ANTIBIOTIC RESISTANCE PATTERN AND PLASMID PROFILING OF PSEUDOMONAS AERUGINOSA ISOLATED FROM ICU PATIENTS
Main Article Content
Keywords
Pseudomonas aeruginosa, antibiotic resistance, plasmid profiling
Abstract
Pseudomonas aeruginosa remains a formidable nosocomial pathogen, particularly in intensive care units (ICUs), due to its intrinsic resistance mechanisms and capacity to acquire additional resistance determinants. This study aimed to elucidate the antibiotic resistance patterns and plasmid profiles of P. aeruginosa isolates obtained from ICU patients in Lahore, Pakistan, thereby contributing novel insights into the regional epidemiology of this pathogen. A total of 29 non-duplicate clinical isolates were collected over a 12-month period and subjected to antimicrobial susceptibility testing and plasmid profiling. The findings revealed a high prevalence of multidrug-resistant (MDR) strains, with significant resistance observed against carbapenems and fluoroquinolones. Plasmid analysis identified the presence of resistance genes, including bla_NDM-1 and bla_OXA-48, underscoring the role of plasmid-mediated gene transfer in the dissemination of resistance. Statistical analysis demonstrated a significant association between prior antibiotic use and the emergence of MDR strains (p < 0.05). These results highlight the urgent need for stringent antibiotic stewardship and infection control measures to curb the spread of resistant P. aeruginosa in ICU settings. This study fills a critical gap in the understanding of resistance mechanisms in P. aeruginosa within the Pakistani healthcare context and sets the stage for future research into targeted therapeutic strategies.
References
2. Liu X, Zhang J, Li H, et al. Global prevalence of carbapenem-resistant Pseudomonas aeruginosa and molecular mechanisms involved: a systematic review. J Glob Antimicrob Resist. 2022;29:79-86. DOI: https://doi.org/10.1016/j.jgar.2021.12.009
3. Shakil S, Haq ZU, Mehmood K, et al. Antimicrobial resistance of Pseudomonas aeruginosa in intensive care unit patients in a teaching hospital. Am J Infect Control. 2023;51(3):301-307. DOI: https://doi.org/10.1016/j.ajic.2022.12.001
4. Martínez JL, Rojo F. Metabolism and fitness of Pseudomonas aeruginosa in the environment. Microb Biotechnol. 2021;14(3):618-634. DOI: https://doi.org/10.1111/1751-7915.13757
5. Kumar V, Singhal L, Verma V. Epidemiology of carbapenem-resistant Pseudomonas aeruginosa isolates from a tertiary care hospital in India. J Med Microbiol. 2022;71(1):31-39. DOI: https://doi.org/10.1099/jmm.0.001298
6. Jahan M, Ali S, Hamid A, et al. Plasmid-mediated resistance and its molecular mechanisms in Pseudomonas aeruginosa isolates. J Antimicrob Chemother. 2022;77(6):1663-1670. DOI: https://doi.org/10.1093/jac/dkac040
7. Mazhar S, Rafique A, Aziz M. Antibiotic resistance patterns in Pseudomonas aeruginosa isolates from patients in intensive care units. Int J Antimicrob Agents. 2023;62(5):106937. DOI: https://doi.org/10.1016/j.ijantimicag.2023.106937
8. Chatterjee A, Banerjee S, Saha B, et al. Molecular analysis of Pseudomonas aeruginosa resistance to beta-lactam antibiotics in hospital-associated infections. J Clin Microbiol. 2022;60(3):e01745-21. DOI: https://doi.org/10.1128/JCM.01745-21
9. Adams MD, Beanan MJ, Yates L, et al. Whole-genome sequencing of Pseudomonas aeruginosa isolates from cystic fibrosis patients and their role in antimicrobial resistance. Antimicrob Agents Chemother. 2023;67(4):e01969-22. DOI: https://doi.org/10.1128/AAC.01969-22
10. Begum F, Rana MS, Azam S. Plasmid-mediated resistance in Pseudomonas aeruginosa isolated from different clinical sources. Infect Drug Resist. 2022;15:2173-2181. DOI: https://doi.org/10.2147/IDR.S358487
11. Hassan I, Nazir R, Rauf A, et al. Epidemiology and molecular characterization of multidrug-resistant Pseudomonas aeruginosa in Pakistan. BMC Infect Dis. 2021;21(1):413. DOI: https://doi.org/10.1186/s12879-021-06065-4
12. Liu Y, Wang R, Liu Z, et al. Mechanisms of carbapenem resistance in Pseudomonas aeruginosa and the role of mobile genetic elements. Front Microbiol. 2021;12:739149. DOI: https://doi.org/10.3389/fmicb.2021.739149
13. Shams M, Zaki M, Ameen S. Clonal spread of multidrug-resistant Pseudomonas aeruginosa in the intensive care unit: Role of plasmids and horizontal gene transfer. J Infect Public Health. 2023;16(1):122-128. DOI: https://doi.org/10.1016/j.jiph.2022.05.017
14. Alene KA, Yusuf A, Woldeamanuel Y, et al. Global burden of carbapenem-resistant Pseudomonas aeruginosa infections: Systematic review and meta-analysis. PLoS One. 2022;17(1):e0261245. DOI: https://doi.org/10.1371/journal.pone.0261245
15. Fadaei R, Zong Z, Li W, et al. Evaluation of antibiotic resistance mechanisms in Pseudomonas aeruginosa isolated from ICU patients. J Antimicrob Chemother. 2022;77(5):1184-1190. DOI: https://doi.org/10.1093/jac/dkab514
16. Khan MA, Shahzad M, Aslam B, et al. Molecular and epidemiological investigation of Pseudomonas aeruginosa in hospital settings: A focus on plasmid-mediated resistance. Microorganisms. 2021;9(4):782. DOI: https://doi.org/10.3390/microorganisms9040782
17. Kaur N, Verma P, Sood S, et al. Plasmid profiling and antibiotic susceptibility patterns of Pseudomonas aeruginosa isolated from various clinical specimens. J Infect Chemother. 2022;28(7):898-904. DOI: https://doi.org/10.1016/j.jiac.2022.03.004
18. Yilmaz M, Gülmez D, Dönmez S, et al. Investigation of Pseudomonas aeruginosa resistance to antibiotics and the role of efflux pumps in resistance mechanisms. Clin Microbiol Infect. 2022;28(2):214-222. DOI: https://doi.org/10.1016/j.cmi.2021.09.004
19. Taneja N, Mishra A, Tiwari S. Comparative study of carbapenem resistance in Pseudomonas aeruginosa and its association with plasmid-borne resistance genes. Antimicrob Agents Chemother. 2021;65(12):e01756-21. DOI: https://doi.org/10.1128/AAC.01756-21
20. Muhammad I, Khan M, Arshad N. Prevalence of multi-drug resistant Pseudomonas aeruginosa in hospitalized patients in Pakistan. J Coll Physicians Surg Pak. 2023;33(2):116-120. DOI: https://doi.org/10.29271/jcpsp.2023.02.116
21. Silva DC, Cardoso PF, Souza GC, et al. Antimicrobial resistance of Pseudomonas aeruginosa in nosocomial infections in Brazilian hospitals: Molecular characterization of resistance mechanisms. Front Microbiol. 2023;14:773462. DOI: https://doi.org/10.3389/fmicb.2023.773462
22. Gupta A, Kumar A, Bhattacharya D, et al. Role of plasmids in the spread of Pseudomonas aeruginosa resistance in clinical isolates: A hospital-based study. Microb Drug Resist. 2022;28(1):29-37. DOI: https://doi.org/10.1089/mdr.2021.0169
23. Tahir A, Tariq A, Yasmin R. Antibiotic resistance patterns and plasmid profiling of Pseudomonas aeruginosa from ICU patients. Infect Control Hosp Epidemiol. 2021;42(10):1231-1237. DOI: https://doi.org/10.1017/ice.2021.1839
24. Ahmed M, Zafar A, Niazi M. Surveillance of multi-drug resistant Pseudomonas aeruginosa in a tertiary hospital in Pakistan and plasmid-based resistance characterization. BMC Microbiol. 2022;22(1):97. DOI: https://doi.org/10.1186/s12866-022-02107-w
25. Mondal K, Tiwari D, Singh D, et al. Characterization of Pseudomonas aeruginosa resistance in intensive care units: A comprehensive molecular approach. J Med Microbiol. 2023;72(3):182-190. DOI: https://doi.org/10.1099/jmm.0.001562