THE SCIENCE OF HOPE: A COMPREHENSIVE REVIEW OF COVID-19 VACCINE PROGRESS
Main Article Content
Keywords
SARS-CoV-2, COVID-19, coronavirus, vaccine
Abstract
It is expected that the SARS-CoV-2 (severe acute respiratory syndrome-CoV-2) virus started a pandemic in 2020 that had affected the health of people everywhere in the world. Scientists are still trying to find COVID-19 vaccines and medicines that work. In this review article the study on the COVID-19 candidates for the vaccine that are currently going through clinical trials, in addition to the top candidates that are going through pre-clinical development and research at the moment. Five main bases were used to make these candidates There is a live-attenuated vaccine, an mRNA-based vaccine, DNA vaccines, an inactivated virus, and a viral-vector-based vaccine. Making a fast vaccine against other coronaviruses like SARS-CoV and MERS-CoV are similar to SARS-CoV-2 is dangerous for many reasons. The most important things that need to be done quickly are finding out how dangerous a new virus is and if it might have an antigen, choosing the best experimental models and delivery methods for the vaccine, doing the immune response study, setting up the clinical trials, and figuring out if the vaccine is safe and effective.
References
[2] Ali MG, Ahmad MO, Husain SN. Spread of corona virus disease (COVID–19) from an outbreak to pandemic in the year 2020. Asian Journal of Research in Infectious Diseases. 2020;3(4):37-51.
[3] Naja F, Hamadeh R. Nutrition amid the COVID-19 pandemic: a multi-level framework for action. European journal of clinical nutrition. 2020 Aug;74(8):1117-21.
[4] Dhand R, Li J. Coughs and sneezes: their role in transmission of respiratory viral infections, including SARS-CoV-2. American journal of respiratory and critical care medicine. 2020 Sep 1;202(5):651-9.
[5] Li J, Chen Z, Nie Y, Ma Y, Guo Q, Dai X. Identification of symptoms prognostic of COVID-19 severity: multivariate data analysis of a case series in Henan Province. Journal of medical Internet research. 2020 Jun 30;22(6): e19636.
[6] Wu C, Chen X, Cai Y, Zhou X, Xu S, Huang H, Zhang L, Zhou X, Du C, Zhang Y, Song J. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA internal medicine. 2020 Jul 1;180(7):934-43.
[7] Wang Y, Tian H, Zhang L, Zhang M, Guo D, Wu W, Zhang X, Kan GL, Jia L, Huo D, Liu B. Reduction of secondary transmission of SARS-CoV-2 in households by face mask use, disinfection and social distancing: a cohort study in Beijing, China. BMJ global health. 2020 May 1;5(5): e002794.
[8] Skoll D, Miller JC, Saxon LA. COVID-19 testing and infection surveillance: Is a combined digital contact-tracing and mass-testing solution feasible in the United States? Cardiovascular digital health journal. 2020 Nov 1;1(3):149-59.
[9] Oaks Jr SC, Shope RE, Lederberg J, editors. Emerging infections: microbial threats to health in the United States.
[10] Hamid S, Mir MY, Rohela GK. Novel coronavirus disease (COVID-19): a pandemic (epidemiology, pathogenesis and potential therapeutics). New microbes and new infections. 2020 May 1; 35:100679.
[11] Baj J, Karakuła-Juchnowicz H, Teresiński G, Buszewicz G, Ciesielka M, Sitarz R, Forma A, Karakuła K, Flieger W, Portincasa P, Maciejewski R. COVID-19: specific and non-specific clinical manifestations and symptoms: the current state of knowledge. Journal of clinical medicine. 2020 Jun 5;9(6):1753.
[12] Awadasseid A, Wu Y, Tanaka Y, Zhang W. Current advances in the development of SARS-CoV-2 vaccines. International journal of biological sciences. 2021;17(1):8.
[13] Lai CC, Shih TP, Ko WC, Tang HJ, Hsueh PR. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. International journal of antimicrobial agents. 2020 Mar 1;55(3):105924.
[14] Da Silveira MP, da Silva Fagundes KK, Bizuti MR, Starck É, Rossi RC, de Resende E Silva DT. Physical exercise as a tool to help the immune system against COVID-19: an integrative review of the current literature. Clinical and experimental medicine. 2021 Feb;21(1):15-28.
[15] Carsetti R, Zaffina S, Piano Mortari E, Terreri S, Corrente F, Capponi C, Palomba P, Mirabella M, Cascioli S, Palange P, Cuccaro I. Different innate and adaptive immune responses to SARS-CoV-2 infection of asymptomatic, mild, and severe cases. Frontiers in immunology. 2020 Dec 16;11:610300.
[16] Wang J, Barke RA, Ma J, Charboneau R, Roy S. Opiate abuse, innate immunity, and bacterial infectious diseases. Archivum immunologiae et therapiae experimentalis. 2008 Oct;56:299-309.
[17] Gallardo-Zapata J, Maldonado-Bernal C. Natural killer cell exhaustion in SARS-CoV-2 infection. Innate Immunity. 2022 Aug;28(6):189-98.
[18] Franken L, Schiwon M, Kurts C. Macrophages: sentinels and regulators of the immune system. Cellular microbiology. 2016 Apr;18(4):475-87.
[19] Song P, Li W, Xie J, Hou Y, You C. Cytokine storm induced by SARS-CoV-2. Clinica chimica acta. 2020 Oct 1; 509:280-7.
[20] Spiering MJ. Primer on the immune system. Alcohol research: current reviews. 2015;37(2):171.
[21] Kennedy RC, Melnick JL, Dreesman GR. Anti-idiotypes and immunity. Scientific American. 1986 Jul 1;255(1):48-57.
[22] Huang H, Li S, Zhang Y, Han X, Jia B, Liu H, Liu D, Tan S, Wang Q, Bi Y, Liu WJ. CD8+ T cell immune response in immunocompetent mice during Zika virus infection. Journal of virology. 2017 Nov 15;91(22): e00900-17.
[23] Nikolich-Zugich J, Knox KS, Rios CT, Natt B, Bhattacharya D, Fain MJ. SARS-CoV-2 and COVID-19 in older adults: what we may expect regarding pathogenesis, immune responses, and outcomes. Geroscience. 2020 Apr;42:505-14.
[24] Firacative C. Invasive fungal disease in humans: are we aware of the real impact?. Memórias do Instituto Oswaldo Cruz. 2020 Oct 9;115.
[25] Rajpal A, Rahimi L, Ismail‐Beigi F. Factors leading to high morbidity and mortality of COVID‐19 in patients with type 2 diabetes. Journal of diabetes. 2020 Dec;12(12):895-908.
[26] Azkur AK, Akdis M, Azkur D, Sokolowska M, van de Veen W, Brüggen MC, O’Mahony L, Gao Y, Nadeau K, Akdis CA. Immune response to SARS‐CoV‐2 and mechanisms of immunopathological changes in COVID‐19. Allergy. 2020 Jul;75(7):1564-81.
[27] Suzuki YJ, Nikolaienko SI, Shults NV, Gychka SG. COVID-19 patients may become predisposed to pulmonary arterial hypertension. Medical Hypotheses. 2021 Feb 1; 147:110483.
[28] Dhama K, Sharun K, Tiwari R, Dadar M, Malik YS, Singh KP, Chaicumpa W. COVID-19, an emerging coronavirus infection: advances and prospects in designing and developing vaccines, immunotherapeutics, and therapeutics. Human vaccines & immunotherapeutics. 2020 Jun 2;16(6):1232-8.
[29] Zhang Y, Chen S, Jin Y, Ji W, Zhang W, Duan G. An Update on Innate Immune Responses during SARS-CoV-2 Infection. Viruses. 2021 Oct 14;13(10):2060.
[30] Wheat W, Chow L, Rozo V, Herman J, Still Brooks K, Colbath A, Hunter R, Dow S. Non-specific protection from respiratory tract infections in cattle generated by intranasal administration of an innate immune stimulant. PLoS One. 2020 Jun 25;15(6):e0235422.
[31] Vaillant AA, Sabir S, Jan A. Physiology, Immune Response. InStatPearls [Internet] 2021 Sep 28. StatPearls Publishing.
[32] Gallardo-Zapata J, Maldonado-Bernal C. Natural killer cell exhaustion in SARS-CoV-2 infection. Innate Immunity. 2022 Aug;28(6):189-98.
[33] Petrenko VA, Gillespie JW, De Plano LM, Shokhen MA. Phage-displayed mimotopes of SARS-CoV-2 spike protein targeted to authentic and alternative cellular receptors. Viruses. 2022 Feb 14;14(2):384.
[34] Zhao H, Wu L, Yan G, Chen Y, Zhou M, Wu Y, Li Y. Inflammation and tumor progression: signaling pathways and targeted intervention. Signal transduction and targeted therapy. 2021 Jul 12;6(1):263.
[35] Hilda JN, Das S, Tripathy SP, Hanna LE. Role of neutrophils in tuberculosis: a bird's eye view. Innate immunity. 2020 May;26(4):240-7.
[36] Wongchitrat P, Shukla M, Sharma R, Govitrapong P, Reiter RJ. Role of melatonin on virus-induced neuropathogenesis—a concomitant therapeutic strategy to understand SARS-CoV-2 infection. Antioxidants. 2021 Jan 2;10(1):47.
[37] Da Silveira MP, da Silva Fagundes KK, Bizuti MR, Starck É, Rossi RC, de Resende E Silva DT. Physical exercise as a tool to help the immune system against COVID-19: an integrative review of the current literature. Clinical and experimental medicine. 2021 Feb;21(1):15-28.
[38] Raulet DH, Marcus A, Coscoy L. Dysregulated cellular functions and cell stress pathways provide critical cues for activating and targeting natural killer cells to transformed and infected cells. Immunological reviews. 2017 Nov;280(1):93-101.
[39] Wu SY, Fu T, Jiang YZ, Shao ZM. Natural killer cells in cancer biology and therapy. Molecular cancer. 2020 Dec;19:1-26.
[40] Calder PC, Carr AC, Gombart AF, Eggersdorfer M. Optimal nutritional status for a well-functioning immune system is an important factor to protect against viral infections. Nutrients. 2020 Apr 23;12(4):1181.
[41] Abbas AK, Lichtman AH, Pillai S. Basic immunology e-book: functions and disorders of the immune system. Elsevier Health Sciences; 2019 Jan 25.
[42] Sompayrac LM. How the immune system works. John Wiley & Sons; 2022 Nov 7.
[43] Li JY, Liao CH, Wang Q, Tan YJ, Luo R, Qiu Y, Ge XY. The ORF6, ORF8 and nucleocapsid proteins of SARS-CoV-2 inhibit type I interferon signaling pathway. Virus research. 2020 Sep 1;286:198074.
[44] Fillol-Salom A, Miguel-Romero L, Marina A, Chen J, Penadés JR. Beyond the CRISPR-Cas safeguard: PICI-encoded innate immune systems protect bacteria from bacteriophage predation. Current Opinion in Microbiology. 2020 Aug 1;56:52-8.
[45] Meftahi GH, Jangravi Z, Sahraei H, Bahari Z. The possible pathophysiology mechanism of cytokine storm in elderly adults with COVID-19 infection: the contribution of “inflame-aging”. Inflammation Research. 2020 Sep;69:825-39.
[46] Li N, Hui H, Bray B, Gonzalez GM, Zeller M, Anderson KG, Knight R, Smith D, Wang Y, Carlin AF, Rana TM. METTL3 regulates viral m6A RNA modification and host cell innate immune responses during SARS-CoV-2 infection. Cell reports. 2021 May 11;35(6):109091.
[47] Jordan SC. Innate and adaptive immune responses to SARS-CoV-2 in humans: relevance to acquired immunity and vaccine responses. Clinical & Experimental Immunology. 2021 Jun;204(3):310-20.
[48] Lagadinou M, Zareifopoulos N, Gkentzi D, Sampsonas F, Kostopoulou E, Marangos M, Solomou E. Alterations in lymphocyte subsets and monocytes in patients diagnosed with SARS-CoV-2 pneumonia: a mini review of the literature. Eur Rev Med Pharmacol Sci. 2021 Aug 1;25(15):5057-62.
[49] Hua Z, Hou B. The role of B cell antigen presentation in the initiation of CD4+ T cell response. Immunological reviews. 2020 Jul;296(1):24-35.
[50] Ahmed A, Tait SW. Targeting immunogenic cell death in cancer. Molecular oncology. 2020 Dec;14(12):2994-3006.
[51] Hurwitz JL. B cells, viruses, and the SARS-CoV-2/COVID-19 pandemic of 2020. Viral Immunology. 2020 May 1;33(4):251-2.
[52] Chen X, Li R, Pan Z, Qian C, Yang Y, You R, Zhao J, Liu P, Gao L, Li Z, Huang Q. Human monoclonal antibodies block the binding of SARS-CoV-2 spike protein to angiotensin converting enzyme 2 receptor. Cellular & molecular immunology. 2020 Jun;17(6):647-9.
[53] Lee WS, Wheatley AK, Kent SJ, DeKosky BJ. Antibody-dependent enhancement and SARS-CoV-2 vaccines and therapies. Nature microbiology. 2020 Oct;5(10):1185-91.
[54] Pan Y, Jiang X, Yang L, Chen L, Zeng X, Liu G, Tang Y, Qian C, Wang X, Cheng F, Lin J. SARS-CoV-2-specific immune response in COVID-19 convalescent individuals. Signal transduction and targeted therapy. 2021 Jul 7;6(1):256.
[55] Laidlaw BJ, Ellebedy AH. The germinal centre B cell response to SARS-CoV-2. Nature Reviews Immunology. 2022 Jan;22(1):7-18.
[56] Castro Dopico X, Ols S, Loré K, Karlsson Hedestam GB. Immunity to SARS‐CoV‐2 induced by infection or vaccination. Journal of internal medicine. 2022 Jan;291(1):32-50.
[57] Haque A, Pant AB. Mitigating Covid-19 in the face of emerging virus variants, breakthrough infections and vaccine hesitancy. Journal of Autoimmunity. 2022 Jan 1:102792.
[58] Röltgen K, Boyd SD. Antibody and B cell responses to SARS-CoV-2 infection and vaccination. Cell host & microbe. 2021 Jul 14;29(7):1063-75.
[59] Marshall JS, Warrington R, Watson W, Kim HL. An introduction to immunology and immunopathology. Allergy, Asthma & Clinical Immunology. 2018 Sep;14(2):1-0.
[60] Bhattacharya M, Sharma AR, Mallick B, Sharma G, Lee SS, Chakraborty C. Immunoinformatics approach to understand molecular interaction between multi-epitopic regions of SARS-CoV-2 spike-protein with TLR4/MD-2 complex. Infection, Genetics and Evolution. 2020 Nov 1;85:104587.
[61] Wheatley AK, Juno JA, Wang JJ, Selva KJ, Reynaldi A, Tan HX, Lee WS, Wragg KM, Kelly HG, Esterbauer R, Davis SK. Evolution of immune responses to SARS-CoV-2 in mild-moderate COVID-19. Nature communications. 2021 Feb 19;12(1):1162.
[62] Pecetta S, Finco O, Seubert A. Quantum leap of monoclonal antibody (mAb) discovery and development in the COVID-19 era. InSeminars in immunology 2020 Aug 1 (Vol. 50, p. 101427). Academic Press.
[63] Azkur AK, Akdis M, Azkur D, Sokolowska M, van de Veen W, Brüggen MC, O’Mahony L, Gao Y, Nadeau K, Akdis CA. Immune response to SARS‐CoV‐2 and mechanisms of immunopathological changes in COVID‐19. Allergy. 2020 Jul;75(7):1564-81.
[64] Shirley JL, Keeler GD, Sherman A, Zolotukhin I, Markusic DM, Hoffman BE, Morel LM, Wallet MA, Terhorst C, Herzog RW. Type I IFN sensing by cDCs and CD4+ T cell help are both requisite for cross-priming of AAV capsid-specific CD8+ T cells. Molecular Therapy. 2020 Mar 4;28(3):758-70.
[65] Peng X, Ouyang J, Isnard S, Lin J, Fombuena B, Zhu B, Routy JP. Sharing CD4+ T cell loss: when COVID-19 and HIV collide on immune system. Frontiers in immunology. 2020 Dec 15;11:3307.
[66] Loyal L, Braun J, Henze L, Kruse B, Dingeldey M, Reimer U, Kern F, Schwarz T, Mangold M, Unger C, Dörfler F. Cross-reactive CD4+ T cells enhance SARS-CoV-2 immune responses upon infection and vaccination. Science. 2021 Oct 8;374(6564):eabh1823.
[67] Broere F, van Eden W. T cell subsets and T cell-mediated immunity. Nijkamp and Parnham's principles of immunopharmacology. 2019:23-35.
[68] Westmeier J, Paniskaki K, Karaköse Z, Werner T, Sutter K, Dolff S, Overbeck M, Limmer A, Liu J, Zheng X, Brenner T. Impaired cytotoxic CD8+ T cell response in elderly COVID-19 patients. MBio. 2020 Oct 27;11(5):e02243-20.
[69] Singh L, Bajaj S, Gadewar M, Verma N, Ansari MN, Saeedan AS, Kaithwas G, Singh M. Modulation of host immune response is an alternative strategy to combat SARS-CoV-2 pathogenesis. Frontiers in Immunology. 2021 Jul 8;12:660632.
[70] Cremer S. Social immunity in insects. Current Biology. 2019 Jun 3;29(11):R458-63.
[71] Ratajczak W, Niedźwiedzka-Rystwej P, Tokarz-Deptuła B, Deptuła W. Immunological memory cells. Central European Journal of Immunology. 2018 Jun 30;43(2):194-203.
[72] Cohen KW, Linderman SL, Moodie Z, Czartoski J, Lai L, Mantus G, Norwood C, Nyhoff LE, Edara VV, Floyd K, De Rosa SC. Longitudinal analysis shows durable and broad immune memory after SARS-CoV-2 infection with persisting antibody responses and memory B and T cells. Cell Reports Medicine. 2021 Jul 20;2(7):100354.
[73] Grasselli G, Pesenti A, Cecconi M. Critical care utilization for the COVID-19 outbreak in Lombardy, Italy: early experience and forecast during an emergency response. Jama. 2020 Apr 28;323(16):1545-6.
[74] Sigalov AB. SARS-CoV-2 may affect the immune response via direct inhibition of T cell receptor: mechanistic hypothesis and rationale. Biochimie. 2022 Apr 1;195:86-9.
[75] Peng Y, Mentzer AJ, Liu G, Yao X, Yin Z, Dong D, Dejnirattisai W, Rostron T, Supasa P, Liu C, López-Camacho C. Broad and strong memory CD4+ and CD8+ T cells induced by SARS-CoV-2 in UK convalescent individuals following COVID-19. Nature immunology. 2020 Nov;21(11):1336-45.
[76] Moss P. The T cell immune response against SARS-CoV-2. Nature immunology. 2022 Feb;23(2):186-93.
[77] Reina-Campos M, Scharping NE, Goldrath AW. CD8+ T cell metabolism in infection and cancer. Nature Reviews Immunology. 2021 Nov;21(11):718-38.
[78] Jain N, Hung IC, Kimura H, Goh YL, Jau W, Huynh KL, Panag DS, Tiwari R, Prasad S, Manirambona E, Vasanthakumaran T. The global response: How cities and provinces around the globe tackled covid-19 outbreaks in 2021. The Lancet Regional Health-Southeast Asia. 2022 Sep 1;4:100031.
[79] Ghebreyesus TA, Swaminathan S. Scientists are sprinting to outpace the novel coronavirus. The. 2020 Mar 7;395(10226):762-4.
[80] lancet Jain S, Venkataraman A, Wechsler ME, Peppas NA. Messenger RNA-based vaccines: Past, present, and future directions in the context of the COVID-19 pandemic. Advanced drug delivery reviews. 2021 Dec 1;179:114000.
[81] Hajj KA, Whitehead KA. Tools for translation: non-viral materials for therapeutic mRNA delivery. Nature Reviews Materials. 2017 Sep 12;2(10):1-7.
[82] Mascellino MT, Di Timoteo F, De Angelis M, Oliva A. Overview of the main anti-SARS-CoV-2 vaccines: mechanism of action, efficacy and safety. Infection and drug resistance. 2021 Aug 31:3459-76.
[83] Nhamo G, Sibanda M. Forty days of regulatory emergency use authorisation of COVID-19 vaccines: Interfacing efficacy, hesitancy and SDG target 3.8. Global Public Health. 2021 Oct 3;16(10):1537-58.
[84] Le TT, Andreadakis Z, Kumar A, Román RG, Tollefsen S, Saville M, Mayhew S. The COVID-19 vaccine development landscape. Nat Rev Drug Discov. 2020 May 1;19(5):305-6.
[85] Pandey SC, Pande V, Sati D, Upreti S, Samant M. Vaccination strategies to combat novel corona virus SARS-CoV-2. Life sciences. 2020 Sep 1;256:117956.
[86] Mascellino MT, Di Timoteo F, De Angelis M, Oliva A. Overview of the main anti-SARS-CoV-2 vaccines: mechanism of action, efficacy and safety. Infection and drug resistance. 2021 Aug 31:3459-76.
[87] Plummer EM, Manchester M. Viral nanoparticles and virus‐like particles: platforms for contemporary vaccine design. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. 2011 Mar;3(2):174-96.
[88] Jordan B. Vaccination against infectious bronchitis virus: a continuous challenge. Veterinary microbiology. 2017 Jul 1;206:137-43.
[89] KA O. How nasal-spray vaccines could change the pandemic. Nature. 2022 Sep 8;609.
[90] Khoshnood S, Arshadi M, Akrami S, Koupaei M, Ghahramanpour H, Shariati A, Sadeghifard N, Heidary M. An overview on inactivated and live‐attenuated SARS‐CoV‐2 vaccines. Journal of Clinical Laboratory Analysis. 2022 May;36(5):e24418.
[91] Gasmi A, Srinath S, Dadar M, Pivina L, Menzel A, Benahmed AG, Chirumbolo S, Bjørklund G. A global survey in the developmental landscape of possible vaccination strategies for COVID-19. Clinical Immunology. 2022 Feb 24:108958.
[92] Lo B, Wolf LE, Berkeley A. Conflict-of-interest policies for investigators in clinical trials. New England Journal of Medicine. 2000 Nov 30;343(22):1616-20.
[93] Lu L, Xiong W, Mu J, Zhang Q, Zhang H, Zou L, Li W, He L, Sander JW, Zhou D. The potential neurological effect of the COVID‐19 vaccines: a review. Acta Neurologica Scandinavica. 2021 Jul;144(1):3-12.
[94] Nnaji C, Jin Z, Karakhan A. Safety and health management response to COVID-19 in the construction industry: a perspective of fieldworkers. Process Safety and Environmental Protection. 2022 Mar 1;159:477-88.
[95] Li Q, Wang J, Tang Y, Lu H. Next-generation COVID-19 vaccines: Opportunities for vaccine development and challenges in tackling COVID-19. Drug Discoveries & Therapeutics. 2021 Jun 30;15(3):118-23.
[96] Dhama K, Patel SK, Sharun K, Pathak M, Tiwari R, Yatoo MI, Malik YS, Sah R, Rabaan AA, Panwar PK, Singh KP. SARS-CoV-2 jumping the species barrier: Zoonotic lessons from SARS, MERS and recent advances to combat this pandemic virus. Travel medicine and infectious disease. 2020 Sep 1;37:101830.
[97] Ndwandwe D, Wiysonge CS. COVID-19 vaccines. Current opinion in immunology. 2021 Aug 1;71:111-6.
[98] Callaway E. Coronavirus vaccines. Nature. 2020 Apr 30;580:577.
[99] Chumakov K, Avidan MS, Benn CS, Bertozzi SM, Blatt L, Chang AY, Jamison DT, Khader SA, Kottilil S, Netea MG, Sparrow A. Old vaccines for new infections: Exploiting innate immunity to control COVID-19 and prevent future pandemics. Proceedings of the National Academy of Sciences. 2021 May 25;118(21):e2101718118.
[100] Menachery VD, Gralinski LE, Mitchell HD, Dinnon III KH, Leist SR, Yount Jr BL, McAnarney ET, Graham RL, Waters KM, Baric RS. Combination attenuation offers strategy for live attenuated coronavirus vaccines. Journal of virology. 2018 Sep 1;92(17):e00710-18.
[101] Samaranayake LP, Seneviratne CJ, Fakhruddin KS. Coronavirus disease 2019 (COVID‐19) vaccines: A concise review. Oral diseases. 2022 Nov;28:2326-36.
[102] Rothenburg S, Brennan G. Species-specific host–virus interactions: implications for viral host range and virulence. Trends in microbiology. 2020 Jan 1;28(1):46-56.
[103] Dugan HL, Henry C, Wilson PC. Aging and influenza vaccine-induced immunity. Cellular immunology. 2020 Feb 1;348:103998.
[104] Vetter V, Denizer G, Friedland LR, Krishnan J, Shapiro M. Understanding modern-day vaccines: what you need to know. Annals of medicine. 2018 Feb 17;50(2):110-20.
[105] Chumakov K, Avidan MS, Benn CS, Bertozzi SM, Blatt L, Chang AY, Jamison DT, Khader SA, Kottilil S, Netea MG, Sparrow A. Old vaccines for new infections: Exploiting innate immunity to control COVID-19 and prevent future pandemics. Proceedings of the National Academy of Sciences. 2021 May 25;118(21):e2101718118.
[106] Hwang W, Lei W, Katritsis NM, MacMahon M, Chapman K, Han N. Current and prospective computational approaches and challenges for developing COVID-19 vaccines. Advanced drug delivery reviews. 2021 May 1;172:249-74.
[107] Ovsyannikova IG, Haralambieva IH, Crooke SN, Poland GA, Kennedy RB. The role of host genetics in the immune response to SARS‐CoV‐2 and COVID‐19 susceptibility and severity. Immunological reviews. 2020 Jul;296(1):205-19.
[108] Li YD, Chi WY, Su JH, Ferrall L, Hung CF, Wu TC. Coronavirus vaccine development: from SARS and MERS to COVID-19. Journal of biomedical science. 2020 Dec;27(1):1-23.
[109] Mallapaty S. China’s COVID vaccines are going global—but questions remain. Nature. 2021 May 13;593(7858):178-9.
[110] Okamura S, Ebina H. Could live attenuated vaccines better control COVID-19?. Vaccine. 2021 Sep 15;39(39):5719-26.
[111] Acosta-Coley I, Cervantes-Ceballos L, Tejeda-Benítez L, Sierra-Márquez L, Cabarcas-Montalvo M, García-Espiñeira M, Coronell-Rodríguez W, Arroyo-Salgado B. Vaccines platforms and COVID-19: what you need to know. Tropical Diseases, Travel Medicine and Vaccines. 2022 Aug 15;8(1):20.
[112] Chakraborty C, Sharma AR, Bhattacharya M, Lee SS. From COVID-19 to cancer mRNA vaccines: moving from bench to clinic in the vaccine landscape. Frontiers in Immunology. 2021 Jul 7;12:679344.
[113] Tregoning JS, Flight KE, Higham SL, Wang Z, Pierce BF. Progress of the COVID-19 vaccine effort: viruses, vaccines and variants versus efficacy, effectiveness and escape. Nature reviews immunology. 2021 Oct;21(10):626-36.
[114] Nguyen B, Tolia NH. Protein-based antigen presentation platforms for nanoparticle vaccines. npj Vaccines. 2021 May 13;6(1):70.
[115] McComb S, Thiriot A, Akache B, Krishnan L, Stark F. Introduction to the immune system. Immunoproteomics: Methods and Protocols. 2019:1-24.
[116] Gaudreault NN, Richt JA. Subunit vaccine approaches for African swine fever virus. Vaccines. 2019 Jun 25;7(2):56.
[117] Vetter V, Denizer G, Friedland LR, Krishnan J, Shapiro M. Understanding modern-day vaccines: what you need to know. Annals of medicine. 2018 Feb 17;50(2):110-20.
[118] Pollard AJ, Bijker EM. A guide to vaccinology: from basic principles to new developments. Nature Reviews Immunology. 2021 Feb;21(2):83-100.
[119] Nagpal G, Usmani SS, Raghava GP. A web resource for designing subunit vaccine against major pathogenic species of bacteria. Frontiers in Immunology. 2018 Oct 2;9:2280.
[120] Roth GA, Picece VC, Ou BS, Luo W, Pulendran B, Appel EA. Designing spatial and temporal control of vaccine responses. Nature Reviews Materials. 2022 Mar;7(3):174-95.
[121] Ghattas M, Dwivedi G, Lavertu M, Alameh MG. Vaccine technologies and platforms for infectious diseases: current progress, challenges, and opportunities. Vaccines. 2021 Dec;9(12):1490.
[122] Jeevanandam J, Pal K, Danquah MK. Virus-like nanoparticles as a novel delivery tool in gene therapy. Biochimie. 2019 Feb 1;157:38-47.
[123] King A. Building a better malaria vaccine. Nature. 2019 Nov 28;575(7784):S51-.
[124] Rauch S, Jasny E, Schmidt KE, Petsch B. New vaccine technologies to combat outbreak situations. Frontiers in immunology. 2018 Sep 19;9:1963.
[125] Meyer M, Huang E, Yuzhakov O, Ramanathan P, Ciaramella G, Bukreyev A. Modified mRNA-based vaccines elicit robust immune responses and protect guinea pigs from Ebola virus disease. The Journal of infectious diseases. 2018 Jan 17;217(3):451-5.
[126] Mandolesi M, Sheward DJ, Hanke L, Ma J, Pushparaj P, Vidakovics LP, Kim C, Àdori M, Lenart K, Loré K, Dopico XC. SARS-CoV-2 protein subunit vaccination of mice and rhesus macaques elicits potent and durable neutralizing antibody responses. Cell Reports Medicine. 2021 Apr 20;2(4):100252.
[127] Rzymski P, Perek B, Flisiak R. Thrombotic thrombocytopenia after COVID-19 vaccination: in search of the underlying mechanism. Vaccines. 2021 May 27;9(6):559.
[128] Patel R, Kaki M, Potluri VS, Kahar P, Khanna D. A comprehensive review of SARS-CoV-2 vaccines: Pfizer, moderna & Johnson & Johnson. Human vaccines & immunotherapeutics. 2022 Jan 31;18(1):2002083.
[129] Mazur NI, Higgins D, Nunes MC, Melero JA, Langedijk AC, Horsley N, Buchholz UJ, Openshaw PJ, McLellan JS, Englund JA, Mejias A. The respiratory syncytial virus vaccine landscape: lessons from the graveyard and promising candidates. The Lancet Infectious Diseases. 2018 Oct 1;18(10):e295-311.
[130] Chacko J, Pawar S. Navigate by tag. Cytokine. 2019 Oct 28.
[131] Ferrando RM, Lay L, Polito L. Gold nanoparticle-based platforms for vaccine development. Drug Discovery Today: Technologies. 2020 Dec 1;38:57-67.
[132] Chavda VP, Hossain MK, Beladiya J, Apostolopoulos V. Nucleic acid vaccines for COVID-19: a paradigm shift in the vaccine development arena. Biologics. 2021 Oct 23;1(3):337-56.
[133] Ho W, Gao M, Li F, Li Z, Zhang XQ, Xu X. Next‐generation vaccines: nanoparticle‐mediated dna and mrna delivery. Advanced Healthcare Materials. 2021 Apr;10(8):2001812.
[134] Rosa SS, Prazeres DM, Azevedo AM, Marques MP. mRNA vaccines manufacturing: Challenges and bottlenecks. Vaccine. 2021 Apr 15;39(16):2190-200.
[135] Chavda VP, Hossain MK, Beladiya J, Apostolopoulos V. Nucleic acid vaccines for COVID-19: a paradigm shift in the vaccine development arena. Biologics. 2021 Oct 23;1(3):337-56.
[136] Ogden NH, Wilson JR, Richardson DM, Hui C, Davies SJ, Kumschick S, Le Roux JJ, Measey J, Saul WC, Pulliam JR. Emerging infectious diseases and biological invasions: a call for a One Health collaboration in science and management. Royal Society Open Science. 2019 Mar 13;6(3):181577.
[137] Negahdaripour M, Ghasemi Y. Witnessing a revolution in the vaccinology field: A thought on its probable impact on future vaccines. Trends in Pharmaceutical Sciences. 2022 Jun 1;8(2):67-8.
[138] Sadri Nahand J, Moghoofei M, Salmaninejad A, Bahmanpour Z, Karimzadeh M, Nasiri M, Mirzaei HR, Pourhanifeh MH, Bokharaei‐Salim F, Mirzaei H, Hamblin MR. Pathogenic role of exosomes and microRNAs in HPV‐mediated inflammation and cervical cancer: a review. International journal of cancer. 2020 Jan 15;146(2):305-20.
[139] Kulkarni JA, Witzigmann D, Thomson SB, Chen S, Leavitt BR, Cullis PR, van der Meel R. The current landscape of nucleic acid therapeutics. Nature nanotechnology. 2021 Jun;16(6):630-43.
[140] van den Berg AI, Yun CO, Schiffelers RM, Hennink WE. Polymeric delivery systems for nucleic acid therapeutics: Approaching the clinic. Journal of Controlled Release. 2021 Mar 10;331:121-41.
[141] Teo SP. Review of COVID-19 mRNA Vaccines: BNT162b2 and mRNA-1273. Journal of pharmacy practice. 2022 Dec;35(6):947-51.
[142] Hoggarth A, Weaver A, Pu Q, Huang T, Schettler J, Chen F, Yuan X, Wu M. Mechanistic research holds promise for bacterial vaccines and phage therapies for Pseudomonas aeruginosa. Drug design, development and therapy. 2019 Mar 20:909-24.
[143] Huda MN, Nurunnabi M. Potential application of exosomes in vaccine development and delivery. Pharmaceutical Research. 2022 Nov;39(11):2635-71.
[144] Zurita ME, Wilk MM, Carriquiriborde F, Bartel E, Moreno G, Misiak A, Mills KH, Hozbor D. A pertussis outer membrane vesicle-based vaccine induces lung-resident memory CD4 T cells and protection against Bordetella pertussis, including pertactin deficient strains. Frontiers in cellular and infection microbiology. 2019 Apr 26;9:125.
[145] Ferrando RM, Lay L, Polito L. Gold nanoparticle-based platforms for vaccine development. Drug Discovery Today: Technologies. 2020 Dec 1;38:57-67.
[146] Hossain MK, Hassanzadeganroudsari M, Apostolopoulos V. The emergence of new strains of SARS-CoV-2. What does it mean for COVID-19 vaccines?. Expert review of vaccines. 2021 Jun 3;20(6):635-8.
[147] Lewis LM, Badkar AV, Cirelli D, Combs R, Lerch TF. The Race to Develop the Pfizer-BioNTech COVID-19 Vaccine: From the Pharmaceutical Scientists’ Perspective. Journal of Pharmaceutical Sciences. 2023 Mar 1;112(3):640-7.
[148] Ahmed S, Khan S, Imran I, Al Mughairbi F, Sheikh FS, Hussain J, Khan A, Al-Harrasi A. Vaccine development against COVID-19: study from pre-clinical phases to clinical trials and global use. Vaccines. 2021 Jul 29;9(8):836.
[149] Jain S, Venkataraman A, Wechsler ME, Peppas NA. Messenger RNA-based vaccines: Past, present, and future directions in the context of the COVID-19 pandemic. Advanced drug delivery reviews. 2021 Dec 1;179:114000.
[150] Chavda VP, Pandya R, Apostolopoulos V. DNA vaccines for SARS-CoV-2: toward third-generation vaccination era. Expert review of vaccines. 2021 Dec 2;20(12):1549-60.
[151] Uddin MN, Roni MA. Challenges of storage and stability of mRNA-based COVID-19 vaccines. Vaccines. 2021 Sep 17;9(9):1033.
[152] Ura T, Yamashita A, Mizuki N, Okuda K, Shimada M. New vaccine production platforms used in developing SARS-CoV-2 vaccine candidates. Vaccine. 2021 Jan 8;39(2):197-201.
[153] Loembé MM, Nkengasong JN. COVID-19 vaccine access in Africa: Global distribution, vaccine platforms, and challenges ahead. Immunity. 2021 Jul 13;54(7):1353-62.
[154] Arashkia A, Jalilvand S, Mohajel N, Afchangi A, Azadmanesh K, Salehi‐Vaziri M, Fazlalipour M, Pouriayevali MH, Jalali T, Mousavi Nasab SD, Roohvand F. Severe acute respiratory syndrome‐coronavirus‐2 spike (S) protein based vaccine candidates: State of the art and future prospects. Reviews in medical virology. 2021 May;31(3):e2183.
[155] Cox MM. Recombinant protein vaccines produced in insect cells. Vaccine. 2012 Feb 27;30(10):1759-66.
[156] Funk CD, Laferrière C, Ardakani A. A snapshot of the global race for vaccines targeting SARS-CoV-2 and the COVID-19 pandemic. Frontiers in pharmacology. 2020 Jun 19;11:937.
[157] Sharma O, Sultan AA, Ding H, Triggle CR. A Review of the Progress and Challenges of Developing a Vaccine for COVID-19. Frontiers in immunology. 2020 Oct 14;11:585354.
[158] Comas-Garcia M, Colunga-Saucedo M, Rosales-Mendoza S. The role of virus-like particles in medical biotechnology. Molecular Pharmaceutics. 2020 Nov 5;17(12):4407-20.
[159] Forman R, Shah S, Jeurissen P, Jit M, Mossialos E. COVID-19 vaccine challenges: What have we learned so far and what remains to be done?. Health policy. 2021 May 1;125(5):553-67.
[160] Weng CH, Saal A, Butt WW, Bica N, Fisher JQ, Tao J, Chan PA. Bacillus Calmette–Guérin vaccination and clinical characteristics and outcomes of COVID-19 in Rhode Island, United States: a cohort study. Epidemiology & Infection. 2020;148.
[161] Gursel M, Gursel I. Is global BCG vaccination‐induced trained immunity relevant to the progression of SARS‐CoV‐2 pandemic?. Allergy. 2020 Jul;75(7):1815.
[162] Escobar LE, Molina-Cruz A, Barillas-Mury C. BCG vaccine protection from severe coronavirus disease 2019 (COVID-19). Proceedings of the National Academy of Sciences. 2020 Jul 28;117(30):17720-6.
[163] Kyrgiou M, Mitra A, Moscicki AB. Does the vaginal microbiota play a role in the development of cervical cancer?. Translational Research. 2017 Jan 1;179:168-82.
[164] Noval Rivas M, Rosser CJ, Arditi M. Rationale for Randomized Clinical Trials Investigating the Potential of BCG Vaccination in Preventing COVID-19 Infection. Bladder Cancer. 2021 Jan 1;7(2):121-31.
[165] Rivas MN, Ebinger JE, Wu M, Sun N, Braun J, Sobhani K, Van Eyk JE, Cheng S, Arditi M. BCG vaccination history associates with decreased SARS-CoV-2 seroprevalence across a diverse cohort of health care workers. The Journal of clinical investigation. 2021 Jan 19;131(2).
[166] Covián C, Retamal-Díaz A, Bueno SM, Kalergis AM. Could BCG vaccination induce protective trained immunity for SARS-CoV-2?. Frontiers in immunology. 2020 May 8;11:970.
[167] Latkin CA, Dayton L, Yi G, Colon B, Kong X. Mask usage, social distancing, racial, and gender correlates of COVID-19 vaccine intentions among adults in the US. PloS one. 2021 Feb 16;16(2):e0246970.
[168] Redondo N, Zaldívar-López S, Garrido JJ, Montoya M. SARS-CoV-2 accessory proteins in viral pathogenesis: knowns and unknowns. Frontiers in Immunology. 2021 Jul 7;12:708264.
[169] World Health Organization. Consolidated guidelines on HIV prevention, testing, treatment, service delivery and monitoring: recommendations for a public health approach. World Health Organization; 2021 Jul 16.
[170] Gudadappanavar AM, Benni J. An evidence-based systematic review on emerging therapeutic and preventive strategies to treat novel coronavirus (SARS-CoV-2) during an outbreak scenario. Journal of Basic and Clinical Physiology and Pharmacology. 2020 Nov 1;31(6).
[171] Ghaebi M, Osali A, Valizadeh H, Roshangar L, Ahmadi M. Vaccine development and therapeutic design for 2019‐nCoV/SARS‐CoV‐2: Challenges and chances. Journal of cellular physiology. 2020 Dec;235(12):9098-109.
[172]. Li CX, Noreen S, Zhang LX, Saeed M, Wu PF, Ijaz M, Dai DF, Maqbool I, Madni A, Akram F, Naveed M. A critical analysis of SARS-CoV-2 (COVID-19) complexities, emerging variants, and therapeutic interventions and vaccination strategies. Biomedicine & Pharmacotherapy. 2022 Feb 1;146:112550.
[173] Jean SS, Lee PI, Hsueh PR. Treatment options for COVID-19: The reality and challenges. Journal of microbiology, immunology and infection. 2020 Jun 1;53(3):436-43.
[174] Soleimanpour S, Yaghoubi A. COVID-19 vaccine: where are we now and where should we go?. Expert review of vaccines. 2021 Jan 2;20(1):23-44.
[175]. Decourt B, Boumelhem F, Pope III ED, Shi J, Mari Z, Sabbagh MN. Critical appraisal of amyloid lowering agents in AD. Current Neurology and Neuroscience Reports. 2021 Aug;21(8):39.
[176]. Kaur SP, Gupta V. COVID-19 Vaccine: A comprehensive status report. Virus research. 2020 Oct 15;288:198114.
[177] Dubey AK, Singh A, Prakash S, Kumar M, Singh AK. Race to arsenal COVID-19 therapeutics: Current alarming status and future directions. Chemico-biological interactions. 2020 Dec 1;332:109298.
[178] Hodgson J. The pandemic pipeline. Nat Biotechnol. 2020 Mar 20;38(5):523-32.
[179] Pilkington V, Pepperrell T, Hill A. A review of the safety of favipiravir–a potential treatment in the COVID-19 pandemic?. Journal of virus eradication. 2020 Apr 1;6(2):45-51.
[180] Kaur SP, Gupta V. COVID-19 Vaccine: A comprehensive status report. Virus research. 2020 Oct 15;288:198114.
[181] Tabish SA. COVID-19 pandemic: Emerging perspectives and future trends. Journal of public health research. 2020 Jun 4;9(1):jphr-2020.
[182] Mahajan A, DHAWAN R, Lakhvir KA, SINGH G, Anureet KA. COVID-19: Mutated Strain, Treatment Options and Vaccine Development. Fabad Journal of Pharmaceutical Sciences. 2021 Dec 1;46(3):311-24.
[183] Brown S, Brown T, Cederna PS, Rohrich RJ. The race for a COVID-19 Vaccine: Current trials, novel technologies, and future directions. Plastic and Reconstructive Surgery Global Open. 2020 Oct;8(10).
[184] Nagpal D, Nagpal S, Kaushik D, Kathuria H. Current clinical status of new COVID-19 vaccines and immunotherapy. Environmental Science and Pollution Research. 2022 Oct;29(47):70772-807.
[185] Astuti I. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): An overview of viral structure and host response. Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 2020 Jul 1;14(4):407-12.
[186] Thompson MG, Burgess JL, Naleway AL, Tyner H, Yoon SK, Meece J, Olsho LE, Caban-Martinez AJ, Fowlkes AL, Lutrick K, Groom HC. Prevention and Attenuation of Covid-19 with the BNT162b2 and mRNA-1273 Vaccines. New England Journal of Medicine. 2021 Jul 22;385(4):320-9.
[187] El Sahly HM, Baden LR, Essink B, Doblecki-Lewis S, Martin JM, Anderson EJ, Campbell TB, Clark J, Jackson LA, Fichtenbaum CJ, Zervos M. Efficacy of the mRNA-1273 SARS-CoV-2 vaccine at completion of blinded phase. New England Journal of Medicine. 2021 Nov 4;385(19):1774-85.
[188] Jain R, Beckett VV, Konstan MW, Accurso FJ, Burns JL, Mayer-Hamblett N, Milla C, VanDevanter DR, Chmiel JF, KB001-A Study Group. KB001-A, a novel anti-inflammatory, found to be safe and well-tolerated in cystic fibrosis patients infected with Pseudomonas aeruginosa. Journal of Cystic Fibrosis. 2018 Jul 1;17(4):484-91.
[189] Zeng G, Wu Q, Pan H, Li M, Yang J, Wang L, Wu Z, Jiang D, Deng X, Chu K, Zheng W. Immunogenicity and safety of a third dose of CoronaVac, and immune persistence of a two-dose schedule, in healthy adults: interim results from two single-centre, double-blind, randomised, placebo-controlled phase 2 clinical trials. The Lancet Infectious Diseases. 2022 Apr 1;22(4):483-95.
[190] Kaiser J. Temperature concerns could slow the rollout of new coronavirus vaccines. Science. 2020 Nov 16;16.
[191] Somasundaram P. Mutant Strains Of Covid-19 And Current Status Of Vaccines--A Systematic Review. International Journal of Pharmaceutical Research (09752366). 2021:850-6.
[192] Kaplan RM, Milstein A. Influence of a COVID-19 vaccine’s effectiveness and safety profile on vaccination acceptance. Proceedings of the National Academy of Sciences. 2021 Mar 9;118(10):e2021726118.
[193] Esteban I, Pastor-Quiñones C, Usero L, Plana M, García F, Leal L. In the era of mRNA vaccines, is there any hope for HIV functional cure?. Viruses. 2021 Mar 18;13(3):501.
[194] Lamb YN. BNT162b2 mRNA COVID-19 vaccine: first approval. Drugs. 2021 Mar;81:495-501.
[195] Farshi E. Peptide-Based mRNA Vaccines. J Gastro Hepato. 2023;9(16):1-6.
[196] Sompayrac LM. How the immune system works. John Wiley & Sons; 2022 Nov 7.
[197] Kashte S, Gulbake A, El-Amin III SF, Gupta A. COVID-19 vaccines: rapid development, implications, challenges and future prospects. Human cell. 2021 May;34(3):711-33.
[198] Bogdanov G, Bogdanov I, Kazandjieva J, Tsankov N. Cutaneous adverse effects of the available COVID-19 vaccines. Clinics in dermatology. 2021 May 1;39(3):523-31.
[199] Kashte S, Gulbake A, El-Amin III SF, Gupta A. COVID-19 vaccines: rapid development, implications, challenges and future prospects. Human cell. 2021 May;34(3):711-33.
[200] Tabish SA. COVID-19 pandemic: Emerging perspectives and future trends. Journal of public health research. 2020 Jun 4;9(1):jphr-2020.
[201] Li M, Wang H, Tian L, Pang Z, Yang Q, Huang T, Fan J, Song L, Tong Y, Fan H. COVID-19 vaccine development: milestones, lessons and prospects. Signal transduction and targeted therapy. 2022 May 3;7(1):146.
[202] Ledford H, Cyranoski D, Van Noorden R. COVID vaccines: what scientists now want to know. Nature. 2020 Dec 10;588(7837):205-6.
[203] Soiza RL, Scicluna C, Thomson EC. Efficacy and safety of COVID-19 vaccines in older people. Age and ageing. 2021 Mar;50(2):279-83.
[204] Lai TH, Tang EW, Chau SK, Fung KS, Li KK. Stepping up infection control measures in ophthalmology during the novel coronavirus outbreak: an experience from Hong Kong. Graefe's Archive for Clinical and Experimental Ophthalmology. 2020 May;258:1049-55.
[205] Low JG, de Alwis R, Chen S, Kalimuddin S, Leong YS, Mah TK, Yuen N, Tan HC, Zhang SL, Sim JX, Chan YF. A phase I/II randomized, double-blinded, placebo-controlled trial of a self-amplifying Covid-19 mRNA vaccine. npj Vaccines. 2022 Dec 13;7(1):161.
[206] Farshi E. Peptide-Based mRNA Vaccines. J Gastro Hepato. 2023;9(16):1-6.
[207] Belete TM. Review on up-to-date status of candidate vaccines for COVID-19 disease. Infection and drug resistance. 2021 Jan 19:151-61.
[208] Sufian MA, Ilies MA. Lipid‐based nucleic acid therapeutics with in vivo efficacy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. 2023 Mar;15(2):e1856.
[209] Kantarcioglu B, Iqbal O, Lewis J, Carter CA, Singh M, Lievano F, Ligocki M, Jeske W, Adiguzel C, Gerotziafas GT, Fareed J. An update on the status of vaccine development for SARS-CoV-2 including variants. Practical considerations for COVID-19 special populations. Clinical and Applied Thrombosis/Hemostasis. 2022 Feb;28:10760296211056648.
[210] Low JG, de Alwis R, Chen S, Kalimuddin S, Leong YS, Mah TK, Yuen N, Tan HC, Zhang SL, Sim JX, Chan YF. A phase I/II randomized, double-blinded, placebo-controlled trial of a self-amplifying Covid-19 mRNA vaccine. npj Vaccines. 2022 Dec 13;7(1):161.
[211] Hossain KS, Hossain MG, Moni A, Rahman MM, Rahman UH, Alam M, Kundu S, Rahman MM, Hannan MA, Uddin MJ. Prospects of honey in fighting against COVID-19: pharmacological insights and therapeutic promises. Heliyon. 2020 Dec 1;6(12):e05798.
[212] Hebbani AV, Pulakuntla S, Pannuru P, Aramgam S, Badri KR, Reddy VD. COVID-19: comprehensive review on mutations and current vaccines. Archives of microbiology. 2022 Jan;204:1-7.
[213] Morais P, Adachi H, Yu YT. The critical contribution of pseudouridine to mRNA COVID-19 vaccines. Frontiers in cell and developmental biology. 2021 Nov 4;9:789427.
[214] Farshi E. Peptide-Based mRNA Vaccines. J Gastro Hepato. 2023;9(16):1-6.
[215] Belete TM. The immune response, safety, and efficacy of emergency use authorization-granted COVID-19 vaccines: A review. The Open Microbiology Journal. 2022 Mar 25;16(1).
[216] Eisenberg RA, Jawad AF, Boyer J, Maurer K, McDonald K, Prak ET, Sullivan KE. Rituximab-treated patients have a poor response to influenza vaccination. Journal of clinical immunology. 2013 Feb;33:388-96.
[217] Verbeke R, Lentacker I, De Smedt SC, Dewitte H. The dawn of mRNA vaccines: The COVID-19 case. Journal of Controlled Release. 2021 May 10;333:511-20.
[218] Forman R, Shah S, Jeurissen P, Jit M, Mossialos E. COVID-19 vaccine challenges: What have we learned so far and what remains to be done?. Health policy. 2021 May 1;125(5):553-67.
[219] Kremsner PG, Guerrero RA, Arana-Arri E, Martinez GJ, Bonten M, Chandler R, Corral G, De Block EJ, Ecker L, Gabor JJ, Lopez CA. Efficacy and safety of the CVnCoV SARS-CoV-2 mRNA vaccine candidate in ten countries in Europe and Latin America (HERALD): a randomised, observer-blinded, placebo-controlled, phase 2b/3 trial. The Lancet Infectious Diseases. 2022 Mar 1;22(3):329-40.
[220] Chiu NC, Chi H, Tu YK, Huang YN, Tai YL, Weng SL, Chang L, Huang DT, Huang FY, Lin CY. To mix or not to mix? A rapid systematic review of heterologous prime–boost covid-19 vaccination. Expert Review of Vaccines. 2021 Oct 3;20(10):1211-20.
[221] Tregoning JS, Flight KE, Higham SL, Wang Z, Pierce BF. Progress of the COVID-19 vaccine effort: viruses, vaccines and variants versus efficacy, effectiveness and escape. Nature reviews immunology. 2021 Oct;21(10):626-36.
[222] Paltiel AD, Schwartz JL, Zheng A, Walensky RP. Clinical Outcomes Of A COVID-19 Vaccine: Implementation Over Efficacy: Study examines how definitions and thresholds of vaccine efficacy, coupled with different levels of implementation effectiveness and background epidemic severity, translate into outcomes. Health Affairs. 2021 Jan 1;40(1):42-52.
[223] Chavda VP, Pandya R, Apostolopoulos V. DNA vaccines for SARS-CoV-2: toward third-generation vaccination era. Expert review of vaccines. 2021 Dec 2;20(12):1549-60.
[224] Manikkath J, Subramony JA. Toward closed-loop drug delivery: Integrating wearable technologies with transdermal drug delivery systems. Advanced Drug Delivery Reviews. 2021 Dec 1;179:113997.
[225] Feynman R. There’s plenty of room at the bottom. InFeynman and computation 2018 Mar 8 (pp. 63-76). CRC Press.
[226] De Savi C, Hughes DL, Kvaerno L. Quest for a COVID-19 cure by repurposing small-molecule drugs: mechanism of action, clinical development, synthesis at scale, and outlook for supply. Organic Process Research & Development. 2020 Jun 2;24(6):940-76.
[227] Tebas P, Yang S, Boyer JD, Reuschel EL, Patel A, Christensen-Quick A, Andrade VM, Morrow MP, Kraynyak K, Agnes J, Purwar M. Safety and immunogenicity of INO-4800 DNA vaccine against SARS-CoV-2: A preliminary report of an open-label, Phase 1 clinical trial. EClinicalMedicine. 2021 Jan 1;31:100689.
[228] Tebas P, Yang S, Boyer JD, Reuschel EL, Patel A, Christensen-Quick A, Andrade VM, Morrow MP, Kraynyak K, Agnes J, Purwar M. Safety and immunogenicity of INO-4800 DNA vaccine against SARS-CoV-2: A preliminary report of an open-label, Phase 1 clinical trial. EClinicalMedicine. 2021 Jan 1;31:100689.
[229] Hosseini SA, Zahedipour F, Mirzaei H, Oskuee RK. Potential SARS-CoV-2 vaccines: Concept, progress, and challenges. International immunopharmacology. 2021 Aug 1;97:107622.
[230] Ciotti M, Angeletti S, Minieri M, Giovannetti M, Benvenuto D, Pascarella S, Sagnelli C, Bianchi M, Bernardini S, Ciccozzi M. COVID-19 outbreak: an overview. Chemotherapy. 2019;64(5-6):215-23.
[231] Park KS, Sun X, Aikins ME, Moon JJ. Non-viral COVID-19 vaccine delivery systems. Advanced drug delivery reviews. 2021 Feb 1;169:137-51.
[232] Soleimanpour S, Yaghoubi A. COVID-19 vaccine: where are we now and where should we go?. Expert review of vaccines. 2021 Jan 2;20(1):23-44.
[233] Genovese MC, Spindler A, Sagawa A, Park W, Dudek A, Kivitz A, Chao J, Chan LS, Witcher J, Barchuk W, Nirula A. Safety and efficacy of poseltinib, Bruton’s tyrosine kinase inhibitor, in patients with rheumatoid arthritis: a randomized, double-blind, placebo-controlled, 2-part Phase II Study. The Journal of Rheumatology. 2021 Jul 1;48(7):969-76.
[234] Mammen Jr MP, Tebas P, Agnes J, Giffear M, Kraynyak KA, Blackwood E, Amante D, Reuschel EL, Purwar M, Christensen-Quick A, Liu N. Safety and immunogenicity of INO-4800 DNA vaccine against SARS-CoV-2: a preliminary report of a randomized, blinded, placebo-controlled, Phase 2 clinical trial in adults at high risk of viral exposure. medRxiv. 2021 May 7:2021-05.
[235] Peng XL, Cheng JS, Gong HL, Yuan MD, Zhao XH, Li Z, Wei DX. Advances in the design and development of SARS-CoV-2 vaccines. Military Medical Research. 2021 Dec;8(1):1-31.
[236] Funk CD, Laferrière C, Ardakani A. A snapshot of the global race for vaccines targeting SARS-CoV-2 and the COVID-19 pandemic. Frontiers in pharmacology. 2020 Jun 19;11:937.
[237] Khan A, Gopal A. The uncounted. InThe Best American Magazine Writing 2018 2018 Dec 31 (pp. 151-186). Columbia University Press.
[238] Ye T, Zhong Z, García‐Sastre A, Schotsaert M, De Geest BG. Current status of COVID‐19 (pre) clinical vaccine development. Angewandte Chemie International Edition. 2020 Oct 19;59(43):18885-97.
[239] Bulcha JT, Wang Y, Ma H, Tai PW, Gao G. Viral vector platforms within the gene therapy landscape. Signal transduction and targeted therapy. 2021 Feb 8;6(1):53.
[240] Waltz E. AI takes its best shot: what AI can—and can't—do in the race for a coronavirus vaccine-[vaccine]. IEEE Spectrum. 2020 Sep 24;57(10):24-67.
[241] Kis Z, Shattock R, Shah N, Kontoravdi C. Emerging technologies for low‐cost, rapid vaccine manufacture. Biotechnology journal. 2019 Jan;14(1):1800376.
[242] Collins FS, Stoffels P. Accelerating COVID-19 therapeutic interventions and vaccines (ACTIV): an unprecedented partnership for unprecedented times. Jama. 2020 Jun 23;323(24):2455-7.
[243] Silveira MM, Moreira GM, Mendonça M. DNA vaccines against COVID-19: Perspectives and challenges. Life sciences. 2021 Feb 15;267:118919.
[244] Li H, Cai Q, Wu D, Jie G, Zhou H. Fluorescence energy transfer biosensing platform based on hyperbranched rolling circle amplification and multi-site strand displacement for ultrasensitive detection of miRNA. Analytica Chimica Acta. 2022 Aug 22;1222:340190.
[245] Kaur SP, Gupta V. COVID-19 Vaccine: A comprehensive status report. Virus research. 2020 Oct 15;288:198114.
[246] Seo YB, Suh YS, Ryu JI, Jang H, Oh H, Koo BS, Seo SH, Hong JJ, Song M, Kim SJ, Sung YC. Soluble spike DNA vaccine provides long-term protective immunity against SARS-CoV-2 in mice and nonhuman primates. Vaccines. 2021 Mar 24;9(4):307.
[247] Araf Y, Akter F, Tang YD, Fatemi R, Parvez MS, Zheng C, Hossain MG. Omicron variant of SARS‐CoV‐2: genomics, transmissibility, and responses to current COVID‐19 vaccines. Journal of medical virology. 2022 May;94(5):1825-32.
[248] Szabó GT, Mahiny AJ, Vlatkovic I. COVID-19 mRNA vaccines: Platforms and current developments. Molecular Therapy. 2022 Feb 19.
[249] Mitsumori Y. An equitable approach is necessary to win a war against the global COVID-19 pandemic. International Journal of Japan Association for Management Systems. 2020 Dec 31;12(1):111-6.
[250] Herrera NG, Morano NC, Celikgil A, Georgiev GI, Malonis RJ, Lee JH, Tong K, Vergnolle O, Massimi AB, Yen LY, Noble AJ. Characterization of the SARS-CoV-2 S protein: biophysical, biochemical, structural, and antigenic analysis. ACS omega. 2020 Dec 21;6(1):85-102.
[251] Rogliani P, Chetta A, Cazzola M, Calzetta L. SARS-CoV-2 neutralizing antibodies: a network meta-analysis across vaccines. Vaccines. 2021 Mar 5;9(3):227.
[252] Motamedi H, Ari MM, Dashtbin S, Fathollahi M, Hossainpour H, Alvandi A, Moradi J, Abiri R. An update review of globally reported SARS-CoV-2 vaccines in preclinical and clinical stages. International immunopharmacology. 2021 Jul 1;96:107763.
[253] Shah JN. The ‘Vero Cell’COVID-19 vaccine rollout in Nepal: What we know about the Chinese vaccine development and access?. Journal of Patan Academy of Health Sciences. 2021 Apr 29;8(1):1-8.
[254] Shu YJ, He JF, Pei RJ, He P, Huang ZH, Chen SM, Ou ZQ, Deng JL, Zeng PY, Zhou J, Min YQ. Immunogenicity and safety of a recombinant fusion protein vaccine (V-01) against coronavirus disease 2019 in healthy adults: a randomized, double-blind, placebo-controlled, phase II trial. Chinese Medical Journal. 2021 Aug 20;134(16):1967-76.
[255] Kashte S, Gulbake A, El-Amin III SF, Gupta A. COVID-19 vaccines: rapid development, implications, challenges and future prospects. Human cell. 2021 May;34(3):711-33.
[256] Dai Y, Lei C, Zhang Z, Qi Y, Lao K, Gou X. Amyloid-beta targeted therapeutic approaches for Alzheimer’s disease: Long road ahead. Current Drug Targets. 2022 Aug 1;23(11):1040-56.
[257] Calvo Fernández E, Zhu LY. Racing to immunity: Journey to a COVID‐19 vaccine and lessons for the future. British journal of clinical pharmacology. 2021 Sep;87(9):3408-24.
[258] Conforti A, Sanchez E, Salvatori E, Lione L, Compagnone M, Pinto E, Palombo F, D’Acunto E, Muzi A, Roscilli G, Sun Y. A linear DNA vaccine candidate encoding the SARS-CoV-2 Receptor Binding Domain elicits potent immune response and neutralizing antibodies in domestic cats. Molecular Therapy-Methods & Clinical Development. 2023 Jan 2.
[259] Gasmi A, Srinath S, Dadar M, Pivina L, Menzel A, Benahmed AG, Chirumbolo S, Bjørklund G. A global survey in the developmental landscape of possible vaccination strategies for COVID-19. Clinical Immunology. 2022 Feb 24:108958.
[260] Zhang Y, Zeng G, Pan H, Li C, Hu Y, Chu K, Han W, Chen Z, Tang R, Yin W, Chen X. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18–59 years: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. The Lancet infectious diseases. 2021 Feb 1;21(2):181-92.
[261] Missiuna P, Shen J, Nahle I, Alanazi M, Rutges J, Rocos B, Miyanji F, Lohkamp L, Grootjen L, Hachem L, Aldebeyan S. Canadian Spine SocietyPresentation CPSS1: Spinal insufficiency fracture in the geriatric pediatric spinePresentation CPSS2: The clinical significance of tether breakages in anterior vertebral body growth modulation: a 2-year postoperative analysisPresentation CPSS3: Anterior vertebral body growth modulation for idiopathic scoliosis: early, mid-term and late complicationsPresentation CPSS4: Ovine model of congenital chest wall and spine deformity with alterations of respiratory mechanics: follow-up from ....
[262] Tapia MD, Sow SO, Lyke KE, Haidara FC, Diallo F, Doumbia M, Traore A, Coulibaly F, Kodio M, Onwuchekwa U, Sztein MB. Use of ChAd3-EBO-Z Ebola virus vaccine in Malian and US adults, and boosting of Malian adults with MVA-BN-Filo: a phase 1, single-blind, randomised trial, a phase 1b, open-label and double-blind, dose-escalation trial, and a nested, randomised, double-blind, placebo-controlled trial. The Lancet infectious diseases. 2016 Jan 1;16(1):31-42.
[263] Fadlyana E, Rusmil K, Tarigan R, Rahmadi AR, Prodjosoewojo S, Sofiatin Y, Khrisna CV, Sari RM, Setyaningsih L, Surachman F, Bachtiar NS. A phase III, observer-blind, randomized, placebo-controlled study of the efficacy, safety, and immunogenicity of SARS-CoV-2 inactivated vaccine in healthy adults aged 18–59 years: an interim analysis in Indonesia. Vaccine. 2021 Oct 22;39(44):6520-8.
[264] Voysey M, Clemens SA, Madhi SA, Weckx LY, Folegatti PM, Aley PK, Angus B, Baillie VL, Barnabas SL, Bhorat QE, Bibi S. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. The Lancet. 2021 Jan 9;397(10269):99-111.
[265] Wu Z, Hu Y, Xu M, Chen Z, Yang W, Jiang Z, Li M, Jin H, Cui G, Chen P, Wang L. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine (CoronaVac) in healthy adults aged 60 years and older: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. The Lancet Infectious Diseases. 2021 Jun 1;21(6):803-12.
[266] Ye T, Zhong Z, García‐Sastre A, Schotsaert M, De Geest BG. Current status of COVID‐19 (pre) clinical vaccine development. Angewandte Chemie International Edition. 2020 Oct 19;59(43):18885-97.
[267] Ward BJ, Gobeil P, Séguin A, Atkins J, Boulay I, Charbonneau PY, Couture M, D’Aoust MA, Dhaliwall J, Finkle C, Hager K. Phase 1 trial of a candidate recombinant virus-like particle vaccine for Covid-19 disease produced in plants. MedRxiv. 2020 Nov 6:2020-11.
[268] Shi S, Zhu H, Xia X, Liang Z, Ma X, Sun B. Vaccine adjuvants: Understanding the structure and mechanism of adjuvanticity. Vaccine. 2019 May 27;37(24):3167-78.
[269] Lee GH, Lim SG. CpG-adjuvanted hepatitis B vaccine (HEPLISAV-B®) update. Expert Review of Vaccines. 2021 May 4;20(5):487-95.
[270] Eski S, Buzluca F. An automatic extraction approach: Transition to microservices architecture from monolithic application. InProceedings of the 19th International Conference on Agile Software Development: Companion 2018 May 21 (pp. 1-6).
[271] Irwin A, Nkengasong J. What it will take to vaccinate the world against COVID-19. Nature. 2021 Mar;592(7853):176-8.
[272] Sanicas M, Sanicas M, Diop D, Montomoli E. A review of COVID-19 vaccines in development: 6 months into the pandemic. The Pan African Medical Journal. 2020;37.
[273] Li DD, Li QH. SARS-CoV-2: vaccines in the pandemic era. Military Medical Research. 2021 Jan 6;8(1):1.
[274] Lundstrom K. The current status of COVID-19 vaccines. Frontiers in genome editing. 2020 Oct 2;2:579297.
[275] Kothari A, Singh V, Nath UK, Kumar S, Rai V, Kaushal K, Omar BJ, Pandey A, Jain N. Immune dysfunction and multiple treatment modalities for the SARS-CoV-2 pandemic: races of uncontrolled running sweat?. Biology. 2020 Aug 24;9(9):243.
[276] Domingo-Lopez DA, Lattanzi G, Schreiber LH, Wallace EJ, Wylie R, O'Sullivan J, Dolan EB, Duffy GP. Medical devices, smart drug delivery, wearables and technology for the treatment of Diabetes Mellitus. Advanced Drug Delivery Reviews. 2022 Apr 8:114280.
[277] Tarullo DK. Revisiting the Application of the Administrative Procedure Act to Banking Supervision and Regulation September 20, 2021 The Committee on Capital Markets Regulation (the “Committee”) believes that the Administrative Procedure Act1 (the “APA”) fully applies to supervisory and regulatory actions by.
[278] Akache B, Stark FC, Agbayani G, Renner TM, McCluskie MJ. Adjuvants: Engineering protective immune responses in human and veterinary vaccines. Vaccine Design: Methods and Protocols, Volume 3. Resources for Vaccine Development. 2022:179-231.
[279] Lescure FX, Honda H, Fowler RA, Lazar JS, Shi G, Wung P, Patel N, Hagino O, Bazzalo IJ, Casas MM, Nuñez SA. Sarilumab in patients admitted to hospital with severe or critical COVID-19: a randomised, double-blind, placebo-controlled, phase 3 trial. The Lancet Respiratory Medicine. 2021 May 1;9(5):522-32.
[280] Bellis MA, Hughes K, Ford K, Hardcastle KA, Sharp CA, Wood S, Homolova L, Davies A. Adverse childhood experiences and sources of childhood resilience: a retrospective study of their combined relationships with child health and educational attendance. BMC public health. 2018 Dec;18(1):1-2.
[281] Cruz Da Silva E, Mercier MC, Etienne-Selloum N, Dontenwill M, Choulier L. A systematic review of glioblastoma-targeted therapies in phases II, III, IV clinical trials. Cancers. 2021 Apr 9;13(8):1795.
[282] Nueangnong V, Hasan Subih AA, Al-Hattami HM. The 2020’s world deadliest pandemic: corona virus (COVID-19) and International Medical Law (IML). Cogent Social Sciences. 2020 Jan 1;6(1):1818936.
[283] Vergara RJ, Sarmiento PJ, Lagman JD. Building public trust: a response to COVID-19 vaccine hesitancy predicament. Journal of Public Health. 2021 Jun;43(2):e291-2.
[284] Ball P, Maxmen A. The epic battle against coronavirus misinformation and conspiracy theories. Nature. 2020 May 1;581(7809):371-5.
[285] Tobin JJ, Sheehan PD, Megeath ST, Díaz-Rodríguez AK, Offner SS, Murillo NM, van’t Hoff ML, Van Dishoeck EF, Osorio M, Anglada G, Furlan E. The VLA/ALMA nascent disk and multiplicity (VANDAM) survey of orion protostars. II. A statistical characterization of class 0 and class i protostellar disks. The Astrophysical Journal. 2020 Feb 20;890(2):130.
[286] Spooner S, Pearson E, Gibson J, Checkland K. How do workplaces, working practices and colleagues affect UK doctors’ career decisions? A qualitative study of junior doctors’ career decision making in the UK. BMJ open. 2017 Oct 1;7(10):e018462.
[287] Armstrong M, Aker N, Nair P, Walters K, Barrado‐Martin Y, Kupeli N, Sampson EL, Manthorpe J, West E, Davies N. Trust and inclusion during the Covid‐19 pandemic: perspectives from Black and South Asian people living with dementia and their carers in the UK. International Journal of Geriatric Psychiatry. 2022 Mar;37(3).
[288] Compton J. Inoculation theory. The SAGE handbook of persuasion: Developments in theory and practice. 2013;2:220-37.
[289] Marmot M. Social justice, epidemiology and health inequalities. European journal of epidemiology. 2017 Jul;32:537-46.
[290] ONYAM ID, BENSON OV. LIBRARY AND INFORMATION PROFESSIONALS AS CATALYST IN COMBATING INFODEMIC IN THE FACE OF COVID-19 PANDEMIC.
[291] Foucault M. Ethics: subjectivity and truth: essential works of Michel Foucault 1954-1984. Penguin UK; 2019 Nov 14.
[292] Lockyer B, Islam S, Rahman A, Dickerson J, Pickett K, Sheldon T, Wright J, McEachan R, Sheard L, Bradford Institute for Health Research Covid‐19 Scientific Advisory Group. Understanding COVID‐19 misinformation and vaccine hesitancy in context: Findings from a qualitative study involving citizens in Bradford, UK. Health Expectations. 2021 Aug;24(4):1158-67.
[293] Soares P, Rocha JV, Moniz M, Gama A, Laires PA, Pedro AR, Dias S, Leite A, Nunes C. Factors associated with COVID-19 vaccine hesitancy. Vaccines. 2021 Mar 22;9(3):300.
[294] Gostin LO, Salmon DA, Larson HJ. Mandating COVID-19 vaccines. Jama. 2021 Feb 9;325(6):532-3.
[295] Sun X, Wandelt S, Zhang A. Vaccination passports: Challenges for a future of air transportation. Transport policy. 2021 Sep 1;110:394-401.
[296] Baum NM, Jacobson PD, Goold SD. “Listen to the people”: public deliberation about social distancing measures in a pandemic. The American Journal of Bioethics. 2009 Nov 4;9(11):4-14.
[297] Baum NM, Jacobson PD, Goold SD. “Listen to the people”: public deliberation about social distancing measures in a pandemic. The American Journal of Bioethics. 2009 Nov 4;9(11):4-14.
[298] Fine M. Silencing and nurturing voice in an improbable context: Urban adolescents in public school. InThinking about schools 2018 Apr 19 (pp. 337-355). Routledge.
[299] Lockyer B, Islam S, Rahman A, Dickerson J, Pickett K, Sheldon T, Wright J, McEachan R, Sheard L, Bradford Institute for Health Research Covid‐19 Scientific Advisory Group. Understanding COVID‐19 misinformation and vaccine hesitancy in context: Findings from a qualitative study involving citizens in Bradford, UK. Health Expectations. 2021 Aug;24(4):1158-67.
[300] Ames H, Glenton C, Lewin S. Purposive sampling in a qualitative evidence synthesis: A worked example from a synthesis on parental perceptions of vaccination communication. BMC medical research methodology. 2019 Dec;19(1):1-9.
[301] Denard PJ, Noyes MP, Walker JB, Shishani Y, Gobezie R, Romeo AA, Lederman E. Radiographic changes differ between two different short press-fit humeral stem designs in total shoulder arthroplasty. Journal of Shoulder and Elbow Surgery. 2018 Feb 1;27(2):217-23.
[302] Irzik G, Kurtulmus F. What is epistemic public trust in science?. The British Journal for the Philosophy of Science. 2019 Dec 1.
[303] Delgado R, Stefancic J. Critical race theory: An introduction. NyU press; 2023 Mar 14.
[304] Department of Health. Patients First and Foremost: The Initial Government Response to the Report of the Mid Staffordshire NHS Foundation Trust Public Inquiry. The Stationery Office; 2013 Mar 26.
[305] Aiello E, Flecha A, Serradell O. Exploring the barriers: A qualitative study about the experiences of mid-SES Roma navigating the Spanish healthcare system. International journal of environmental research and public health. 2018 Feb;15(2):377.
[306] Loomba S, de Figueiredo A, Piatek SJ, de Graaf K, Larson HJ. Measuring the impact of COVID-19 vaccine misinformation on vaccination intent in the UK and USA. Nature human behaviour. 2021 Mar;5(3):337-48.
[307] Murphy J, Vallières F, Bentall RP, Shevlin M, McBride O, Hartman TK, McKay R, Bennett K, Mason L, Gibson-Miller J, Levita L. Psychological characteristics associated with COVID-19 vaccine hesitancy and resistance in Ireland and the United Kingdom. Nature communications. 2021 Jan 4;12(1):29.
[308] Hornsey MJ, Finlayson M, Chatwood G, Begeny CT. Donald Trump and vaccination: The effect of political identity, conspiracist ideation and presidential tweets on vaccine hesitancy. Journal of Experimental Social Psychology. 2020 May 1;88:103947.