021
29. Hadler, S. C., & Margolis, H. S. (2024). Epidemiology of hepatitis B virus infection. In Hepatitis B vaccines in clinical practice (pp. 141–157). CRC Press. https://www.taylorfrancis.com/chapters/edit/10.1201/9781003573852-7/epidemiology-hepatitis-virus-infection-stephen-hadler-harold-margolis
30. Higuchi, R., Fockler, C., Dollinger, G., & Watson, R. (1993). Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Bio/technology, 11(9), 1026–1030. https://www.nature.com/articles/nbt0993-1026
31. Kumar, M., Pahuja, S., Khare, P., & Kumar, A. (2023). Current challenges and future perspectives of diagnosis of hepatitis B virus. Diagnostics, 13(3), 368. https://www. mdpi.com/2075-4418/13/3/368
32. Kumar, R., Kumar, M., Tanna, B., & Bhargava, B. (2025). Molecular diagnostic techniques utilized in viral diseases. In Viral Diseases: History and new developments in diagnostics and therapeutics (pp. 5-1). Bristol, UK: IOP Publishing. https://iopscience.iop.org/book/edit/978-0-7503-4987-1/chapter/bk978-0-7503-4987-1ch5
33. Kulkarni, S., Jadhav, S., Khopkar, P., Sane, S., Londhe, R., Chimanpure, V., ... & Gangakhedkar, R. (2017). GeneXpert HIV-1 quant assay, a new tool for scale up of viral load monitoring in the success of ART programme in India. BMC Infectious Diseases, 17, 1–9. https://link.springer.com/article/10.1186/s12879-017-2604-5
34. Lampertico, P., Agarwal, K., Berg, T., Buti, M., Janssen, H. L., Papatheodoridis, G., ... & Tacke, F. (2017). EASL 2017 Clinical Practice Guidelines on the management of hepatitis B virus infection. Journal of Hepatology, 67(2), 370–398. https://www.sciencedirect.com /science/article/pii/S016882781730185X
35. Lavanchy, D. (2004). Hepatitis B virus epidemiology, disease burden, treatment, and current and emerging prevention and control measures. Journal of Viral Hepatitis, 11(2), 97–107. https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-2893.2003.00487.x
36. Lehnert, T., & Gijs, M. A. (2024). Microfluidic systems for infectious disease diagnostics. Lab on a Chip, 24(5), 1441–1493. https://pubs.rsc.org/en/content/articlehtml/2012/pb/d4lc00117f
37. Lamontagne, R. J., Bagga, S., & Bouchard, M. J. (2016). Hepatitis B virus molecular biology and pathogenesis. Hepatoma research, 2, 163. https://pmc.ncbi.nlm.nih. gov/ articles/ PMC5198785/
38. Locarnini, S. (2004, February). Molecular virology of hepatitis B virus. In Seminars in Liver Disease (Vol. 24, No. S1, pp. 3–10). Thieme Medical Publishers. https://www.thieme-connect.com/products/ejournals/html/10.1055/s-2004-828672
39. Mardis, E. R. (2013). Next-generation sequencing platforms. Annual Review of Analytical Chemistry, 6(1), 287–303. https://www.annualreviews.org/content/journals/10.1146/annurev-anchem-062012-092628
40. Maddali, H., Miles, C. E., Kohn, J., & O'Carroll, D. M. (2021). Optical biosensors for virus detection: prospects for SARS-CoV-2/COVID-19. ChemBioChem, 22(7), 1176–1189. https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/cbic.202000744
41. Mou, X., Chen, Z., Li, T., Liu, M., Liu, Y., Ali, Z., ... & Deng, Y. (2019). A highly sensitive strategy for low-abundance hepatitis B virus detection via one-step nested polymerase chain reaction, chemiluminescence technology and magnetic separation. Journal of Biomedical Nanotechnology, 15(8), 1832–1838. https://www.ingentaconnect.com/contentone/asp/jbn/2019/00000015/00000008/art00018
42. Mukherjee, P., Park, S. H., Pathak, N., Patino, C. A., Bao, G., & Espinosa, H. D. (2022). Integrating micro and nano technologies for cell engineering and analysis: toward the next generation of cell therapy workflows. ACS Nano, 16(10), 15653–15680. https://pubs.acs.org/doi/abs/10.1021/acsnano.2c05494
43. Mullis, K., Faloona, F., Scharf, S., Saiki, R., Horn, G., & Erlich, H. (1986, January). Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. In Cold Spring Harbor Symposia on Quantitative Biology (Vol. 51, pp. 263–273). Cold Spring Harbor Laboratory Press. https://symposium.cshlp.org/content/51/263.extract
44. Narasimhan, V., Kim, H., Lee, S. H., Kang, H., Siddique, R. H., Park, H., ... & Kumar, S. (2023). Nucleic Acid Amplification-Based Technologies (NAAT)—Toward Accessible, Autonomous, and Mobile Diagnostics. Advanced Materials Technologies, 8(20), 2300230. https://onlinelibrary.wiley.com/doi/abs/10.1002/admt.202300230
45. Nayak, S. (2018). Development and Evaluation of Point-of-care Diagnostic Technologies for Providers and Consumers (Doctoral dissertation, Columbia University). https://core.ac. uk/download/pdf/161459355.pdf
46. Nguyen, M. H., Wong, G., Gane, E., Kao, J. H., & Dusheiko, G. (2020). Hepatitis B virus: advances in prevention, diagnosis, and therapy. Clinical microbiology reviews, 33(2), 10-1128. https://journals.asm.org/doi/abs/10.1128/cmr.00046-19
47. Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N., & Hase, T. (2000). Loop-mediated isothermal amplification of DNA. Nucleic Acids Research, 28(12), e63–e63. https://academic.oup.com/nar/article-abstract/28/12/e63/2359194
48. Peter, J. G. (2013). Approaches to the diagnosis of smear-negative and sputum-scarce TB in South Africa. https://open.uct.ac.za/bitstreams/bb86e3fc-4f4e-423f-be5c-983cc47dade8/ down load
49. Pillay, T. S., Khan, A., & Yenice, S. (2025). Artificial intelligence (AI) in point-of-care testing. Clinica Chimica Acta, 120341. https://www.sciencedirect.com/scie nce /article/p ii/S0009 8981 25002207
50. Rybicka, M., Stalke, P., & Bielawski, K. P. (2016). Current molecular methods for the detection of hepatitis B virus quasispecies. Reviews in Medical Virology, 26(5), 369-381. https://onlinelibrary.wiley.com/doi/abs/10.1002/rmv.1897
51. Raimondo, G., Allain, J. P., Brunetto, M. R., Buendia, M. A., Chen, D. S., Colombo, M., ... & Zoulim, F. (2008). Statements from the Taormina expert meeting on occult hepatitis B virus infection. Journal of Hepatology, 49(4), 652–657. https://www.sciencedirect.com/science/article/pii/S0168827808004790
52. Rosenberg, S. (2001). Recent advances in the molecular biology of hepatitis C virus. Journal of molecular biology, 313(3), 451-464. https://www.sciencedirect.com/science/article/pii/S00 22283601950557
53. Sablon, E., & Shapiro, F. (2005). Advances in molecular diagnosis of HBV infection and drug resistance. International Journal of Medical Sciences, 2(1), 8. https://pmc.ncbi.nlm.nih.gov/ articles/PMC1142219/
54. Seeger, C., & Mason, W. S. (2000). Hepatitis B virus biology. Microbiology and Molecular Biology Reviews, 64(1), 51–68. https://journals.asm.org/doi/abs/10.1128/mmbr.64.1.51-68.2000
55. Schweitzer, A., Horn, J., Mikolajczyk, R. T., Krause, G., & Ott, J. J. (2015). Estimations of worldwide prevalence of chronic hepatitis B virus infection: a systematic review of data published between 1965 and 2013. The Lancet, 386(10003), 1546–1555. https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(15)61412-X/abstract
56. Sistayanarain, A., & Kunthalert, D. (2025). Amplification of NS3 and NS5A in hepatitis C virus by the multiplex nested polymerase chain reaction. World Academy of Sciences Journal, 7(4), 54. https://www.spandidos-publications.com/10.3892/wasj.2025.342
57. Souf, S. (2016). Recent advances in diagnostic testing for viral infections. Bioscience Horizons: The International Journal of Student Research, 9, hzw010. https://academic.oup.com/ biohorizons/article-abstract/doi/10.1093/biohorizons/hzw010/2622464
58. Stramer, S. L., Wend, U., Candotti, D., Foster, G. A., Hollinger, F. B., Dodd, R. Y., ... & Gerlich, W. (2011). Nucleic acid testing to detect HBV infection in blood donors. New England Journal of Medicine, 364(3), 236–247. https://www.nejm.org/doi/full/10.1056/Nejmoa1007644
59. Sulaiman, I. M. (Ed.). (2024). Recent Advancements in the Diagnosis of Human Disease. CRC Press. https://api.taylorfrancis.com/content/books/mono/download?identifierName=doi&identifierValue=10.1201/9781003438595&type=googlepdf
60. Terrault, N. A., Lok, A. S., McMahon, B. J., Chang, K. M., Hwang, J. P., Jonas, M. M., ... & Wong, J. B. (2018). Update on prevention, diagnosis, and treatment of chronic hepatitis B: AASLD 2018 hepatitis B guidance. Hepatology, 67(4), 1560–1599. https://aasldpubs .onlinel ibrary.wiley.com/doi/pdf/10.1002/hep.29800
61. Vashisht, V., Vashisht, A., Mondal, A. K., Farmaha, J., Alptekin, A., Singh, H., ... & Kolhe, R. (2023). Genomics for emerging pathogen identification and monitoring: Prospects and obstacles. BioMedInformatics, 3(4), 1145–1177. https://www.mdpi.com/2673-7426/3/4/69
62. Valsamakis, A. (2007). Molecular testing in the diagnosis and management of chronic hepatitis B. Clinical microbiology reviews, 20(3), 426-439. https://journals.asm.org/do i/abs/10.112 8/ cmr.00009-07
63. Villar, L. M., Cruz, H. M., Barbosa, J. R., Bezerra, C. S., Portilho, M. M., & de Paula Scalioni, L. (2015). Update on hepatitis B and C virus diagnosis. World journal of virology, 4(4), 323. https://pmc.ncbi.nlm.nih.gov/articles/PMC4641225/
64. Weber, B. (2005). Recent developments in the diagnosis and monitoring of HBV infection and role of the genetic variability of the S gene. Expert review of molecular diagnostics, 5(1), 75-91. https://www.tandfonline.com/doi/abs/10.1586/14737159.5.1.75
65. Whale, A. S., Huggett, J. F., Cowen, S., Speirs, V., Shaw, J., Ellison, S., ... & Scott, D. J. (2012). Comparison of microfluidic digital PCR and conventional quantitative PCR for measuring copy number variation. Nucleic Acids Research, 40(11), e82–e82. https://academic. oup.com/nar/article-abstract/40/11/e82/2409772
66. World Health Organization. Global hepatitis report 2017. Geneva: WHO; 2017.
67. World Health Organization. (2023). The use of next‐generation sequencing for the surveillance of drug‐resistant tuberculosis: an implementation manual. World Health Organization. https://books.google.com/books?hl=en&lr=&id=tHcOEQAAQBAJ&oi=fnd&pg=PA46
68. Xie, C., Zhou, B., Yao, D., Wang, X., Zhong, L., Qiu, C., & Zhang, J. (2025). A cell-penetrating bispecific antibody suppresses hepatitis B virus replication and secretion. Virus Research, 353, 199531. https://www.sciencedirect.com/science/article/pii/S0168170225000073
69. Zhong, J., Xu, Z., Peng, J., Guan, L., Li, J., Zhou, Z., ... & Hao, X. (2025). A CRISPR/Cas13a system based on a dumbbell-shaped hairpin combined with DNA-PAINT to establish the DCP-platform for highly sensitive detection of Hantaan virus RNA. Talanta, 291, 127852. https://www.sciencedirect.com/science/article/pii/S003991402500342X
70. Zoulim, F., & Locarnini, S. (2012). Management of treatment failure in chronic hepatitis B. Journal of Hepatology, 56, S112–S122. https://www.sciencedirect.com/science/ article/pii/S01 68827812600129