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Abstract:  

This paper provides an overview of deep learning algorithms and discusses its potential future 

advancements. DeepMSA represents a transformative approach to constructing multiple sequence 

alignments (MSAs) by integrating deep learning techniques with iterative database searches. 

Leveraging extensive genomic and metagenomic datasets, DeepMSA refines traditional MSA 

methodologies, significantly enhancing alignment quality for remote homology and complex 

protein structures. The framework utilizes pre-trained sequence embeddings and neural 

network-based optimization to improve contact prediction, secondary structure inference, and fold 

recognition. Comparative benchmarks, such as CASP competitions, demonstrate DeepMSA's 

superiority over traditional methods like PSI-BLAST and Hblits, with improved SP scores and 

better tertiary structure modeling. The introduction of DeepMSA2 further advances this 

methodology by incorporating diverse databases (e.g., Uniclust30, MGnify) and hybrid MSAs 

for multimer proteins, achieving state-of-the-art performance in predicting both monomeric and 

complex structures. These results highlight DeepMSA's pivotal role in bridging MSA 

construction and downstream applications in computational biology, offering a robust platform for 

protein structure prediction, evolutionary studies, and functional annotation. 
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1. Introduction 

In 1952, Arthur Samuel from IBM created a program designed to learn and improve at playing 

checkers. The program achieved this by analysing moves and developing new strategies to enhance 

its gameplay. Later, in1959, the term "machine learning" was introduced, defining a field that 

enables machines to acquire specific skills without explicit programming. Over the years, various 

machine learning models have emerged, including deep learning. Initially, deep learning received 

little attention due to its complex architecture and the significant computational resources 

required for its implementation. These challenges made it impractical during its early 

development[1]. This paper provides an overview of key deep learning models and concludes with 
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an analysis of the field's future development and potential advancements. Deep learning is a subfield 

of machine learning that focuses on leveraging multiple processing layers to extract high-level 

abstractions from data. It employs complex architectures or nonlinear transformations to 

characterize and analyse data effectively. The core of deep learning lies in the structure of these 

neural networks, which utilize the output of one layer as the input for the next. This hierarchical 

structure allows deep learning models to learn intricate and abstract features from data. Similar to 

other machine learning approaches, deep learning can be categorized into supervised learning, semi-

supervised learning, and unsupervised learning. Currently, widely recognized frameworks in 

deep learning include. Convolutional Neural Networks (CNNs), Restricted Boltzmann Machines 

(RBMs), Deep Belief Networks (DBNs), and Generative Adversarial Networks(GANs). These 

algorithms, which will be discussed briefly in the next section, represent some of the most 

significant advancements in deep learning methodologies. Fig.1. illustrates a single-layer neural 

network,where inputs (x1, x2, x3x_1, x_2, x_3x1, x2, x3) are connected to one layer of hidden 

neurons via weighted connections. The network processes these inputs to generate outputs 

through a forward pass. 

 

 
Figure 1: Single Layer NN 

 

Deep learning has demonstrated superior performance compared to traditional neural networks in 

various tasks. For example, once a deep neural network is trained and optimized for tasks like image 

classification, it becomes highly efficient, significantly reducing computational effort while 

completing tasks in a short amount of time. Another advantage of deep learning is its 

adaptability[2].  

 

Unlike traditional algorithms, where modifying a model often requires extensive changes to the 

code, deep learning models allow for adjustments by simply fine-tuning parameters. This flexibility 

makes deep learning frameworks highly versatile and capable of continuous improvement, 

eventually achieving near-optimal performance. Additionally, deep learning is problem-agnostic, 

meaning it can be tailored to address a wide range of challenges instead of being restricted to 

specific tasks. However, deep learning has its drawbacks. One major limitation is its high training 

cost. While advancements in hardware have made training simple neural networks feasible on 

common computing systems, more complex neural networks still require expensive, high- 

performance hardware. Although the cost of such hardware has decreased over time, it 

remains a significant factor in the overall expense of training deep learning models. Furthermore, 

deep learning requires large volumes of data for effective training, and obtaining sufficient, 

high-quality datasets can often be challenging [3].  

 

Another limitation is that deep learning  generally cannot directly acquire knowledge. While some 

advanced models, like AlphaGo Zero, can learn without prior knowledge, most deep learning 

frameworks still rely heavily on manually labelled data for training. Preparing and labelling large-

scale datasets is time- consuming and labour-intensive, further increasing training costs. Finally, 

deep learning lacks comprehensive theoretical foundations[4].  

 

Although it has achieved impressive results in various applications, there is still no rigorous 

theoretical framework to fully explain how these models work, which hinders further development 

and refinement in the field. Main Deep Learning Algorithm Introduction  
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Convolutional Neural Network (CNN). 

Convolutional Neural Networks (CNNs), as illustrated in Fig.2. are a type of feedforward neural 

network designed for tasks like large- scale image processing. The key feature of CNNs is their 

convolution operation, where neurons process local regions of data using convolution kernels, 

enabling them to perform exceptionally well in image and speech recognition tasks. A typical CNN 

comprises one or more convolutional layers, a fully connected layer, and often a pooling layer for 

dimensionality reduction and feature integration. Compared to other deep neural networks, CNNs 

require fewer parameters, making them one of the most widely used models in deep learning. Below 

is an overview of the key components of CNNs. The basic structure of the convolutional neural 

network is briefly introduced below. 

 

 
Figure 2: LNET 

 

1.2 Convolutional Layer 

The convolutional layer is the core building block of CNNs, where data is processed using multiple 

convolutional kernels to produce feature maps. These feature maps capture different patterns or 

features from the input data. The convolution operation offers several advantages: Weight Sharing: 

The shared weights across the same feature map significantly reduce the number of parameters, 

making the model more efficient. Local Connectivity: This allows CNNs to focus on the spatial 

relationships between adjacent pixels, which is crucial for image processing tasks. Position 

Invariance: CNNs can identify objects in images regardless of their position, enhancing their 

robustness in object recognition. Thanks to these benefits, convolutional layers can sometimes 

replace fully connected layers in certain models to streamline the training process and improve 

computational efficiency. These features make CNNs a powerful and popular choice for deep 

learning applications. 

 

1.3 Pooling Layer 

Once features are extracted through convolution, these features need to be processed for 

classification. However, the large volume of data generated by convolution can lead to overfitting. 

To address this, pooling operations are used to aggregate features across different spatial locations. 

Pooling reduces the dimensionality of the data, retaining only the most essential features, thereby 

improving generalization and reducing computational complexity. In convolutional neural 

networks, the pooling layer performs feature filtering after convolution, enhancing the network's 

ability to handle classification tasks efficiently. 

 

1.4 Fully Connected Layer 

Following the pooling layer, the fully connected layer transforms the feature maps into a one-

dimensional vector. This operation is similar to that of traditional neural networks, where the fully 

connected layer contains a majority of the parameters— approximately 90% in many convolutional 

neural networks. These parameters help map the extracted features into a fixed- length vector, which 

can then be assigned to specific image classes or used as a feature vector for further processing. 

This layer effectively consolidates the learned features into a representation suitable for final 

classification or other downstream tasks.[5] 
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Deep Belief Network (DBN) 

Deep Belief Networks (DBNs) are generative probabilistic models designed to capture joint 

distributions between input data and labels. Unlike traditional discriminative models, which 

evaluate only P(Label|Observation)P(\text{Label} | 

\text{Observation}), generative models like DBNs also evaluate  

P(Observation|Label)P(\text{Observation} | 

\text{Label}), enabling a richer understanding of the data. 

DBNs are composed of multiple layers of Restricted Boltzmann Machines (RBMs), which are a type 

of neural network. In DBNs, each RBM contains a visible layer and a hidden layer, with 

connections only between layers but not within a single layer. The hidden layer captures higher-

order correlations in the data represented in the visible layer. These hierarchical representations 

make DBNs effective for tasks such as feature extraction, dimensionality reduction, and 

classification. 

 

Restricted Boltzmann Machine (RBM) Restricted Boltzmann Machines (RBMs) are generative 

neural networks that learn the probability distribution of input data. Unlike general Boltzmann 

Machines, RBMs are structured as bipartite graphs, with visible units representing input features 

and hidden units representing learned features. There are no intra-layer connections, which 

distinguishes RBMs from unrestricted Boltzmann Machines and allows for more efficient training 

algorithms, such as contrastive divergence. RBMs have been applied successfully to a range of 

tasks, including collaborative filtering, dimensionality reduction, image and information retrieval, 

automatic speech recognition, natural language processing, and time-series modelling. They can be 

used in supervised or unsupervised learning settings depending on the task. Additionally, RBMs 

play a foundational role in building more complex models, such as Deep Belief Networks. 

 

AlphaFold Protein Structure Prediction: 

Proteins' 3D structures determine their functions. Accurate structure prediction is essential for 

insights into biological mechanisms, drug discovery, and understanding diseases.  

Deep Learning and AlphaFold: AlphaFold employs a deep learning architecture that uses attention 

mechanisms and large-scale protein databases to predict the 3D structures of proteins from amino 

acid sequences. It leverages advances in Transformer-based architectures similar to those used in 

NLP tasks. 

 

Literature Survey: 

DeepMSA introduced neural network refinement and deep sequence embeddings to augment 

traditional MSA methods. It improved alignment depth and quality, particularly for distant 

homologs and complex protein folds, as demonstrated in CASP (Critical Assessment of Structure 

Prediction) benchmarks. (W. Zheng, Q. Wuyun, and Y. Zhang, “DeepMSA2: A hierarchical 

approach for protein multiple sequence alignment,” Nature Methods, vol. 21, no. 2, pp. 279–289, 

Feb. 2024.) 

 

DeepMSA2 

The second iteration, DeepMSA2, incorporates hybrid MSA pipelines for both monomeric and 

multimeric proteins, leveraging extensive databases like MGnify, Uniclust30, and BFD. Using deep 

learning-driven scoring strategies, DeepMSA2 achieves state-of-the-art results in structure and 

function predictions of proteins, with benchmarks demonstrating significant accuracy gains in 

tertiary and quaternary modeling tasks YANG ZHANG LAB(Y. Zhang and W. Zheng, “DMFold: 

Protein complex structure prediction with DeepMSA2,” Protein Structure Conference, 2023) 

 

DMFold: Combines DeepMSA2 with modified AlphaFold2 modules for protein complex 

predictions, excelling in CASP15 competitions. It integrates functional annotations, such as ligand 

binding sites and Gene Ontology terms, demonstrating superior accuracy compared to traditional 
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and contemporary models. YANG ZHANG LAB(IEEE Xplore, “Enhancing Protein Structure 

Generation Through Deep Learning Techniques,” IEEE Conference Publications, 2024) 

 

2.0 Key Techniques Used: 

Multiple Sequence Alignments (MSA): AlphaFold uses MSAs to identify evolutionary 

relationships and conservation of protein sequences, which are critical for accurate predictions. 

Spatial Graph Neural Networks: These map relationships between amino acid residues, capturing 

the spatial arrangement of protein structures. 

 

2.1 End-to-End Optimization: 

AlphaFold optimizes for the final protein structure rather than intermediate steps, improving 

prediction accuracy. 

Achievements: AlphaFold achieved unparalleled performance in the CASP (Critical Assessment of 

Structure Prediction) competitions, with near- experimental accuracy in its predictions. It 

successfully predicted the structure of nearly every human protein, as published in Nature in 

2021[6]. 

 

Multiple Sequence Alignments (MSA) in Deep Learning 

Multiple Sequence Alignment (MSA) is a critical tool in bioinformatics used to align sequences of 

proteins, DNA, or RNA to identify similarities, evolutionary relationships, and conserved motifs. In 

the context of deep learning, MSAs have become instrumental for applications like protein structure 

prediction and understanding biological sequences 

 

Methodology 

Protein Structure Prediction: 

AlphaFold: Uses MSA to build evolutionary profiles of proteins. The conservation information 

derived from MSAs enhances structure prediction accuracy. RoseTTAFold: Another model that 

integrates MSA to predict protein structure using a 3D attention mechanism. 

 

Function Prediction: 

Identifying functional sites, post-translational modification sites, and active binding sites using 

MSA- derived features combined with neural networks. 

 

3.0 Variant Effect Prediction: 

Deep learning models use MSAs to predict the functional impact of genetic variants based on the 

conservation and co-evolution of residues[7]. Research Directions and Advances MSA-Free 

Approaches: Recent research explores "MSA-free" models to predict protein properties directly 

from single sequences (e.g., Protein Transformer). 

These methods aim to bypass the computational overhead of MSA construction while leveraging 

deep learning to infer conservation information. 

 

3.2 Efficient MSA Construction: 

Efforts to develop faster algorithms for MSA construction (e.g., DeepMSA, MAFFT) to reduce 

bottlenecks in processing large-scale biological data. Hybrid Models: Combining MSA-derived 

features with single-sequence embeddings to improve prediction accuracy while managing 

computational efficiency. Leveraging unsupervised models like VAEs and generative models to 

analyze MSAs and extract evolutionary patterns. 

 

4.0 Tools and Frameworks 

DeepMSA: Uses deep learning to enhance traditional MSA algorithms. ESM (Evolutionary Scale 

Modeling): A Transformer- based model by Meta AI that processes MSAs and single sequences for 

structural and functional predictions. AlphaFold: The most prominent application integrating MSAs 
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to achieve state-of-the-art protein structure prediction. DeepMSA Project: Enhancing Multiple 

Sequence Alignments with Deep Learning Overview 

 

 
Fig. 3 Comparison Metric  

 

DeepMSA is a computational framework designed to improve traditional Multiple Sequence 

Alignment (MSA) techniques by leveraging deep learning. Its goal is to optimize the alignment 

process by providing more accurate sequence matches, especially in cases with sparse data or remote 

homology relationships. 

 

4.1 Hybrid Approach: 

Combines traditional MSA methods (e.g., HMMER, PSI- BLAST) with deep learning-based 

refinement. Uses neural networks to learn patterns of alignment and conservation from pre-existing 

MSAs.[8] Deep Learning Integration: Incorporates sequence embeddings derived from models like 

ESM (Evolutionary Scale Modeling) or ProtBERT to capture evolutionary and contextual 

relationships. Refines alignment by learning to minimize alignment errors common in traditional 

methods. Improved Homology Detection: Capable of detecting remote homologs that are often 

missed by conventional alignment algorithms.[9]. Output Refinement: Produces higher-quality 

alignments that can be used as input for downstream tasks like protein structure prediction, 

evolutionary analysis, and functional annotation. 

 

5.0 Dataset Used: 

Benchmark: BAliBASE 3.0 

Input Sequences: Protein families with varying degrees of sequence identity. Categories include 

sequences with remote homology, conserved regions, and variable- length gaps. 
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5.1 Experimental Setup: 

Tools Compared: DeepMSA, Traditional methods: Clustal Omega, MAFFT, and MUSCLE. 

 

Evaluation Metrics: 

SP Score (Sum-of-Pairs Score): Measures pairwise alignment accuracy. 

TC Score (Total Column Score): Measures the fraction of correctly aligned columns. 

 

DeepMSA Configuration: 

Used pre-trained models for embeddings. 

Neural network refinement applied to the initial alignment generated by HMMER. 

 

 
 

6.0 Key Observations: 

DeepMSA outperformed traditional methods in both SP and TC scores, particularly for sequences 

with low homology. Execution time was higher due to the added deep learning refinement stage but 

manageable on modern computational setups. For remote homologous sequences, DeepMSA 

improved accuracy by 10% over Clustal Omega and 5% over MAFFT. 

 

Conclusion 

In conclusion, deep learning has already proven its value in a wide range of applications, and its 

future prospects are incredibly promising. From image recognition to speech processing, deep 

learning technologies are reshaping industries and enabling innovations that were once thought 

impossible. As neural networks become more sophisticated and research in the field deepens, we 

can expect even more  SP and TC Scores: DeepMSA performs better than conventional methods 

such as MAFFT and Clustal Omega, particularly when it comes to remote homology discovery. SP 

Score: About 10% better than Clustal Omega. TC Score: Relentless excellence in the correctness of 

column-wise alignment. 
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Predicting the Structure of Proteins: 

Alignments produced by DeepMSA and utilized with AlphaFold produce: RMSD improvement 

over Clustal Omega alignments: around 0.7 Å. GDT-TS scores for difficult targets are 3-5% higher. 

Efficiency of Computation: Although they are quicker, conventional techniques like Clustal Omega 

and MUSCLE fall short of DeepMSA in terms of accuracy and remote homology discovery. 

DeepMSA's refining of neural networks results in increased processing expenses. 

 

Application Range: 

Conventional Methods: Restricted to simple structural insights and alignment tasks. 

DeepMSA: Covers complicated structure predictions, functional annotations, and evolutionary 

investigations. 

 

Comparing proposed solution with existing: 

 
 

breakthroughs that will redefine how we interact with technology and the world around us. The 

future development of deep learning will likely focus on several key areas: improving theoretical 

understanding, enhancing model efficiency, and expanding its applicability across diverse fields. 

Researchers are already exploring methods to improve training efficiency, reduce the need for large 

labelled datasets, and create more interpretable models. Additionally, deep learning's integration 

with other cutting-edge technologies like edge computing, quantum computing, and the Internet of 

Things (IoT) could unlock new possibilities and drive even greater innovation.  
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One of the major challenges moving forward will be to ensure that deep learning systems are 

designed to be ethical, fair, and transparent. As AI becomes more integrated into our daily lives, 

addressing issues related to bias, privacy, and accountability will be critical to ensuring that these 

technologies. 
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