GOLD AND SILVER NANOPARTICLES: ANTIMICROBIAL QUALITIES AGAINST PATHOGENS RESISTANT TO NUMEROUS MEDICATIONS
Main Article Content
Keywords
Gold nanoparticles (AuNPs), Silver nanoparticles (AgNPs), Multi-drug-resistant pathogens, antimicrobial activity, Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC), Reactive Oxygen Species (ROS)
Abstract
The rising threat of multi-drug-resistant pathogens has made way for new alternatives in antimicrobial agents, and gold (AuNP) and silver nanoparticles (AgNP) have arisen as promising candidates because of their distinct physicochemical properties. This study seeks to review and compare the effectiveness of AuNPs and AgNPs against relevant drug-resistant human pathogens, specifically MRSA, E. coli, and Pseudomonas aeruginosa. The study measured levels of nanoparticle-induced bacterial inhibition and cellular oxidative stress through the use of MIC, MBC, agar diffusion assays, and analysis of the generation of reactive oxygen species. Results from this study show that MIC and MBC values for AgNPs were lower compared to AuNPs, and they also had larger zones of inhibition, indicating more pronounced antimicrobial activity. In addition, measurement of ROS proved the presence of increased oxidative stress in AgNPs treated bacterial cells, which thus indicates one of the probable mechanisms that may explain their higher efficacy. In general, both AuNPs and AgNPs display promising potential in acting against infections elicited by antimicrobial activity, but AgNPs were found to be more potent than AuNPs with relevance to designing future treatments against multi-drug-resistant infections. However, preliminary cytotoxicity observations in relation to assessment motivate the exercises for careful consideration of dosage by balancing efficacy and safety as proposed to address future therapeutic applications.
References
2. Van Duin, D., & Paterson, D. L. (2016). Multidrug-resistant bacteria in the community: trends and lessons learned. Infectious disease clinics, 30(2), 377-390.
3. Llor, C., & Bjerrum, L. (2014). Antimicrobial resistance: risk associated with antibiotic overuse and initiatives to reduce the problem. Therapeutic advances in drug safety, 5(6), 229-241.
4. Donà, D., Di Chiara, C., & Sharland, M. (2020). Multi-drug-resistant infections in the COVID-19 era: a framework for considering the potential impact. J Hosp Infect, 106(1), 198-199.
5. Saunders-Hastings, P. R., & Krewski, D. (2016). Reviewing the history of pandemic influenza: understanding patterns of emergence and transmission. Pathogens, 5(4), 66.
6. Monowar, T., Rahman, M. S., Bhore, S. J., & Sathasivam, K. V. (2021). Endophytic bacteria Enterobacter hormaechei fabricated silver nanoparticles and their antimicrobial activity. Pharmaceutics, 13(4), 511.
7. Munita, J. M., & Arias, C. A. (2016). Mechanisms of antibiotic resistance. Virulence mechanisms of bacterial pathogens, 481-511.
8. Magiorakos, A. P., Srinivasan, A., Carey, R. B., Carmeli, Y., Falagas, M. E., Giske, C. G., ... & Monnet, D. L. (2012). Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clinical microbiology and infection, 18(3), 268-281.
9. Alkofide, H., Alhammad, A. M., Alruwaili, A., Aldemerdash, A., Almangour, T. A., Alsuwayegh, A., ... & Enani, M. (2020). Multidrug-resistant and extensively drug-resistant enterobacteriaceae: prevalence, treatments, and outcomes–a retrospective cohort study. Infection and Drug Resistance, 4653-4662.
10. Saha, M., & Sarkar, A. (2021). Review on multiple facets of drug resistance: a rising challenge in the 21st century. Journal of xenobiotics, 11(4), 197-214.
11. Tommasi, R., Brown, D. G., Walkup, G. K., Manchester, J. I., & Miller, A. A. (2015). ESKAPEing the labyrinth of antibacterial discovery. Nature reviews Drug discovery, 14(8), 529-542.
12. Shrivastava, S. R., Shrivastava, P. S., & Ramasamy, J. (2018). World health organization releases global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. Journal of Medical Society, 32(1), 76-77.
13. Zheng, K., Setyawati, M. I., Leong, D. T., & Xie, J. (2018). Antimicrobial silver nanomaterials. Coordination Chemistry Reviews, 357, 1-17.
14. Panáček, A., Kvítek, L., Smékalová, M., Večeřová, R., Kolář, M., Röderová, M., ... & Zbořil, R. (2018). Bacterial resistance to silver nanoparticles and how to overcome it. Nature nanotechnology, 13(1), 65-71.
15. Muhammad, M. H., Idris, A. L., Fan, X., Guo, Y., Yu, Y., Jin, X., ... & Huang, T. (2020). Beyond risk: bacterial biofilms and their regulating approaches. Frontiers in microbiology, 11, 928.
16. Alav, I., Sutton, J. M., & Rahman, K. M. (2018). Role of bacterial efflux pumps in biofilm formation. Journal of Antimicrobial Chemotherapy, 73(8), 2003-2020.
17. Sharahi, J. Y., Azimi, T., Shariati, A., Safari, H., Tehrani, M. K., & Hashemi, A. (2019). Advanced strategies for combating bacterial biofilms. Journal of cellular physiology, 234(9), 14689-14708.
18. Khatoon, Z., McTiernan, C. D., Suuronen, E. J., Mah, T. F., & Alarcon, E. I. (2018). Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon, 4(12).
19. Vestby, L. K., Grønseth, T., Simm, R., & Nesse, L. L. (2020). Bacterial biofilm and its role in the pathogenesis of disease. Antibiotics, 9(2), 59.
20. Dos Santos, E. M. P., Martins, C. C. B., de Oliveira Santos, J. V., da Silva, W. R. C., Silva, S. B. C., Pelagio-Flores, M. A., ... & Cavalcanti, I. M. F. (2021). Silver nanoparticles–chitosan composites activity against resistant bacteria: Tolerance and biofilm inhibition. Journal of Nanoparticle Research, 23(8), 196.
21. Andrei, S., Droc, G., & Stefan, G. (2019). FDA approved antibacterial drugs: 2018-2019. Discoveries, 7(4).
22. Baym, M., Lieberman, T. D., Kelsic, E. D., Chait, R., Gross, R., Yelin, I., & Kishony, R. (2016). Spatiotemporal microbial evolution on antibiotic landscapes. Science, 353(6304), 1147-1151.
23. Ministério da Saúde (MS). Gerência de Vigilância e Monitoramento em Serviços de Saúde. Gerência Geral de Tecnologia em Serviços de Saúde. Agência Nacional de Vigilância Sanitária. (2017). Plano Nacional para Prevenção eo Controle da Resistência Microbiana nos Serviços de Saúde.
24. Lakshminarayanan, R., Ye, E., Young, D. J., Li, Z., & Loh, X. J. (2018). Recent advances in the development of antimicrobial nanoparticles for combating resistant pathogens. Advanced healthcare materials, 7(13), 1701400.
25. Soliman, W. E., Elsewedy, H. S., Younis, N. S., Shinu, P., Elsawy, L. E., & Ramadan, H. A. (2022). Evaluating antimicrobial activity and wound healing effect of rod-shaped nanoparticles. Polymers, 14(13), 2637.
26. Mohamadi Zahedi, S., & Mansourpanah, Y. (2018). Construction of chitosan-carboxymethyl β-cyclodextrin silver nanocomposite hydrogel to improve antibacterial activity. Plastics, Rubber and Composites, 47(6), 273-281.
27. Chen, X., Zhang, H., Yang, X., Zhang, W., Jiang, M., Wen, T., ... & Liu, H. (2021). Preparation and application of quaternized chitosan-and AgNPs-base synergistic antibacterial hydrogel for burn wound healing. Molecules, 26(13), 4037.
28. Alavi, M., & Karimi, N. (2019). Biosynthesis of Ag and Cu NPs by secondary metabolites of usnic acid and thymol with biological macromolecules aggregation and antibacterial activities against multi drug resistant (MDR) bacteria. International journal of biological macromolecules, 128, 893-901.
29. Martinez, L. M. T., Kharissova, O. V., & Kharisov, B. I. (2019). Handbook of ecomaterials. (No Title).
30. Yang, S., Zhou, Y., Zhao, Y., Wang, D., & Luan, Y. (2022). Microwave synthesis of graphene oxide decorated with silver nanoparticles for slow-release antibacterial hydrogel. Materials Today Communications, 31, 103663.
31. Feng, Y., Min, L., Zhang, W., Liu, J., Hou, Z., Chu, M., ... & Zhang, H. (2017). Zinc oxide nanoparticles influence microflora in ileal digesta and correlate well with blood metabolites. Frontiers in microbiology, 8, 992.
32. Mishra, S. K., Raveendran, S., Ferreira, J. M. F., & Kannan, S. (2016). In situ impregnation of silver nanoclusters in microporous Chitosan-PEG membranes as an antibacterial and drug delivery percutaneous device. Langmuir, 32(40), 10305-10316.
33. Liu, L., Wen, H., Rao, Z., Zhu, C., Liu, M., Min, L., ... & Tao, S. (2018). Preparation and characterization of chitosan–collagen peptide/oxidized konjac glucomannan hydrogel. International journal of biological macromolecules, 108, 376-382.
34. Mahmoud, N. N., Hikmat, S., Ghith, D. A., Hajeer, M., Hamadneh, L., Qattan, D., & Khalil, E. A. (2019). Gold nanoparticles loaded into polymeric hydrogel for wound healing in rats: Effect of nanoparticles’ shape and surface modification. International journal of pharmaceutics, 565, 174-186.
35. Li, J., Wang, Y., Yang, J., & Liu, W. (2021). Bacteria activated-macrophage membrane-coated tough nanocomposite hydrogel with targeted photothermal antibacterial ability for infected wound healing. Chemical Engineering Journal, 420, 127638.
36. Al-Bakri, A. G., & Mahmoud, N. N. (2019). Photothermal-induced antibacterial activity of gold nanorods loaded into polymeric hydrogel against Pseudomonas aeruginosa biofilm. Molecules, 24(14), 2661.
37. Kaul, S., Sagar, P., Gupta, R., Garg, P., Priyadarshi, N., & Singhal, N. K. (2022). Mechanobactericidal, gold nanostar hydrogel-based bandage for bacteria-infected skin wound healing. ACS Applied Materials & Interfaces, 14(39), 44084-44097.
38. Aguilar-Garay, R., Lara-Ortiz, L. F., Campos-López, M., Gonzalez-Rodriguez, D. E., Gamboa-Lugo, M. M., Mendoza-Pérez, J. A., ... & Nicolás-Álvarez, D. E. (2024). A Comprehensive Review of Silver and Gold Nanoparticles as Effective Antibacterial Agents. Pharmaceuticals, 17(9), 1134.
39. Ghasemi, S., Dabirian, S., Kariminejad, F., Koohi, D. E., Nemattalab, M., Majidimoghadam, S., ... & Yousefbeyk, F. (2024). Process optimization for green synthesis of silver nanoparticles using Rubus discolor leaves extract and its biological activities against multi-drug resistant bacteria and cancer cells. Scientific Reports, 14(1), 4130.
40. Balciunaitiene, A., Januskevice, V., Saunoriute, S., Raubyte, U., Viskelis, J., Memvanga, P. B., & Viskelis, P. (2024). Antimicrobial Antioxidant Polymer Films with Green Silver Nanoparticles from Symphyti radix. Polymers, 16(3), 317.
41. Sarma, P. P., Rai, A., & Baruah, P. K. (2024). Recent advances in the development of antibiotics-coated gold nanoparticles to combat antimicrobial resistance. Antibiotics, 13(2), 124.
42. Kazem, H. W., Abdulazeem, L., & Imran, N. K. (2024). Antibacterial Potential of Bio-Synthesized Gold Nanoparticles Against MDR Bacteria. International Journal of Medical Science and Dental Health, 10(03), 24-33.
43. Ibraheem, D. R., Alwas, N. G., Dawood, R. A., Nasser, S. M., Abbood, S. H., Sulaiman, G. M., ... & Ghotekar, S. (2024). Inhibitory effect of silver nanoparticles–conjugated PEG-nystatin against some resistance pathogenic bacteria. Inorganic Chemistry Communications, 168, 112952.
44. González-Ballesteros, N., Fernandes, M., Machado, R., Sampaio, P., Gomes, A. C., Cavazza, A., ... & Rodríguez-Argüelles, M. C. (2023). Valorisation of the invasive macroalgae Undaria pinnatifida (Harvey) suringar for the green synthesis of gold and silver nanoparticles with antimicrobial and antioxidant potential. Marine Drugs, 21(7), 397.
45. More, P. R., Pandit, S., Filippis, A. D., Franci, G., Mijakovic, I., & Galdiero, M. (2023). Silver nanoparticles: bactericidal and mechanistic approach against drug resistant pathogens. Microorganisms, 11(2), 369.
46. Alotaibi, A. M., Alsaleh, N. B., Aljasham, A. T., Tawfik, E. A., Almutairi, M. M., Assiri, M. A., ... & Almutairi, M. M. (2022). Silver nanoparticle-based combinations with antimicrobial agents against antimicrobial-resistant clinical isolates. Antibiotics, 11(9), 1219.
47. Ali, S., Perveen, S., Shah, M. R., Zareef, M., Arslan, M., Basheer, S., ... & Ali, M. (2020). Bactericidal potentials of silver and gold nanoparticles stabilized with cefixime: A strategy against antibiotic-resistant bacteria. Journal of Nanoparticle Research, 22, 1-12.