EFFICIENCY OF BACILLUS CEREUS IN THE PRODUCTION OF SIDEROPHORUS AT DIFFERENT CADMIUM CONCENTRATIONS

Main Article Content

Alexander Pérez Cordero
Donicer E. Montes Vergara
Yelitza Aguas Mendoza

Keywords

Bacteria, cadmium, siderophore production, tolerance

Abstract

Environmental contamination by cadmium has increased as a consequence of the increase in industrial activity that has taken place at the end of the 20th century and the beginning of the 21st century, progressively affecting different ecosystems and public health. The present study aimed to evaluate the efficiency of Bacillus cereus GU05811 to produce siderophores in the presence of different cadmium concentrations. The results infer the efficiency of this bacterium to produce siderophore at a concentration of 600 mg/L cadmium and it becomes a biological resource as a possible future use to contribute to reduce this metal in contaminated environments.

Abstract 32 | pdf Downloads 20

References

1. De Los Santos Ramón, Candelario, Barajas Fernández, Juan, Pérez Hernández, Germán, Hernández Rivera, Miguel Ángel y DÍAZ FLORES, Laura Lorena. 2019. Adsorción de cobre (II) y cadmio (II) en suspensiones acuosas de CaCO3 biogénico nanoestructurado. Boletín de la Sociedad Española de Cerámica y Vidrio, vol. 58, no. 1, DOI 10.1016/J.BSECV.2018.05.003.
2. Gilis A, Khan M, Cornelis P, Meyer J, Mergea M, van der Lelie D. 1996. Siderophore –mediat-ed iron uptake in Alcaligenes eutrophus CH34 and identification of aleB encoding ferric-alca-ligin E receptor. J. Bact, 178:5499-5507.
3. Hernández-Caricio, Carmelo, Ramírez, Verónica, Martínez, Javier, Quintero-Hernández, Verónica, Baez, Antonino, Munive, José-Antonio y Rosas-Murrieta, Nora, 2022. Los metales pesados en la historia de la humanidad, los efectos de la contaminación por metales pesados y los procesos biotecnológicos para su eliminación: el caso de Bacillus como bioherramienta para la recuperación de suelos [en línea]. 25 septiembre 2022. S.l.: s.n. [consulta: 7 diciembre 2023]. Disponible en: https://hdl.handle.net/20.500.12371/16410.
4. LI, Ming Hao, GAO, Xue Yan, LI, Can, YANG, Chun Long, FU, Chang Ai, LIU, Jie, WANG, Rui, CHEN, Lin Xu, LIN, Jian Qiang, LIU, Xiang Mei, LIN, Jian Qun y PANG, Xin. 2020. Isolation and identification of chromium reducing bacillus cereus species from chromium-contaminated soil for the biological detoxification of chromium. International Journal of Environmental Research and Public Health, vol. 17(6). DOI 10.3390/ijerph17062118.
5. Lasat M. 2000. Phytoextraction of metals from contaminated soil: a review of plan/soil/metal interaction and assessment of pertinent agro¬nomic issues. J. Hazard Subst Res, 2: 5-25.
6. Luo, S.; Chen, L.; Chen, J.; Xiao, X.; Xu, T.; Wan, Y.; Rao, C.; Liu, C.; Liu, Y.; Lai, C.; Zeng, G. 2011. Analysis and characterization of cultivable heavy metal-resistant bacterial endophytes isolated from Cd-hyperaccumulator Solanum nigrum L. and their potential use for phytoremediation. Chemosphere. 85:1130-1138.
7. Oliveira, M.; Santos, T.; Vale, H.; Delvaux, J.; Cordero, P.; Ferreira, A.; Miguel, P.; Totola, M.; Costa, M.; Moraes, C.; Borges, A. 2013. Endophytic microbial diversity in coffee cherries of Coffea arabica from southeastern Brazil. Can. J. Microbiol. 59:221-30.
8. Ma, Y., Prasad, M.N.V., Rajkumar, M. Y Freitas, H. 2011. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnology Advances, vol. 29, no. 2. ISSN 0734-9750. DOI 10.1016/J.BIOTECHADV.2010.12.001.
9. Pérez, A.; Arroyo, E.; Chamorro, A. 2015. Resistencia a níquel en bacterias endófitas aisladas a partir de Oriza sativa en Colombia. Rev. Soc. Venez. Microbiol. 35:20-25.
10. Pérez, A.; Martínez, D.; Barraza, Z.; Marrugo, J. 2016. Bacterias endófitas asociadas a los géneros Cyperus y Paspalum en suelos contaminados con mercurio. Rev. U.D.C.A Act. & Div. Cient. 19(1): 67-76.
11. Rajendran P, Muthukrishnan J, Gunasekaran P. 2003. Microbes in heavy metal remediation. Indian Journal of Experimental Biology, 41: 935-944.
12. Rajkumar, M., Sandhya, S., Prasad, M.N.V. y Freitas, H. 2012. Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnology Advances, vol. 30, no. 6. ISSN 0734-9750. DOI 10.1016/J.BIOTECHADV.2012.04.011.
13. Schwyny, B., & Neilands, J.B. (1987). Universal CAS assay for the detection and determination of siderophores. Analytical Biochemistry, 160, 47-56.
14. Sorkhoh, N.; Ali, N.; Dashti, N.; Al-Mailem, D.; Al-Awadhi, H.; Eliyas, M.; Radwan, S. 2010. Soil bacteria with the combined potential for oil utilization, nitrogen fixation and mercury resistance. Int. Biodeterior. Biodegr. 64:226-231.
15. Torres Perez, M.P; Vitola Romero, d.; Pérez Cordero, A. 2019. Biorremediación de mercurio y níquel por bacterias endófitas de macrófitas acuáticas. Revista Colombiana de Biotecnología, vol. XXI, núm. 2, pp. 36-44. Instituto de Biotecnología, Universidad Nacional de Colombia. https://www.redalyc.org/journal/776/77662596005/html/.
16. Valls, Marc y De Lorenzo, Víctor.2002. Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiology Reviews [en línea], vol. 26, no. 4, 2002. [consulta: 6 diciembre 2022]. ISSN 0168-6445. DOI 10.1111/J.1574-6976.2002. TB00618.X. Disponible en: https://dx.doi.org/10.1111/j.1574-6976.2002.tb00618.x