ISOLATION OF GLOMUS ETUNICATUM (CLAROIDEOGLOMUS ETUNICATUM) SPECIES ASSOCIATED WITH ROOTS OF (DICHANTHIUM ARISTATUM, BENTH) IN SALINE SOILS

Main Article Content

Alexander Pérez Cordero
Donicer E. Montes Vergara
Yelitza Aguas Mendoza

Keywords

soil, salinity, mycorrhizae, pasture.

Abstract

The aim of this study was to isolate spores of arbuscular mycorrhizae-forming fungi from saline soils of cattle farms cultivated with Angletón grass in the municipality of Santiago de Tolú, department of Sucre, Colombia. Sampling, isolation, counting and identification of morphospecies were carried out on 35 cattle farms. A total of 120 morphospecies were isolated, of which the most predominant species corresponded to The morphospecies Glomus etunicatum Becker & Gerdermann, 1977, was reclassified as Claroideoglomus etunicatum. Therefore, these studies indicated that AMF (particularly C. etunicatum) has significant potential for improving the efficiency of the plant-microbe remediation of HM-contaminated soils.

Abstract 50 | pdf Downloads 32

References

1. Abdel Latef, A.A.H., Abu Alhmad, M.F., Kordrostami, M., Abo-Baker, A.-B.A.-E., Zakir, A., 2020. Inoculation with azospirillum lipoferum or Azotobacter chroococcum reinforces maize growth by improving physiological activities under saline conditions. J. Plant Growth Regul. 39, 1293–1306.
2. Al-Karaki, G. N. 2000. ‘‘Growth of mycorrhizal tomato and mineral acquisition under salt stress’’. Mycorrhiza, 10(2): 51-54, ISSN 0940-6360, 1432-1890, DOI 10.1007/s005720000055.
3. Al-Karaki, G. N. y Clark, R. B. 1998 ‘‘Growth, mineral acquisition, and water use by mycorrhizal wheat grown under water stress’’. Journal of Plant Nutrition, 21(2):263-276, ISSN 0190-4167, DOI 10.1080/01904169809365401.
4. Al-Karaki, G. N.; Hammad, R. y Rusan, M. 2001. ‘‘Response of two tomato cultivars differing in salt tolerance to inoculation with mycorrhizal fungi under salt stress’’. Mycorrhiza, 11(1): 43-47, ISSN 0940-6360, 1432-1890, DOI 10.1007/s005720100098.
5. Aliasgharzadeh, N.; Rastin, S. N.; Towfighi, H. y Alizadeh, A. 2014. ‘‘Occurrence of arbuscular mycorrhizal fungi in saline soils of the Tabriz Plain of Iran in relation to some physical and chemical properties of soil’’. Mycorrhiza, vol. 11(3):119-122, ISSN 0940-6360, 1432-1890, DOI 10.1007/s005720100113.
6. Azcón, A. C. y Barea, J. M. 1997. ‘‘Applying mycorrhiza biotechnology to horticulture: significance and potentials’’. Scientia Horticulturae, 68(1–4, 3. 1-24), ISSN 0304-4238, DOI 10.1016/S0304-4238(96)00954-5.
7. Azarbad, H., Niklinska, M., Laskowski, R., van Straalen, N.M., van Gestel, C.A.M., Zhou, J., He, Z., Wen, C., Roeling, W.F.M., 2015. Microbial community composition and functions are resilient to metal pollution along two forest soil gradients. FEMS Microbiol. Ecol. 91, 1.
8. Azadi, N., Raiesi, F., 2021. Sugarcane bagasse biochar modulates metal and salinity stresses on microbial functions and enzyme activities in saline co-contaminated soils. Appl. Soil Ecol. 167, 104043.
9. Barea, J. et al. 1999. Importancia de las micorrizas en el establecimiento y protección de las plantas en suelos degradados, medio ambiente, transferencias de tecnologías. Phytoma. España. 111: 56.
10. Baihui Hao, Zhechao Zhang, Zhihua Bao, Lijun Hao, Fengwei Diao, Frank Yonghong Li, Wei Guo. 2022. Claroideoglomus etunicatum affects the structural and functional genes of the rhizosphere microbial community to help maize resist cd and la stresses. Environmental Pollution. 307:119559.
https://www.sciencedirect.com/science/article/abs/pii/S0269749122007734
11. Giri, B. y Mukerji, K. G. 2003. ‘‘Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake’’. Mycorrhiza, 14(5): 307-312, ISSN 0940-6360, 1432-1890, DOI 10.1007/s00572-003-0274-1.
12. Hidri, R., Metoui-Ben Mahmoud, O., Debez, A., Abdelly, C., Barea, J.M., Azcon, R., 2019. Modulation of C:N:P stoichiometry is involved in the effectiveness of a PGPR and AM fungus in increasing salt stress tolerance of sulla carnosa tunisian provenances. Appl. Soil Ecol. 143, 161–172.
13. International Culture Collection of Arbuscular & Vesicular- Arbuscular Mycorrhizal Fungi. (INVAM, by Morton J B., Curator, Good for Basic Research), 2019. URL disponible en: http://infotree.library.ohiou.edu/scripts/ redirect.html?id=1661.
14. Ma, Y., Rajkumar, M., Oliveira, R.S., Zhang, C., Freitas, H., 2019b. Potential of plant beneficial bacteria and arbuscular mycorrhizal fungi in phytoremediation of metalcontaminated saline soils. J. Hazard. Mater. 379, 120813.
15. Pérez CA, Vertel MM. 2010. Evaluación de la colonización de micorrizas arbusculares en pasto Bothriochloa pertusa (L) A. Camus. Rev MVZ Córdoba; 15(3):2165-2174.
16. Pérez C, Alexander; Peroza C, Víctor. 2013. Micorrizas arbusculares asociadas al pasto angletón (Dichathium aristatum Benth) en fincas ganaderas del municipio de Tolú, Sucre-Colombia Revista MVZ Córdoba, 18(1):3362-3369. https://www.redalyc.org/pdf/693/69325829016.pdf.
17. Peroza CV, Pérez CA. Efecto de parámetros físicos, químico y salinidad sobre la densidad poblacional y la colonización de micorrizas arbusculares en pasto Angleton en el municipio de Tolú, Sucre, Colombia. Rev Colombiana Cienc Anim 2010; 2(2):310-324.
18. Porras, S. A.; Soriano, M. M. L.; Porras, P. A. y Azcón, R. 2009. ‘‘Arbuscular mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive trees under nursery conditions’’. Journal of Plant Physiology, 166(13): 1350-1359, ISSN 0176-1617, DOI 10.1016/j.jplph.2009.02.010.
19. Riaz, M., Kamran, M., Fang, Y., Wang, Q., Cao, H., Yang, G., Deng, L., Wang, Y., Zhou, Y., Anastopoulos, I., Wang, X., 2021. Arbuscular mycorrhizal fungi-induced mitigation of heavy metal phytotoxicity in metal contaminated soils: a critical review. J. Hazard. Mater. 402, 123919.
20. Rosendahl, C. N. y Rosendahl, S. 1991. ‘‘Influence of vesicular-arbuscular mycorrhizal fungi (Glomus SPP.) on the response of cucumber (Cucumis sativus L.) to salt stress’’. Environmental and Experimental Botany, 31(3): 313-318, ISSN 0098-8472, DOI 10.1016/0098-8472(91)90055-S.
21. Xu, Y., Ge, Y., Lou, Y., Meng, J., Shi, L., Xia, F., 2021. Assembly strategies of the wheat root-associated microbiome in soils contaminated with phenanthrene and copper. J. Hazard. Mater. 412, 125340.
22. Zhang, F., Liu, M., Li, Y., Che, Y., Xiao, Y., 2018. Effects of arbuscular mycorrhizal fungi, biochar and cadmium on the yield and element uptake of Medicago sativa. Sci. Total Environ. 655, 1150–1158.

Most read articles by the same author(s)