Investigating the Drug Potential of a Natural COX Inhibitor: ADME and In Silico Analysis

Main Article Content

Ashish Srivastava
Ashutosh Verma
Ankita Wal
Versha Chaturvedi
Pranay Wal
Parul Srivastava

Keywords

COX -1/COX-2, SWISS ADME, PROTOX II.

Abstract

An essential part of the inflammatory process was played by COX-2, a crucial enzyme that catalyzed the rate-limiting stages in the conversion of arachidonic acid to prostaglandins. As opposed to other family members, COX-2 was significantly inducible during the acute inflammatory response of human bodies to wounds or infections and scarcely detectable under normal physiological conditions. As a result, the therapeutic use of selective COX-2 inhibitors has long been recognized as a successful strategy for the treatment of inflammation with few adverse effects. NSAIDs, both older and more recent, are now the most often recommended drugs for the COX-2-targeted treatment of inflammatory disorders. Natural phenols, flavonoids, stilbenes, terpenoids, quinones, and alkaloids were the primary divisions of the natural COX-2 inhibitors based on structural characteristics. A few dietary COX-2 inhibitors of natural origins also showed chemo preventive benefits by focusing on COX-2-mediated carcinogenesis in addition to their anti-inflammatory effects. It was also explored how these natural treatments may be used in the future to prevent cancer. Overall, the analysis of the COX-2 inhibitors from natural sources that have been defined open the way for the future creation of stronger and more focused COX-2 inhibitors.

Abstract 77 | pdf Downloads 41

References

1. Chandel P, Rawal RK, Kaur R. Natural products and their derivatives as cyclooxygenase-2 inhibitors. Future Med Chem. 2018 Oct;10(20):2471-2492. doi: 10.4155/fmc-2018-0120. Epub 2018 Oct 16. PMID: 30325206.
2. Emanuela R, Garret AF. Prostaglandins and Inflammation. Arterioscler. Thromb. Vasc. Biol. 31(5), 986–1000 (2011).
3. Reddy MVR, Billa VK, Pallela VR et al. Design, synthesis, and biological evaluation of 1-(4-sulfamylphenyl)-3-trifluoromethyl-5-indolyl pyrazolines as cyclooxygenase-2 (COX-2) and lipoxygenase (LOX) inhibitors. Bioorg. Med. Chem. 16(7), 3907–3916 (2008)
4. Lin JK, Tsai SH, Lin-Shiau SY, Antiinflammatory and antit-mor effects of flavonoids and flavanoids [J]. Drug Fut, 2001, 26(2): 145-152.
5. Metodiewa D, Kochman A, Karolczak S. Evidence for anti-radical and antioxidant properties of four biologically active N, N-diethylaminoethyl ethers of flavanone oximes: a comparison with natural polyphenolic flavonoid (rutin) action [J]. BiochemMolBiolInt, 1997, 41(5): 1067-1075.
6. Havsteen BH. The biochemistry and medical significance of the flavonoids [J]. Pharm Ther, 2002, 96(1): 67-202.
7. Sheng Jia. Drug screening in vitro [M]. Beijing, Chemical Industry Press, 2006: 58-76
8. Jiang Q, Ames BN. γ-Tocopherol, but not α-to¬copherol, decreases proinflammatory eicosanoids and inflammation damage in rats. FASEB J 2003; 17(8):816–22.
9. Smith WL, DeWitt DL, Garavito RM. Cyclooxygenases: structural, cellular, and molecular biology. Annu Rev Biochem 2000; 69(1):145–82.
10. Vane JR, Bakhle YS, Botting RM. Cyclooxygenases 1 and 2. Annu Rev PharmacolToxicol 1998; 38(1):97–120.
11. Watson DJ, Harper SE, Zhao P-L, Quan H, Bolognese JA, Simon TJ. Gastrointestinal tolerability of the selective cyclooxygenase-2 (COX-2) inhibitor rofecoxib compared with nonselective COX-1 and COX-2 inhibitors in osteoarthritis. Arch Intern Med 2000; 160(19):2998–3003.
12. Smith CJ, Morrow JD, Roberts LJ, Marnett LJ. Differentiation of monocytoid THP-1 cells with phorbol ester induces expression of prostaglan¬din endoperoxide synthase-1 (COX-1). BiochemBiophys Res Commun 1993; 192(2):787–93.
13. Everts B, Währborg P, Hedner T. COX-2-specific inhibitors—the emergence of a new class of anal¬gesic and anti-inflammatory drugs. ClinRheumatol 2000; 19(5):331–43.
14. Hinz B, Brune K. Specific COX-2 inhibitors: pros¬pects of therapy with new analgesic and anti-in¬flammatory substances. Wien KlinWochenschr 1999; 111(3):103–12.
15. Mason RP, Walter MF, Day CA, Jacob RF. A Biological Rationale for the Cardiotoxic Effects of Rofecoxib. In: Harris RE, Bittman R, Dasgupta D, Engelhardt H, Flohe L, Herrmann H, et al. (eds.). Inflammation in the pathogenesis of chronic diseases: the COX-2 controversy, Springer, Netherlands, Dordrecht, The Netherlands, pp 175–90, 2007.
16. Mason RP, Walter MF, McNulty HP, Lockwood SF, Byun J, Day CA, et al. Rofecoxib increases suscep¬tibility of human LDL and membrane lipids to oxi¬dative damage: a mechanism of cardiotoxicity. J CardiovascPharmacol 2006; 47:S7–14
17. Pallavi, H.M.; Al-Ostoot, F.H.; Vivek, H.K. and Khanum, S.A. Design, Docking, synthesis, and characterization of novel N'(2-phenoxyacetyl) nicotinohydrazide and N'(2-phenoxyacetyl) isonicotinohydrazide derivatives as anti-inflammatory and analgesic agents. J. Mol. Str. 2021, 12047, 131404, https://doi.org/10.1016/j.molstruc.2021.131404.
18. Mukherjee, P.K.; Bahadur, S.; Harwansh, R.K.; Biswas, S. and Banerjee, S. Paradigm shift in natural product research: traditional medicine inspired approaches. Phytochem. Rev. 2017, 16, 803-826, https://doi.org/10.1007/s11101-016-9489-6.
19. Khanal, P.; Chawla, U.; Praveen, S.; Malik, Z.; Malik, S.; Yusuf, M.; Khan, S.A. and Sharma, M. Study of Naturally-derived Biomolecules as Therapeutics against SARS-CoV-2 Viral Spike Protein. J. Pharmaceut. Res. Int. 2021, 33, 211-220, https://doi.org/10.9734/jpri/2021/v33i28A31524.
20. Yusuf, M. Natural antimicrobial agents for food biopreservation. In Food Packaging and Preservation Academic Press: US 2018, 409-438, https://doi.org/10.1016/B978-0-12-811516-9.00012-9.
21. Ringbom, T.; Huss, U.; Stenholm, Å.; Flock, S.; Skattebøl, L.; Perera, P. and Bohlin, L. Cox-2 inhibitory effects of naturally occurring and modified fatty acids. J. Nat. Prod. 2001, 64, 745-749, https://doi.org/10.1021/np000620d.
22. Magpantay, H.D.; Malaluan, I.N.; Manzano, J.A.H.; Quimque, M.T.; Pueblos, K.R.; Moor, N.; Budde, S.; Bangcaya, P.S.; Lim-Valle, D.; Dahse, H.M. and Khan, A. Antibacterial and COX-2 Inhibitory Tetrahydrobisbenzylisoquinoline Alkaloids from the Philippine Medicinal Plant Phaeanthusophthalmicus. Plants 2021, 10, 462, https://doi.org/10.3390/plants10030462.
23. Yusuf, M.; Ahmad, A.; Shahid, M.; Khan, M.I.; Khan, S.A.; Manzoor, N. and Mohammad, F. Assessment of colorimetric, antibacterial and antifungal properties of woollen yarn dyed with the extract of the leaves of henna (Lawsoniainermis). J. Clean. Prod. 2012, 27, 42-50, https://doi.org/10.1016/j.jclepro.2012.01.005
24. Scalbert, A.; Manach, C.; Morand, C.; Rémésy, C. Dietary polyphenols and the prevention of diseases. Taylor Fr. 2005, 45, 287–306.[CrossRef]
25. Spencer, J.P.E.; Abd El Mohsen, M.M.; Minihane, A.M.; Mathers, J.C. Biomarkers of the intake of dietary polyphenols: Strengths, limitations and application in nutrition research. Br. J. Nutr. 2008, 99, 12–22. [CrossRef]
26. Beckman, C.H. Phenolic-storing cells: Keys to programmed cell death and periderm formation in wilt disease resistance and in general defence responses in plants? Physiol. Mol. Plant Pathol. 2000, 57, 101–110. [CrossRef]
27. Graf, B.A.; Milbury, P.E.; Blumberg, J.B. Flavonols, Flavones, Flavanones, and Human Health: Epidemiological Evidence. J. Med.Food2005, 8, 281–290. [CrossRef]
28. Arts, I.C.W.; Hollman, P.C.H. Polyphenols and disease risk in epidemiologic studies. Am. J. Clin. Nutr. 2005, 81, 317S–325S.[CrossRef] [PubMed]
29. Chakraborti AK, Garg SK, Kumar R, Motiwala HF, Jadhavar PS. Progress in COX-2 inhibitors: a journey so far. Curr Med Chem. 2010;17:1563–1593.
30. Llorens O, Perez JJ, Palomer A, Mauleon D. Structural basis of the dynamic mechanism of ligand binding to cyclooxygenase. Bioorg Med Chem Lett. 1999;9:2779–2784.
31. Friedman HL. Influence of isosteric replacements upon biological activity. NASNRS. 1951;206:295–358.
32. Lolli ML, Cena C, Medana C, Lazzarato L, Morini G, Coruzzi G, et al. A new class of ibuprofen derivatives with reduced gastrotoxicity. J Med Chem. 2001;44:3463–3468.
33. Prabhakar C, Reddy GB, Reddy CM, Nageshwar D, Devi AS, Babu JM, et al. Process research and structural studies on nabumetone. Org. Proc. Res. Dev. 1999;3:121–125
34. Sun, Y.; Xun, K.; Wang, Y.; Chen, X. A systematic review of the anticancer properties of berberine, a natural product from Chinese herbs. Anti-Cancer Drugs, 2009, 20(9), 757-769.
35. Ye, M.; Fu, S.; Pi, R.; He, F. Neuropharmacological and pharmacokinetic properties of berberine: a review of recent research. J. Pharm. Pharmacol., 2009, 61(7), 831-837.
36. Fukuda, K.; Hibiya, Y.; Mutoh, M.; Koshiji, M.; Akao, S.; Fujiwara, H. Inhibition by berberine of cyclooxygenase-2 transcriptional activity in human colon cancer cells. J. Ethnopharmacol., 1999, 66(2), 227-233.
37. Kuo, C.L.; Chi, C.W.; Liu, T.Y. The anti-inflammatory potential of berberinein vitro and in vivo. Cancer Lett., 2004, 203(2), 127-137.
38. Kuo, C.-L.; Chi, C.-W.; Liu, T.-Y. Modulation of apoptosis by berberine through inhibition of cyclooxygenase-2 and Mcl-1 expression in oral cancer cells. In Vivo, 2005, 19(1 ), 247-252.
39. Pandey, M.K.; Sung, B.; Kunnumakkara, A.B.; Sethi, G.; Chaturvedi, M.M.; Aggarwal, B.B. Berberine modifies cysteineq 179 I kappa B alpha kinase, suppresses nuclear factor-kappa Bregulatedantiapoptotic gene products, and potentiates apoptosis Cancer Res., 2008, 68(13), 5370-5379
40. G. B. Mahady and C. W. W. Beecher, “Quercetin-induced benzophenanthridine alkaloid production in suspension cell cultures of Sanguinariacanadensis,” Planta Medica, vol. 60, no. 6, pp. 553–557, 1994.
41. C. Vavreˇckov´a, I. Gawlik, and K. M¨uller, “Benzophenanthridine alkaloids of Chelidoniummajus; I. Inhibition of 5- and 12-lipoxygenase by a non-redox mechanism,” PlantaMedica, vol. 62, no. 5, pp. 397–401, 1996.
42. J. Lenfeld, M. Kroutil, and E. Marsalek, “Antiinflammatory activity of quaternary benzophenanthridine alkaloids from Chelidoniummajus,” Planta Medica, vol. 43, no. 2, pp. 161– 165, 1981.
43. T. K. Beuria, M. K. Santra, and D. Panda, “Sanguinarine blocks cytokinesis in bacteria by inhibiting FtsZ assembly a bundling,” Biochemistry, vol. 44, no. 50, pp. 16584–16593, 2005.
44. J. H. Jeng, H. L. Wu, B. R. Lin et al., “Antiplatelet effect of sanguinarine is correlated to calcium mobilization, thromboxane and cAMP production,” Atherosclerosis, vol. 191, no. 2, pp. 250–258, 2007.
45. H. Ahsan, S. Reagan-Shaw, J. Breur, and N. Ahmad, “Sanguinarine induces apoptosis of human pancreatic carcinoma AsPC-1 and BxPC-3 cells via modulations in Bcl-2 family proteins,” Cancer Letters, vol. 249, no. 2, pp. 198–208, 2007.
46. M. C. Chang, C. P. Chan, Y. J. Wang et al., “Induction of necrosis and apoptosis to KB cancer cells by sanguinarine is associated with reactive oxygen species production and mitochondrial membrane depolarization,” Toxicology and Applied Pharmacology, vol. 218, no. 2, pp. 143–151, 2007. Sanguinarine-induced apoptosis is associated with an early and severe cellular glutathione depletion,” Cancer Chemotherapy and Pharmacology, vol. 51, no. 6, pp. 474–482, 2003.
47. A. R. Hussain, N. A. Al-Jomah, A. K. Siraj et al., “Sanguinarine- dependent induction of apoptosis in primary effusion lymphoma cells,” Cancer Research, vol. 67, no. 8, pp. 3888–3897, 2007.
48. S. Kim, T. J. Lee, J. Leem, S. C. Kyeong, J. W. Park, and K. K. Taeg, “Sanguinarine-induced apoptosis: generation of ROS, down-regulation of Bcl-2, c-FLIP, and synergy with TRAIL,” Journal of Cellular Biochemistry, vol. 104, no. 3, pp. 895–907, 2008.
49. V. M. Adhami,M.H. Aziz, H.Mukhtar, andN. Ahmad, “Activation of prodeath Bcl-2 family proteins and mitochondrial apoptosis pathway by sanguinarine in immortalized human HaCaT keratinocytes,” Clinical Cancer Research, vol. 9, no. 8, pp. 3176–3182, 2003.
50. V. M. Adhami, M. H. Aziz, S. R. Reagan-Shaw, M. Nihal, H. Mukhtar, and N. Ahmad, “Sanguinarine causes cell cycle blockade and apoptosis of human prostate carcinoma cells via modulation of cylin kinase inhibitor-cyclin-cyclindependent kinase machinery,” Molecular Cancer Therapeutics, vol. 3, no. 8, pp. 933–940, 2004.
51. P. Weerasinghe, S. Hallock, S. C. Tang, B. Trump, and A. Liepins, “Sanguinarine overcomes P-glycoprotein-mediated multidrug-resistance via induction of apoptosis and oncosis in CEM-VLB 1000 cells,” Experimental and Toxicologic Pathology, vol. 58, no. 1, pp. 21–30, 2006.
52. I. De Stefano, G. Raspaglio, G. F. Zannoni et al., “Antiproliferative and antiangiogenic effects of the benzophenanthridine alkaloid sanguinarine in melanoma,” Biochemical Pharmacology, vol. 78, no. 11, pp. 1374–1381, 2009.
53. Y. H. Choi, W. Y. Choi, S. H. Hong et al., “Anti-invasive activity of sanguinarine through modulation of tight junctions and matrix metalloproteinase activities in MDAMB- 231 human breast carcinoma cells,” Chemico-Biological Interactions, vol. 179, no. 2-3, pp. 185–191, 2009.
54. J. Huh, A. Liepins, J. Zielonka, C. Andrekopoulos, B. Kalyanaraman, and A. Sorokin, “Cyclooxygenase 2 rescues LNCaP prostate cancer cells fromsanguinarine-induced apoptosis by a mechanism involving inhibition of nitric oxide synthase activity,” Cancer Research, vol. 66, no. 7, pp. 3726–3736, 2006.
55. H. Ahsan, S. Reagan-Shaw, D. M. Eggert et al., “Protective effect of sanguinarine on ultraviolet B-mediated damages in SKH-1 hairless mouse skin: implications for prevention of skin cancer,” Photochemistry and Photobiology, vol. 83, no. 4, pp. 986–993, 2007.
56. Q. Lu, S. Lu, X.H. Gao, Y.B. Luo, B. Tong, Z.F. Wei, T. Lu, Y.F. Xia, G.X. Chou, Z.T. Wang, Y. Dai, Norisoboldine, an alkaloid compound isolated from Radix Linderae, inhibits synovial angiogenesis in adjuvant-induced arthritis rats by moderating Notch1 pathway-related endothelial tip cell phenotype, Exp. Biol. Med. 237 (2012) 919e932
57. Y. Luo, M. Liu, Y. Xia, Y. Dai, G. Chou, Z. Wang, Therapeutic effect of norisoboldine, an alkaloid isolated from Radix Linderae, on collagen-induced arthritis in mice, Phytomedicine 17 (2010) 726e731.
58. M. Ozawa, S. Kawamata, T. Etoh, M. Hayashi, K. Komiyama, A. Kishida, C. Kuroda, A. Ohsaki, Structures of new Erythrinan alkaloids and nitric oxide production inhibitors from Erythrina crista-galli, Chem. Pharm. Bull. 58 (2010) 1119e1122.
59. Niu, X.; Zhang, H.; Li, W.; Mu, Q.; Yao, H.; Wang, Y. Antiinflammatory effects of cavidinein vitro and in vivo, a selective COX-2 inhibitor in LPS-induced peritoneal macrophages of mouse. Inflammation, 2015, 38(2), 923-933.
60. Gauri M, Javed Ali S, Shahid Khan M. A review of Apiumgraveolens (Karafs) with special reference to Unani medicine. Int Arch Integr Med. 2015;2:131-136
61. Kolarovic J, Popovic M, Mikov M, Mitic R, Gvozdenovic L. Protective effects of celery juice in treatments with doxorubicin. Molecules. 2009;14:1627-1638.
62. Bhattacharjee SK. Handbook of Medicinal Plants. 4th ed. Jaipur, India: Pointer; 2004.
63. Khare CP. Indian Medicinal Plants. London, England: Springer Science; 2008.
64. Kooti W, Ali-Akbari S, Asadi-Samani M, Ghadery H, Ashtary- Larky D. A review on medicinal plant of Apiumgraveolens. Adv Herb Med. 2014;1:48-59.
65. Grzanna R, Lindmark L, Frondoza C. Ginger—an herbal medicinal product with broad anti-inflammatory actions. J Med Food. 2005;8:125-132.
66. ZareMarzouni H, Daraei N, Sharafi-Ahvazi N, Kalani N, Kooti W. The effects of aqueous extract of celery leaves (Apiumgraveolens) on fertility in female rats. World J Pharm Pharm Sci. 2016; 5:1710-1714.
67. Kooti W, Mansori E, Ghasemiboroon M, Harizi M, Amirzarga A. Protective effects of celery (Apiumgraveolens) on testis and cauda epididymal spermatozoa in rat. Iranian J Reprod Med. 2014;12:365-366.
68. Lans CA. Ethnomedicines used in Trinidad and Tobago for urinary problems and diabetes mellitus. J EthnobiolEthnomed. 2006;2:45.
69. Mencherini T, Cau A, Bianco G, Della Loggia R, Aquino RP, Autore G. An extract of Apiumgraveolens var. dulce leaves: structure of the major constituent, apiin, and its anti-inflammatory properties. J Pharm Pharmacol. 2007;59:891-897.
70. Kritikar KR, Basu BD. Indian Medicinal Plants. 2nd ed. Vols and 2. Dehradun, India: International Book Distributors; 2008.
71. Li S, Li L, Yan H, Jiang X, Hu W, Han N, Wang D. Anti gouty arthritis and anti hyperuricemia properties of celery seed extracts in rodent models. Mol Med Rep. 2019 Nov;20(5):4623-4633. doi: 10.3892/mmr.2019.10708. Epub 2019 Sep 26. PMID: 31702020; PMCID: PMC6797962.
72. Govindarajan, V. S., Sathyanarayana, M. N. (1991) Capsicum—production, technology, chemistry, and quality. Part V. Impact on physiology, pharmacology, nutrition, and metabolism; structure, pungency, pain, and desensitization sequences. Crit. Rev. Food Sci. Nutr. 29: 435–47
73. Szallasi, A., Blumberg, P. M. (1999) Vanilloid (capsaicin) receptors and mechanisms. Pharmacol. Rev. 51: 159–212
74. Linguanotto, N. (2004) Dicionáriogastronômico: pimentas com suasreceitas. Gaia, Brazil, p. 164
75. Caterina, M. J., Leffler, A., Malmberg, A. B., Martin, W. J., Trafton, J., Petersen-Zeitz, K. R., Koltzenburg, M., Basbaum, A. I., Julius, D. (2000) Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288: 306–313
76. AacuteRbara L. F. B., Michele C. M., Guilherme B. L. d, F. Ginkgo bilobaL.: phytochemical components and antioxidant activity. African Journal of Pharmacy and Pharmacology . 2015;9doi: 10.5897/ajpp2015.4373. [CrossRef] [Google Scholar]
77. Hasler A., Gross G.-A., Meier B., Sticher O. Complex flavonol glycosides from the leaves of Ginkgo biloba. Phytochemistry . 1992;31(4):1391–1394. doi: 10.1016/0031-9422(92)80298-s. [PubMed] [CrossRef] [Google Scholar]
78. Nakhate KT et al. Plumbagin ameliorates memory dysfunction in streptozotocin induced Alzheimer’s disease via activation of Nrf2/ARE pathway and inhibition of b-secretase. Biomed Pharmacother 2018; 101: 379–390.
79. Wang S et al. Plumbagin inhibits amyloid-b-induced neurotoxicity: regulation of oxidative stress and nuclear factor erythroid 2-related factor 2 activation. NeuroReport 2018; 29: 1269–1274.
80. Zhang Q et al. Plumbagin attenuated oxygen-glucose deprivation/reoxygenation- induced injury in human SH-SY5Y cells by inhibiting NOX4-derived ROS-activated NLRP3 inflammasome. BiosciBiotechnolBiochem 2020; 84: 134–142.
81. Liu XQ et al. Sodium tanshinone IIA sulfonate protects against Ab1-42-induced cellular toxicity by modulating Ab-degrading enzymes in HT22 cells. Int J BiolMacromol 2020; 151: 47– 55. pii: S0141-8130(19)39759-4.
82. Maione F et al. Down regulation of pro-inflammatory pathways by tanshinone IIA and cryptotanshinone in a non-genetic mouse model of Alzheimer’s disease. Pharmacol Res 2018; 129: 482–490.
83. Cai L et al. The protective effect of tanshinoneiia on oxygen-glucose deprivation and reperfusion injury of microgliathrough the NLRP3 inflammatory signaling pathway. SichuanDaXueXueBao Yi Xue Ban 2016; 47: 660–664.
84. Jeong, E.; Lee, H.-R.; Pyee, J.; Park, H. Pinosylvin Induces Cell Survival, Migration and Anti-Adhesiveness of Endothelial Cells via Nitric Oxide Production: Pinosylvin is a vasoregulating compound. Phytother. Res. 2013, 27, 610–617. [CrossRef]
85. Riviere, C.; Pawlus, A.D.; Merillon, J.-M. Natural Stilbenoids: Distribution in the Plant Kingdom and Chemotaxonomic Interest in Vitaceae. Nat. Prod. Rep. 2012, 29, 1317–1333. [CrossRef] [PubMed]
86. Castelli, G.; Bruno, F.; Vitale, F.; Roberti, M.; Colomba, C.; Giacomini, E.; Guidotti, L.; Cascio, A.; Tolomeo, M. In Vitro Antileishmanial Activity of Trans-Stilbene and Terphenyl Compounds. Exp. Parasitol. 2016, 166, 1–9. [CrossRef] [PubMed]
87. Akinwumi, B.C.; Bordun, K.-A.M.; Anderson, H.D. Biological Activities of Stilbenoids. Int. J. Mol. Sci. 2018, 19, 792. [CrossRef][PubMed]
88. Park, E.-J.; Park, H.J.; Chung, H.-J.; Shin, Y.; Min, H.-Y.; Hong, J.-Y.; Kang, Y.-J.; Ahn, Y.-H.; Pyee, J.-H.; Kook Lee, S. Antimetastatic Activity of Pinosylvin, a Natural Stilbenoid, Is Associated with the Suppression of Matrix Metalloproteinases. J. Nutr. Biochem. 2012, 23, 946–952. [CrossRef]
89. Plumed-Ferrer, C.; Väkeväinen, K.; Komulainen, H.; Rautiainen, M.; Smeds, A.; Raitanen, J.-E.; Eklund, P.;Willför, S.; Alakomi, H.-L.; Saarela, M. The Antimicrobial Effects of Wood-Associated Polyphenols on Food Pathogens and Spoilage Organisms. Int. J. Food Microbiol. 2013, 164, 99–107. [CrossRef]
90. Silva, F.; Domingues, F.C.; Nerín, C. Control Microbial Growth on Fresh Chicken Meat Using Pinosylvin Inclusion Complexes Based Packaging Absorbent Pads. LWT 2018, 89, 148–154. [CrossRef]
91. Bakrim, S.; Machate, H.;6 Benali, T.; Sahib, N.; Jaouadi, I.; Omari, N.E.; Aboulaghras, S.; Bangar, S.P.; Lorenzo, J.M.; Zengin, G.; et al. Natural Sources and Pharmacological Properties of Pinosylvin. Plants 2022, 11, 1541. https://doi.org/10.3390/plants1112154.