DEVELOPMENT AND EVALUATION OF PHYTOSOMES OF QUININE SULPHATE FOR THE TREATMENT OF MALARIA

Main Article Content

Maryam Musa Kallah
Manish Yadav
Mohit Mangla

Keywords

.

Abstract

Phytosomes containing quinine sulfate were prepared using the anti-solvent precipitation method, with six formulations (F1-F6) developed by varying quinine to soya lecithin ratios. Among these, formulation F3 exhibited superior characteristics, achieving an entrapment efficiency of 75.77% at a ratio of 1:3. Dissolution testing revealed enhanced drug release rates compared to pure quinine, with formulation F3 demonstrating the highest release (95.5%) within 120 minutes. Analysis of release kinetics indicated a first-order release pattern (R = 0.9956) and a diffusion-controlled mechanism (Higuchi model, R = 0.984). Fourier-transform infrared spectra confirmed the successful incorporation of quinine into phytosomes (F3) without chemical interaction or degradation, retaining characteristic peaks. These findings highlight formulation F3 as a promising candidate for further pharmacological investigation and therapeutic applications in enhancing quinine's bioavailability.

Abstract 59 | Pdf Downloads 19

References

1. Nagar, G. (2019). Phytosomes: A novel drug delivery for herbal extracts. Int J pharm sci Res, 4(3), 949-59.
2. Bhattacharya, S. (2009). Phytosomes: the new technology for enhancement of bioavailability of botanicals and nutraceuticals. International journal of health research, 2(3), 225-232.
3. Kidd, P., & Head, K. (2005). A review of the bioavailability and clinical efficacy of milk thistle phytosome: a silybin-phosphatidylcholine complex (Siliphos). Alternative medicine review, 10(3).
4. Dewan, N., Dasgupta, D., Pandit, S., & Ahmed, P. (2016). Review on-Herbosomes, A new arena for drug delivery. Journal of pharmacognosy and phytochemistry, 5(4), 104-108.
5. Jain, N., Gupta, B. P., Thakur, N., Jain, R., Banweer, J., Jain, D. K., & Jain, S. (2010). Phytosome: a novel drug delivery system for herbal medicine. Int J pharm sci drug Res, 2(4), 224-228.
6. Barani, M., Sangiovanni, E., Angarano, M., Rajizadeh, M. A., Mehrabani, M., Piazza, S., Gangadharappa, H. V., Pardakhty, A., Mehrbani, M., Dell'Agli, M., & Nematollahi, M. H. (2021). Phytosomes as Innovative delivery systems for phytochemicals: A comprehensive review of literature. International journal of nanomedicine, 16, 6983–7022. https://doi.org/10.2147/IJN.S318416
7. Jovanović, A., & Krajnović, D. (2023). The developmental path of quinine: What can we learn from history? Acta Medica Medianae, 62(2).
8. Fazal, T. M. (2024). Military Medicine and the Hidden Costs of War. Oxford University Press.
9. Garrido-Cardenas, J. A., González-Cerón, L., García-Maroto, F., Cebrián-Carmona, J., Manzano-Agugliaro, F., & Mesa-Valle, C. M. (2023). Analysis of fifty years of severe malaria worldwide research. Pathogens, 12(3), 373.
10. Tuteja, R. (2007). Malaria− an overview. The FEBS journal, 274(18), 4670-4679.
11. Escalante, A. A., & Pacheco, M. A. (2019). Malaria molecular epidemiology: An evolutionary genetics perspective. Microbiol. Spectr. 7: 10.1 128/microbiolsec. AME–0010–2019. doi: 10.1128/microbiolspec. AME-0010-2019.
12. Singh, B., & Daneshvar, C. (2013). Human infections and detection of Plasmodium knowlesi. Clinical microbiology reviews, 26(2), 165-184.
13. Antony, H. A., & Parija, S. C. (2016). Antimalarial drug resistance: an overview. Tropical parasitology, 6(1), 30-41.
14. White, N. J. (2008). Plasmodium knowlesi: the fifth human malaria parasite. Clinical infectious diseases, 46(2), 172-173.
15. Guttery, D. S., Holder, A. A., & Tewari, R. (2012). Sexual development in Plasmodium: lessons from functional analyses. PLoS pathogens, 8(1), e1002404.
16. Kanakapura, B., & Penmatsa, V. K. (2016). Analytical methods for determination of terbinafine hydrochloride in pharmaceuticals and biological materials. Journal of pharmaceutical analysis, 6(3), 137-149.
17. Katore, G. S., Bidkar, S. J., & Dama, G. Y. (2017). Formulation and evaluation of ciprofloxacin solid dispersion-controlled release floating capsules for solubility improvement. Indian journal of pharmaceutical and biological research, 5(03), 07-16.
18. Smith, E., Barkan, S., Ross, B., Maienthal, M., & Levine, J. (1973). Examination of quinidine and quinine sulphate and their pharmaceutical preparations. Journal of pharmaceutical sciences, 62(7), 1151-1155.
19. Mund, A. K., Abhinasa, C., Singh, R. P., Kishore, K., Pangi, B. P., & Pasayat, M. K. (2019). Preparation and characterization of phytosome of Norbixin. World journal of pharmacy and pharmaceutical sciences, 8, 1045-1057.
20. Pandey, S., Goyani, M., Devmurari, V., & Fakir, J. (2009). Transferosomes: A novel approach for transdermal drug delivery. Der Pharmacia Lettre, 1(2), 143-150.
21. Ittadwar, P. A., & Puranik, P. K. (2017). Novel umbelliferone phytosomes: Development and optimization using experimental design approach and evaluation of photo-protective and antioxidant activity. International journal of pharmacy and pharmaceutical sciences, 9, 218-228.
22. Jeevana, J. B., & Ragalatha, M. P. (2019). Development and in vitro evaluation of phytosomes of naringin. Asian Journal of pharmaceutical and vlinical research, 12, 252-256.
23. Varde, N. M., Mehta, N. K., Thakor, N. M., Shah, V. A., & Upadhyay, U. M. (2012). Phytosomes: A potential phospholipid nanoparticulate carrier for the bioavailability enhancement of herbal extracts. Pharmacie globale, 3(10), 1.
24. Zhang, F., Koh, G. Y., Jeansonne, D. P., Hollingsworth, J., Russo, P. S., & Vicente, G. (2011). A novel solubility and maintenance of anticancer activity. Journal of pharmaceutical sciences, 100, 2778-2789.
25. Xie, J., Li, Y., Song, L., Pan, Z., Ye, S., & Hou, Z. (2017). Design of novel curcumin-soybean phosphatidylcholine complex-based targeted drug delivery system. Drug delivery, 24, 707-719.