ANTIBACTERIAL ACTIVITY OF CINNAMOMUM VERUM PLANT ESSENTIAL OILS AGAINST MULTI-DRUG RESISTANT ENTEROCOCCUS FAECALIS ISOLATED FROM DIARRHEAGENIC CHILDREN
Main Article Content
Keywords
diarrheagenic children, Multi-Drug Resistant, plant essential oils, Cinnamomum verum
Abstract
Introduction: Antibiotic resistance is emerging problem worldwide due to different bacterial mechanisms to resist the stress occurred due to antibiotics. This could result into a variety of complications including infections that are challenging to treat with antibiotics, causing longer hospital stays, more severe illnesses and increased mortality rates. Similarly, antibiotic resistance of E. faecalis is also increasing everyday leading more enhanced resistance.
Method: In this study, we have isolated the E. faecalis from the stool samples of diarrheagenic children followed by biochemical characterization using multiple biochemical tests. However, to further confirm the specie and strain, we have use 16S ribotyping while antibiotic resistance is evaluated by antibiotic sensitivity tests. The plants essential oils are extracted and prepared followed by its agar well diffusion test to determine its efficacy. In addition, Minimum Inhibitory Concentration (MIC) is performed to measure its lowest functional concentration. Furthermore, cytotoxicity analysis of mammalian cells is determined through MTT assay.
Results: The biochemical and molecular characterization confirmed the ten isolates as E. faecalis while antibiotic sensitivity test confirms it as Multi-Drug Resistant isolate. The extracted plant essential oils are evaluated by agar well diffusion tests and found appreciable results of Cinnamomum verum, Nigella sativa and Allium sativum. However, the MIC results only supported Cinnamomum verum for further analysis. Cytotoxicity of all fractions was assessed by MTT and IC50 were 28.28, 14.10 and 28.04mg/mL for n-hexane; n-hexane plus chloroform and ethyl acetate tested by MTT assay, respectively.
Conclusion: It is confirmed that plant essential oil of C. verum is much effective as antibacterial agent with cytoprotective effects on mammalian cells. Therefore, it is recommended to use as antibacterial agent or further evaluation of bioactive compounds.
References
2. Almutary, A., & Sanderson, B. (2016). The MTT and crystal violet assays: potential confounders in nanoparticle toxicity testing. International journal of toxicology, 35(4), 454-462.
3. Arumugam, U., Stalin, N., & Rebecca, G. P. (2017). Isolation, molecular identification and antibiotic resistance of Enterococcus faecalis from diseased tilapia. Int. J. Curr. Microbiol. Appl. Sci, 6(6), 136-146.
4. Atal, C., Sharma, M., Kaul, A., & Khajuria, A. (1986). Immunomodulating agents of plant origin. I: Preliminary screening. Journal of ethnopharmacology, 18(2), 133-141.
5. Azeredo, C. M., Santos, T. G., Maia, B. H., & Soares, M. J. (2014). In vitro biological evaluation of eight different essential oils against Trypanosoma cruzi, with emphasis on Cinnamomum verum essential oil. BMC Complement Altern Med, 14, 309. doi:10.1186/1472-6882-14-309
6. Badri, W., El Asbahani, A., Miladi, K., Baraket, A., Agusti, G., Nazari, Q. A., . . . Elaissari, A. (2018). Poly (ε-caprolactone) nanoparticles loaded with indomethacin and Nigella sativa L. essential oil for the topical treatment of inflammation. Journal of Drug Delivery Science and Technology, 46, 234-242.
7. Benbelaïd, F., Khadir, A., Abdoune, M. A., Bendahou, M., Muselli, A., & Costa, J. (2014). Antimicrobial activity of some essential oils against oral multidrug–resistant Enterococcus faecalis in both planktonic and biofilm state. Asian Pacific journal of tropical biomedicine, 4(6), 463-472.
8. Berman, D. M., Karhadkar, S. S., Hallahan, A. R., Pritchard, J. I., Eberhart, C. G., Watkins, D. N., . . . Olson, J. M. (2002). Medulloblastoma growth inhibition by hedgehog pathway blockade. Science, 297(5586), 1559-1561.
9. Blasi, F., Mantero, M., & Aliberti, S. (2012). Antibiotics as immunomodulant agents in COPD. Current opinion in pharmacology, 12(3), 293-299.
10. Bouki, C., Venieri, D., & Diamadopoulos, E. (2013). Detection and fate of antibiotic resistant bacteria in wastewater treatment plants: a review. Ecotoxicology and environmental safety, 91, 1-9.
11. Boyer, J., & Liu, R. H. (2004). Apple phytochemicals and their health benefits. Nutrition journal, 3, 1-15.
12. Cassel, E., Vargas, R., Martinez, N., Lorenzo, D., & Dellacassa, E. (2009). Steam distillation modeling for essential oil extraction process. Industrial crops and products, 29(1), 171-176.
13. Castillo-Rojas, G., Mazari-Hiríart, M., Ponce de León, S., Amieva-Fernández, R. I., Agis-Juárez, R. A., Huebner, J., & López-Vidal, Y. (2013). Comparison of Enterococcus faecium and Enterococcus faecalis strains isolated from water and clinical samples: antimicrobial susceptibility and genetic relationships. PLoS One, 8(4), e59491.
14. Celik, H., Abma, T. A., Widdershoven, G. A., van Wijmen, F. C., & Klinge, I. (2008). Implementation of diversity in healthcare practices: barriers and opportunities. Patient Education and counseling, 71(1), 65-71.
15. Clarridge III, J. E. (2004). Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clinical Microbiology Reviews, 17(4), 840-862.
16. Clokie, M. R., Kropinski, A. M., & Lavigne, R. (2009). Bacteriophages: Springer.
17. Day, A. M., Sandoe, J. A., Cove, J. H., & Phillips‐Jones, M. (2001). Evaluation of a biochemical test scheme for identifying clinical isolates of Enterococcus faecalis and Enterococcus faecium. Letters in Applied Microbiology, 33(5), 392-396.
18. Dhiman, G., & Kaur, A. (2019). STOA: a bio-inspired based optimization algorithm for industrial engineering problems. Engineering Applications of Artificial Intelligence, 82, 148-174.
19. Dorman, H. D., & Deans, S. G. (2000). Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J Appl Microbiol, 88(2), 308-316.
20. Dutra, R. C., Pittella, F., Dittz, D., Marcon, R., Pimenta, D. S., Lopes, M. T., & Raposo, N. R. (2012). Chemical composition and cytotoxicity activity of the essential oil of Pterodon emarginatus. Revista Brasileira de Farmacognosia, 22, 971-978.
21. Ebani, V. V., Nardoni, S., Bertelloni, F., Pistelli, L., & Mancianti, F. (2018). Antimicrobial activity of five essential oils against bacteria and fungi responsible for urinary tract infections. Molecules, 23(7), 1668.
22. Flanagan, D. (2017). Enterococcus faecalis and dental implants. Journal of Oral Implantology, 43(1), 8-11.
23. Gajan, E. B., Aghazadeh, M., Abashov, R., Milani, A. S., & Moosavi, Z. (2009). Microbial flora of root canals of pulpally-infected teeth: Enterococcus faecalis a prevalent species. Journal of dental research, dental clinics, dental prospects, 3(1), 24.
24. Golob, M., Pate, M., Kušar, D., Dermota, U., Avberšek, J., Papić, B., & Zdovc, I. (2019). Antimicrobial resistance and virulence genes in Enterococcus faecium and Enterococcus faecalis from humans and retail red meat. BioMed research international, 2019.
25. Harmsen, H., Prieur, D., & Jeanthon, C. (1997). Group-specific 16S rRNA-targeted oligonucleotide probes to identify thermophilic bacteria in marine hydrothermal vents. Appl Environ Microbiol, 63(10), 4061-4068.
26. Harwood, V., Delahoya, N., Ulrich, R., Kramer, M., Whitlock, J., Garey, J., & Lim, D. (2004). Molecular confirmation of Enterococcus faecalis and E. faecium from clinical, faecal and environmental sources. Letters in Applied Microbiology, 38(6), 476-482.
27. Hassan, A., Rahman, S., Deeba, F., & Mahmud, S. (2009). Antimicrobial activity of some plant extracts having hepatoprotective effects. Journal of Medicinal Plants Research, 3(1), 020-023.
28. He, Q., Hou, Q., Wang, Y., Li, J., Li, W., Kwok, L.-Y., . . . Zhong, Z. (2018). Comparative genomic analysis of Enterococcus faecalis: insights into their environmental adaptations. BMC genomics, 19, 1-12.
29. Iwu, C. D., Korsten, L., & Okoh, A. I. (2020). The incidence of antibiotic resistance within and beyond the agricultural ecosystem: A concern for public health. Microbiologyopen, 9(9), e1035.
30. Kaskatepe, B., Kiymaci, M., Simsek, D., Erol, H., & Erdem, S. (2016). Comparison of the contents and antimicrobial activities of commercial and natural cinnamon oils. Indian Journal of Pharmaceutical Sciences, 78(4), 541-546.
31. Kim, D. H., Chung, Y. S., Park, Y. K., Yang, S.-J., kyung Lim, S., Park, Y. H., & Park, K. T. (2016). Antimicrobial resistance and virulence profiles of Enterococcus spp. isolated from horses in Korea. Comparative immunology, microbiology and infectious diseases, 48, 6-13.
32. Lamb, H. M., Figgitt, D. P., & Faulds, D. (1999). Quinupristin/dalfopristin: a review of its use in the management of serious gram-positive infections. Drugs, 58, 1061-1097.
33. Laxminarayan, R., Duse, A., Wattal, C., Zaidi, A. K., Wertheim, H. F., Sumpradit, N., . . . Goossens, H. (2013). Antibiotic resistance—the need for global solutions. The Lancet Infectious Diseases, 13(12), 1057-1098.
34. LeBel, G., Haas, B., Adam, A.-A., Veilleux, M.-P., Lagha, A. B., & Grenier, D. (2017). Effect of cinnamon (Cinnamomum verum) bark essential oil on the halitosis-associated bacterium Solobacterium moorei and in vitro cytotoxicity. Archives of oral biology, 83, 97-104.
35. Leclercq, R., & Courvalin, P. (1991). Bacterial resistance to macrolide, lincosamide, and streptogramin antibiotics by target modification. Antimicrobial agents and chemotherapy, 35(7), 1267-1272.
36. Liu, F., Jin, P., Gong, H., Sun, Z., Du, L., & Wang, D. (2020). Antibacterial and antibiofilm activities of thyme oil against foodborne multiple antibiotics-resistant Enterococcus faecalis. Poult Sci, 99(10), 5127-5136.
37. Loubet, P., Ranfaing, J., Dinh, A., Dunyach-Remy, C., Bernard, L., Bruyère, F., . . . Sotto, A. (2020). Alternative therapeutic options to antibiotics for the treatment of urinary tract infections. Frontiers in microbiology, 11, 1509.
38. Magaldi, S., Mata-Essayag, S., De Capriles, C. H., Pérez, C., Colella, M., Olaizola, C., & Ontiveros, Y. (2004). Well diffusion for antifungal susceptibility testing. International journal of infectious diseases, 8(1), 39-45.
39. Magiorakos, A.-P., Srinivasan, A., Carey, R. B., Carmeli, Y., Falagas, M., Giske, C., . . . Olsson-Liljequist, B. (2012). Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clinical microbiology and infection, 18(3), 268-281.
40. Moellering Jr, R. C. (1992). Emergence of Enterococcus as a significant pathogen. Clinical infectious diseases, 1173-1176.
41. Mollazadeh, H., & Hosseinzadeh, H. (2016). Cinnamon effects on metabolic syndrome: a review based on its mechanisms. Iranian journal of basic medical sciences, 19(12), 1258.
42. Morse, S. S. (2001). Factors in the emergence of infectious diseases: Springer.
43. Moura, I., Torres, C., Silva, N., Somalo, S., Igrejas, G., & Poeta, P. (2013). Genomic description of antibiotic resistance in Escherichia coli and enterococci isolates from healthy Lusitano horses. Journal of Equine Veterinary Science, 33(12), 1057-1063.
44. Mulyaningsih, S., Sporer, F., Zimmermann, S., Reichling, J., & Wink, M. (2010). Synergistic properties of the terpenoids aromadendrene and 1, 8-cineole from the essential oil of Eucalyptus globulus against antibiotic-susceptible and antibiotic-resistant pathogens. Phytomedicine, 17(13), 1061-1066.
45. Nair, H. K., Tatavilis, N., Pospíšilová, I., Kučerová, J., & Cremers, N. A. (2020). Medical-grade honey kills antibiotic-resistant bacteria and prevents amputation in diabetics with infected ulcers: a prospective case series. Antibiotics, 9(9), 529.
46. Negreiros, M. d. O., Pawlowski, Â., Zini, C. A., Soares, G. L. G., Motta, A. d. S., & Frazzon, A. P. G. (2016). Antimicrobial and antibiofilm activity of Baccharis psiadioides essential oil against antibiotic-resistant Enterococcus faecalis strains. Pharmaceutical Biology, 54(12), 3272-3279.
47. NI, A. H., & Huycke, M. M. (2014). Enterococcal disease, epidemiology, and implications for treatment.
48. Noskin, G. A., Peterson, L. R., & Warren, J. R. (1995). Enterococcus faecium and Enterococcus faecalis bacteremia: acquisition and outcome. Clinical infectious diseases, 20(2), 296-301.
49. Nuryastuti, T., van der Mei, H. C., Busscher, H. J., Iravati, S., Aman, A. T., & Krom, B. P. (2009). Effect of cinnamon oil on icaA expression and biofilm formation by Staphylococcus epidermidis. Appl Environ Microbiol, 75(21), 6850-6855.
50. Ohikhena, F. U., Wintola, O. A., & Afolayan, A. J. (2017). Evaluation of the antibacterial and antifungal properties of Phragmanthera capitata (Sprengel) Balle (Loranthaceae), a mistletoe growing on rubber tree, using the dilution techniques. The Scientific World Journal, 2017.
51. Rather, I. A., Kim, B.-C., Bajpai, V. K., & Park, Y.-H. (2017). Self-medication and antibiotic resistance: Crisis, current challenges, and prevention. Saudi journal of biological sciences, 24(4), 808-812.
52. Raza, T., Ullah, S. R., Mehmood, K., & Andleeb, S. (2018). Vancomycin resistant Enterococci: A brief review. J Pak Med Assoc, 68(5), 768-772.
53. Razzaque, M. S. (2021). Commentary: microbial resistance movements: an overview of global public health threats posed by antimicrobial resistance, and how best to counter. Frontiers in Public Health, 8, 629120.
54. Rittmann, B. E., & Manem, J. A. (1992). Development and experimental evaluation of a steady‐state, multispecies biofilm model. Biotechnology and bioengineering, 39(9), 914-922.
55. Shahidi, F. (2000). Antioxidants in food and food antioxidants. Food/nahrung, 44(3), 158-163.
56. Slayton, R. B., Toth, D., Lee, B. Y., Tanner, W., Bartsch, S. M., Khader, K., . . . Ray, W. (2015). Vital signs: estimated effects of a coordinated approach for action to reduce antibiotic-resistant infections in health care facilities—United States (Vol. 15, pp. 3002-3007): Elsevier.
57. Solórzano-Santos, F., & Miranda-Novales, M. G. (2012). Essential oils from aromatic herbs as antimicrobial agents. Current opinion in biotechnology, 23(2), 136-141.
58. Stępień-Pyśniak, D., Hauschild, T., Nowaczek, A., Marek, A., & Dec, M. (2018). Wild birds as a potential source of known and novel multilocus sequence types of antibiotic-resistant Enterococcus faecalis. Journal of wildlife diseases, 54(2), 219-228.
59. Sukmawinata, E., Sato, W., Uemura, R., & Sueyoshi, M. (2018). Antimicrobial resistant Enterococcus faecium, Enterococcus faecalis, and other Enterococcus species isolated from foal feces in Japan. Journal of Equine Veterinary Science, 63, 51-54.
60. Tanwar, J., Das, S., Fatima, Z., & Hameed, S. (2014). Multidrug resistance: an emerging crisis. Interdisciplinary perspectives on infectious diseases, 2014.
61. ÜNAL, N., AŞKAR, Ş., & Yildirim, M. (2017). Antibiotic resistance profile of Enterococcus faecium andEnterococcus faecalis isolated from broiler cloacal samples. Turkish Journal of Veterinary & Animal Sciences, 41(2), 199-203.
62. Valenzuela, A. S., Benomar, N., Abriouel, H., Cañamero, M. M., & Gálvez, A. (2010). Isolation and identification of Enterococcus faecium from seafoods: antimicrobial resistance and production of bacteriocin-like substances. Food microbiology, 27(7), 955-961.
63. Vignaroli, C., Zandri, G., Aquilanti, L., Pasquaroli, S., & Biavasco, F. (2011). Multidrug-resistant enterococci in animal meat and faeces and co-transfer of resistance from an Enterococcus durans to a human Enterococcus faecium. Current microbiology, 62, 1438-1447.
64. White, T. C., Holleman, S., Dy, F., Mirels, L. F., & Stevens, D. A. (2002). Resistance mechanisms in clinical isolates of Candida albicans. Antimicrobial agents and chemotherapy, 46(6), 1704-1713.
65. Williams, A., Rodrigues, U., & Collins, M. (1991). Intrageneric relationships ofEnterococci as determined by reverse transcriptase sequencing of small-subunit rRNA. Research in Microbiology, 142(1), 67-74.
66. Zheng, B., Tomita, H., Inoue, T., & Ike, Y. (2009). Isolation of VanB-type Enterococcus faecalis strains from nosocomial infections: first report of the isolation and identification of the pheromone-responsive plasmids pMG2200, encoding VanB-type vancomycin resistance and a Bac41-type bacteriocin, and pMG2201, encoding erythromycin resistance and cytolysin (Hly/Bac). Antimicrobial agents and chemotherapy, 53(2), 735-747.