Association between Vitamin D3 and Glutathione levels in COVID 19 individual

Main Article Content

Khalid Hassan Abdalruda

Keywords

COVID-19 ,Oxidative stress ,Reduced glutathione(GSH) and Vitamin D3

Abstract

Background: COVID-19 is an infectious disease associated with high rate of infected and death specially for older male when they have low levels of glutathione (GSH)  and vitamin D (vit D). The GSH status positively associated with bioavailability of vit D. The GSH deficiency correlated by increased oxidative stress and inflammatory markers which implicate in increase the severity of disease.


Objective: To verify the vitamin D - GSH levels interaction among healthy and COVID- 19 patient.


Method :Control healthy group (166) individual and (171)  COVID 19  patient  were involved in this study. Oxidative stress and antioxidant parameters, Vit D, and inflammatory marker were estimated in both group.


Results: The COVID-19 patient show significant higher level for malondialdehyde (MDA),protein carbonyl group(PC), inturlukin-6 (IL6),Tumor necrosis factor alpha (TNFα) and C-reactive protein (CRP) and significant low level for GSH  and vit D compare to healthy control group, the aged  and male COVID-19 group display significant higher level for MDA,PC and significant low level for GSH compare with younger  and women group.


Conclusion: The COVID-19 patient correlated with higher oxidative stress , inflammatory marker and low level of antioxidant GSH and Vit D which develops by age advancing and especially within  male  .

Abstract 730 | pdf Downloads 72 PDF Downloads 186 XML Downloads 18 HTML Downloads 16

References

1.Wu Z, Mc Googan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention, JAMA, 2020, 323(13): 1239-1242.
2.Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target, Intensive Care Med., 3, 2020.
3.Tisoncik J.R, Korth M.J, Simmons C.P, Farrar J, Martin T.R, Katze M.G, Into the eye of the cytokine storm, Microbiol Mol Biol Rev., 2012, 76: 16-32. https://doi: 10.1128/MMBR.05015-11.
4.Polonikov A, Endogenous deficiency of glutathione as the most likely cause of serious manifestations and death in COVID-19 patients, ACS Infectious Diseases, 2020, 6(7): 1558-1562.
5.Dobrakowski, M.; Pawlas, N.; Hudziec, E.; Kozłowska, A.; Mikołajczyk, A.; Birkner, E.; Kasperczyk, S.Glutathione, glutathione-related enzymes, and oxidative stress in individuals with subacute occupational exposure to lead. Environ. Toxicol. Pharmacol. 2016, 45, 235–240.
6.Ali N. Role of vitamin D in preventing of COVID-19 infection, progression and severity. Journal of Infection and Public Health, 2020, 13(10): 1373-1380.
7. Aarón J, Méndez R, Ester R, Puc M. N-acetylcysteine as a potential treatment for novel coronavirus disease 2019,Future Microbiol., 2020, 15: 959-962.
8. Horowitz RI, Freeman PR, Bruzzese J. Efficacy of glutathione therapy in relieving dyspnea associated with COVID-19 pneumonia: A report of 2 cases Respiratory Medicine Case Reports, 2020, 30: 101063.
9. Choudhuri SK. Glutathione Enrichment as a Possible Prevention and Treatment for COVID-19, Int. J. of Pharma Sci. and Scientific Res., 2020, 6(4): 65-66.
10. Spitalization, and Death by Age Group. Available online: (accessed on 1 December 2021).
11.Sastre J, Federico VP, Viña J. Glutathione, oxidative stress and aging, AGE 19, 1996, 129-139.
12. Berridge, M.J. (2015) Vitamin D cell signalling in health and disease. Biochem Biophys Res Commun. 460 (1): 53–71.
13. Alvarez, J. A., Chowdhury, R., Jones, D. P., Martin, G. S.,Brigham, K. L., Binongo, J. N., Ziegler, T. R., and Tangpricha, V.(2014) Vitamin D status is independently associated with plasmaglutathione and cysteine thiol/disulphide redox status in adults. Clin.Endocrinol. (Oxford, U. K.) 81, 458−466.
14. Jain, S. K., Micinski, D., Huning, L., Kahlon, G., Bass, P. F., and Levine, S. N. (2014) Vitamin D and L-cysteine levels correlate positively with GSH and negatively with insulin resistance levels in the blood of type 2 diabetic patients. Eur. J. Clin. Nutr. 68, 1148−1153.
15. Banerjee K, Biswas MK, Choudhuri SK. A newly synthesized Nickel chelate can selectively target and overcome multidrug resistance in cancer through redox imbalance both in vivo and in vitro, J. Biol. Inorg. Chem., 2017, 22(8): 1223-1249.
16. Banerjee K, Ganguly A, Chakraborty P, Sarkar A, Singh S, Chatterjee M, Bhattacharya S, Choudhuri SK. ROS and RNS induced apoptosis through p53 and iNOS mediated pathway by a dibasic hydroxamic acid molecule in leukemia cells, European Journal of Pharmaceutical Sciences, 2014, 52: 146-164.
17. Basu S, Ganguly A, Chakraborty P, Sen R, Banerjee K, Chatterjee M, Efferth T, Choudhuri SK. Targeting the mitochondrial pathway to induce apoptosis/necrosis through ROS by a newly developed Schiff’s base to overcome MDR in cancer, Biochimie, 2012, 94: 166-183.
18. Townsend DM, Tew KD, Tapiero H. The importance of glutathione in human disease, Biomed. Pharmacology, 2003, 57: 145-155.
19. Silvagno F, Vernone A, Pescarmona GP. The role of glutathione in protecting against the severe inflammatory response triggered by COVID-19. Antioxidants (Basel), 2020, 9(7): 624.
20. McGuinness AJ, Sapey E. Oxidative stress in COPD: Sources, markers, and potential mechanisms, J. Clin. Med., 2017, 6(2): 21.
21. Holick MF. The vitamin D deficiency pandemic: Approaches for diagnosis, treatment and prevention, Reviews in Endocrine and Metabolic Disorders, 2017, 18(2): 153-165.
22. Nobrega A. IMPORTÂNCIA DA VITAMINA D EM COVID-19, Revista Ibero-Americana de Humanidades,Ciências e Educação, 2021, 7(7): 1060-1081
23. Cantorna MT, Snyder L, Lin YD, Yang L. Vitamin D and 1, 25 (OH) 2D regulation of T cells, Nutrients, 2015, 7(4): 3011-3021.
24. Zdrenghea MT, Makrinioti H, Bagacean C, Bush A, Johnston SL, Stanciu LA. Vitamin D modulation of innate immune responses to respiratory viral infections, Reviews in Medical Virology, 2017, 27(1): e1909.
25. Shi Y, Liu T, Yao L, Xing Y, Zhao X, Fu J, Xue X. Chronic vitamin D deficiency induces lung fibrosis through activation of the renin-angiotensin system, Scientific Reports, 2017, 7(1): 1-10.
26. Yoshihara E, Masaki S, Matsuo Y, Chen Z, Tian H, Yodoi J.Thioredoxin/Txnip: Redoxisome, as a redox switch for the pathogenesis of diseases. Front in Immunol. 2014;4:514.
27. Jain SK, Kahlon G, Bass P, Levine SN, Warden C. Can L-cysteine and vitamin D rescue vitamin D and vitamin D binding protein levels in blood plasma of African American type 2 diabetic patients? 2015, 23(8): 688-693.
28 Jain SK, Marie PK, Warden C, Micinski D. L‐cysteine supplementation upregulates glutathione (GSH) and vitamin D binding protein (VDBP) in hepatocytes cultured in high glucose and in vivo in liver, and increases blood levels of GSH, VDBP, and 25‐hydroxy‐vitamin D in Zucker diabetic fatty rats, Molecular Nutrition & Food Research, 2016, 60(5): 1090-1098. https://doi.org/10.1002/mnfr.201500667.
29. Parsanathan R, Jain SK. Glutathione deficiency induces epigenetic alterations of vitamin D metabolism genes in the livers of high-fat diet-fed obese mice, Scientific Reports, 2019, 9(1): 1-11
30. Valencia DN. Brief review on COVID-19: the 2020 pandemic caused by SARS-CoV-2. Cureus 2020;12(3).
31. Ntyonga-Pono MP. COVID-19 infection and oxidative stress: anunder-explored approach for prevention and treatment? Pan Afr Med J2020;35(Suppl. 2):12.
32. Droge W, Schulze-Osthoff K, Mihm S, Galter D, Schenk H, Eck HP, Roth S, Gmunder H. Functions of glutathione and glutathione disulfide in immunology and immunopathology. FASEB J.1994;8(14):1131–8. doi:10.1096/fasebj.8.14.7958618.
33. Wu, Z., and McGoogan, J. M. (2020) Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA 323, 1239.
34. Hayes, J.D., & Dinkova-Kostova, A.T. (2014) The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem Sci. 39 (4): 199–218.
35. Lee, D.H., Gold, R., & Linker, R.A. (2012) Mechanisms of oxidative damage in multiple sclerosis and neurodegenerative diseases: therapeutic modulation via fumaric acid esters. Int J Mol Sci. 13 (9): 11783–11803.
36 Tsai, C.W., Lin, C.Y., & Wang, Y.J. (2011) Carnosic acid induces the NAD (P) H: Quinone Oxidoreductase 1 expression in rat clone 9 cells through the p38/Nuclear Factor Erythroid-2 Related Factor 2 Pathway. J Nutr. 141 (12): 2119–2125.
37. Mitsuishi, Y., Motohashi, H., & Yamamoto, M. (2012) The Keap1-Nrf2 system in cancers: stress response and anabolic metabolism. Front Oncol. 2200.
38. Urakawa, I., Yamazaki, Y., Shimada, T., Iijima, K., Hasegawa,H., & Okawa, K., et al. (2006) Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature. 444 (7120): 770.
39. Puerta-Guardo H, de la Cruz Hern_andez SI, Rosales VH,Ludert JE, del Angel RM. The 1α,25-dihydroxy-vitamin D3 reduces dengue virus infection in human myelomonocyte (U937) and hepatic (Huh-7) cell lines and cytokine production in the infected monocytes. Antiviral Res. 2012;94:57–61.
40. Gruber-Bzura BM. Vitamin d and influenza-prevention or therapy?Int J Mol Sci. 2018;19(8):2419.
41. Beard JA, Bearden A, Striker R. Vitamin d and the anti-viral state.J Clin Virol. 2011;50(3):194–200. doi:10.1016/j.jcv.2010.12.006.
42. Bassey OA, Lowry OH, Brook MJ, et al. The determination of vitamin A and carotene in small quantities of blood serum. J Biol Chem 1964; 3: 166–170.
43. Derouiche S. Oxidative stress associated with SARS-Cov-2 (COVID-19) increases the severity of the lung disease—a systematic review. J Infect Dis Epidemol 2020; 6(3): 1–6.
44. Curtis JM, Hahn WS, Long EK, Burrill JS, Arriaga EA, and Bernlohr DA. Protein carbonylation and metabolic control systems. Trends Endocrinol Metab 23: 399–406, 2012.
45. Dalle-Donne I, Rossi R, Giustarini D, Milzani A, and Colombo R. Protein carbonyl groups as biomarkers of oxi-dative stress. Clin Chim Acta 329: 23–38, 2003.
46. Bloch-Damti A and Bashan N. Proposed mechanisms for the induction of insulin resistance by oxidative stress. Antioxid Redox Signal 7: 1553–1567, 2005
47. Lee, D.H., Gold, R., & Linker, R.A. (2012) Mechanisms of oxidative damage in multiple sclerosis and neurodegenerative diseases: therapeutic modulation via fumaric acid esters. Int J Mol Sci. 13 (9): 11783–11803
48 Alves, M., Bastos, M., Leitão, F., Marques, G., Ribeiro, G., & Carrilho, F. (2013) Vitamina D – importância da avaliação laboratorial. Rev Port Endocrinol, Diabetes Metab. 8 (1): 32–39.
49. Karkhanei B, Talebi Ghane E, Mehri F. Evaluation of oxidative stress
level: total antioxidant capacity, total oxidant status and glutathione activity in patients with COVID‐19. New Microbe New Infect. 2021;42:100897.
50. Muhammad Y, Kani YA, Iliya S, et al. Deficiency of antioxidants and increased oxidative stress in COVID‐19 patients: a cross‐sectional comparative study in Jigawa, Northwestern Nigeria. SAGE Open Med. 2021;9:2050312121991246.
51. Golnaz Vaseghi MM, Karimi R, Heshmat‐Ghahdarijani K, Rouhi P,Shariati M, Javanmard SH. Inflammatory markers in Covid‐19 Patients:a systematic review and meta‐analysis. medRxiv, 2020.
52. Mancˇek-Keber M, Hafner-Bratkovicˇ I, Lainšcˇek D, et al. Disruptionof disulfides within RBD of SARS-CoV-2 spike protein prevents fusion and represents a target for viral entry inhibition by registered drugs. FASEB J. 2021;35:e21651.
53. Ansari MGA, Sabico S, Clerici M, et al. Vitamin D supplementation is associated with increased glutathione peroxidase-1 levels in Arab adults with prediabetes. Antioxidants. 2020;9:118
54. Ma Q. Role of Nrf2 in oxidative stress and toxicity. Ann Rev Pharmacol Toxicol. 2013;53:401–426.
55. Wimalawansa SJ. Vitamin D deficiency: Effects on oxidative stress, epigenetics, gene regulation, and aging. Biology. 2019;8:30.
56. Sepidarkish M, Farsi F, Akbari-Fakhrabadi M, et al. The effect of vitamin D supplementation on oxidative stress parameters:A systematic review and meta-analysis of clinical trials. Pharma Res. 2019;139:141–152.
57. Chen L, Yang R, Qiao W, et al. 1,25-Dihydroxy vitamin D prevents tumorigenesis by inhibiting oxidative stress and inducing tumor cellular senescence in mice. Intl J Cancer. 2018; 143:368–382.
58. Jain SK, Parsanathan R, Achari AE, Kanikarla-Marie P, Bocchini JA. Glutathione stimulates vitamin D regulatory and glucose-metabolism genes, lowers oxidative stress and inflammation, and increases 25-hydroxy-vitamin D levels in blood:
A novel approach to treat 25-hydroxyvitamin D deficiency.Antioxid Redox Signal. 2018;29:1792–1807.
59. Jain SK, Micinski D, Huning L, Kahlon G, Bass PF,Levine SN. Vitamin D and L-cysteine levels correlate positively with GSH and negatively with insulin resistance levels
in the blood of type 2 diabetic patients. Eur J Clin Nutr. 2014;68:1148–1153.
60.Mobeen Abdrabbo , Cole M. Birch ,Michael Brandt et.alVitamin D and COVID-19: A review on the role of vitamin D in preventing and reducing the severity of COVID-19 infection, Protein Science. 2021;30:2206–2220.
61. Kirkham, P.A.; Barnes, P.J. Oxidative stress in COPD. Chest 2013, 144, 266–273.
62. Polonikov A (2020) Endogenous deficiency of glutathione as the most likely cause of serious manifestations and death in COVID-19 patients. ACS Infect Dis 6(7):1558–1562
63. Oh S-J, Lee JK, Shin OS. Aging and the Immune System: the Impact of
Immunosenescence on Viral Infection, Immunity and Vaccine Immunogenicity.
Immune Network [Internet] 2019 [cited 2020 Apr 26
64. Hekimi, S., Lapointe, J., and Wen, Y. (2011) Taking a ″good″ look at free radicals in the aging process. Trends Cell Biol. 21, 569−576.
65. Erden-Inal, M.; Sunal, E.; Kanbak, G. Age-related changes in the glutathione redox system. Cell Biochem. Funct. 2002, 20, 61–66.
66. Nguyen, D.; Samson, S.L.; Reddy, V.T.; Gonzalez, E.V.; Sekhar, R.V. Impaired mitochondrial fatty acid oxidation and insulin resistance in aging: Novel protective role of glutathione. Aging Cell. 2013, 12, 415–425.
67. Kumar, P.; Liu, C.; Hsu, J.W.; Chacko, S.; Minard, C.; Jahoor, F.; Sekhar, R.V. Glycine and N-acetylcysteine (GlyNAC) supplementation in older adults improves glutathione deficiency, oxidative stress, mitochondrial dysfunction, inflammation, insulin resistance, endothelial dysfunction, genotoxicity, muscle strength, and cognition: Results of a pilot clinical trial. Clin. Transl. Med. 2021, 11, e372.
68. Brenner, H.; Holleczek, B.; Schottker, B. Vitamin D Insufficiency and Deficiency and Mortality from Respiratory Diseases in a Cohort of Older Adults: Potential for Limiting the Death Toll during and beyond the COVID-19 Pandemic? Nutrients 2020,12, 2488.
69. Giustina, A.; Adler, R.A.; Binkley, N.; Bollerslev, J.; Bouillon, R.; Dawson-Hughes, B.; Ebeling, P.R.; Feldman, D.; Formenti, A.M.;Lazaretti-Castro, M.; et al. Consensus statement from 2(nd) International Conference on Controversies in Vitamin D. Rev. Endocr.Metab. Disord. 2020, 21, 89–116
70. V. Baktash, T. Hosack, N. Patel, S. Shah, P. Kandiah, K. Van Den Abbeele, A.K.
J. Mandal, C.G. Missouris, Vitamin D status and outcomes for hospitalised older
patients with COVID-19, Postgrad. Med. J. (2020).
71. C. Annweiler, Z. Cao, J.-M. Sabatier, Point of view: should COVID-19 patients be supplemented with vitamin D? Maturitas (2020).
72. H. Shakoor, J. Feehan, A.S. Al Dhaheri, H.I. Ali, C. Platat, L.C. Ismail,V. Apostolopoulos, L. Stojanovska, Immune-boosting role of vitamins D, C, E, zinc,
selenium and omega-3 fatty acids: could they help against COVID-19? Maturitas
(2020).
73. Teskey, G.; Abrahem, R.; Cao, R.; Gyurjian, K.; Islamoglu, H.; Lucero, M.; Martinez, A.; Paredes, E.; Salaiz, O.; Robinson, B.; et al.Glutathione as a Marker for Human Disease. Adv. Clin. Chem. 2018, 87, 141–159.
74. Nanda, A.; Vura, N.V.R.K.; Gravenstein, S. COVID-19 in older adults. Aging Clin. Exp. Res. 2020, 32, 1199–1202.
75. Jain SK, Parsanathan R, Levine SN, Bocchini JA, Holick MF,Vanchiere JA. The potential link between inherited G6PD deficiency, oxidative stress, and vitamin D deficiency and the racial inequities in mortality associated with COVID-19. Free
Radic Biol Med. 2020;161:84–91.
76. Borges do Nascimento, I. J., Cacic, N., Abdulazeem, H. M., von Groote, T. C., Jayarajah, U., et al. (2020) Novel Coronavirus Infection (COVID-19) in Humans: A Scoping Review and Meta-Analysis. J. Clin. Med. 9, 941.
77.Gender differences in the prevalence of vitamin D deficiency in a southern Latin American country: a pilot study M. S. Vallejo ,J. E. Blümel ,E. Arteaga ,S. Aedo ,V. Tapia,A. Araos , show all Pages 410-416 | Received 14 Aug 2019, Accepted 01 Apr 2020, Published online: 05 May 2020
78..Lee, D.H., Gold, R., & Linker, R.A. (2012) Mechanisms of oxidative damage in multiple sclerosis and neurodegenerative diseases: therapeutic modulation via fumaric acid esters. Int J Mol Sci. 13 (9): 11783–11803.
79. Dincer, Y.; Ozen, E.; Kadioglu, P.; Hatemi, H.; Akçay, T. E_ect of sex hormones on lipid peroxidation in women with polycystic ovary syndrome, healthy women, and men. Endocr. Res. 2001, 27, 309–316.
80. Bukowska, A.; Spiller, L.; Wolke, C.; Lendeckel, U.; Weinert, S.; Ho_mann, J.; Bornfleth, P.; Kutschka, I.;
Gardemann, A.; Isermann, B.; et al. Protective regulation of the ACE2/ACE gene expression by estrogen in
human atrial tissue from elderly men. Exp. Biol. Med. 2017, 242, 1412–1423. [
81. Annweiler, C.; Hanotte, B.; Grandin de l’Eprevier, C.; Sabatier, J.M.; Lafaie, L.; Celarier, T. Vitamin D and survival in COVID-19 patients: A quasi-experimental study. J. Steroid Biochem. Mol. Biol. 2020, 204, 105771.