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Abstract 

Nanotechnology is quickly developing, manufacturing nanomaterials of different genera, of which, 

metal oxide nanoparticles, is the most demanding class of nanomaterials. Currently, the expedient 

heightening of metal oxide nanoparticle's usage poses an impact on the environment. As, nanotoxicity 

profile of the vast majority of these metal oxide nanoparticles is as yet unclear and the information 

with respect to their physicochemical properties that contributes towards their bioactivity is also scant. 

In addition, trial assessment of each and every current and recently integrated metal oxide nanoparticle 

is very costly, arduous and tedious.  Likewise, low sufficiency of invivo/invitro experimental designs 

encumbers the toxicity evaluation of nanoparticles. Consequently, computational insilico QSAR 

(quantitative structure- activity relationship) approach have been investigated as successful technique 

for assessing the harmful cytotoxic effects of metal oxide nanoparticles in Escherichia coli. In 

addition, both the models were assessed for their prediction accuracy based on the merit of F-measure. 

In the current work, nano-QSAR models have been developed employing computed size autonomous 

nano-explicit descriptors using machine learning algorithm including linear multiple linear regression 

(MLR) and non-linear neural network (NN). Deciphered from the developed models, nanodescriptors 

including ∑χ=nO, χox and ∆H Me+ effectively encodes the metal oxide nanoparticle's cytotoxicity 

mechanism in Escherichia coli. And furthermore, the value of F-measure for linear MLR based model 

was higher i.e., 85% than non-linear NN model i.e.,74% indicating improved prediction competence 

of linear MLR model over non-linear NN model in Escherichia coli. Thus, MLR based QSAR model 

displayed high statistical robustness in the proposed specie for toxicity profiling. Subsequently, this 

study underscores on the importance of nano-QSAR modeling in nanotoxicology and is expected to 

enhance the advancement of more secure nanomaterials in the future. 
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Introduction 

Toxicity evaluation of nanoparticles isn't that straightforward on the grounds that each nanoparticle 

shows interesting morphological and physicochemical properties (1). The accessible and currently 

used testing frameworks may not be reasonable for screening nanoparticles because it is deficient in 

risk assessment protocols required for safety evaluation (2). Besides, scarcity of information on 

nanoparticle exposure is another restricting variable in nanotoxicological studies which hampers our 

conception with respect to nanoparticle toxicity mechanisms (3). Since nanoparticles may be 

metabolized or altered in vivo executing various consequences for the biosystems contrasted with 

their bulk counterparts (4). In this way, improved nanoparticle characterization methodologies are 

expected to eliminate uncertainties occurring at the level of exposure and hazard assessment to help 

risk executives in making regulatory policy decisions (5,6). Customary methodologies being utilized 

in nanoparticle risk assessment contrasted the novel nanoproducts and the regular non-nanoproducts 

bringing about raising vulnerabilities about the propriety of the current nanotoxicity related 

information (7).In addition, absence of a standard arrangement for archiving the probationary 

nanotoxicity data results in difficulty in data searching and gathering of obscure insights for building 

insilico models to address nano-explicit toxicity (8).To adapt to the current inadequacies in 

nanotoxicological studies, the first and the premier advance is to foster a normalized structure for 

detailing nanotoxicity data and also to lay out a completely organized datasets of nanotoxicity utilizing 

computational tools (9).Such insilico systems could be utilized to distinguish and reduce health and 

environmental hazards associated with individual nanoparticles. For this reason, it is expected to build 

databases of case narratives for the evaluation of nanoparticle related risks and for extra 

investigational studies on nanotoxicity resulting more than adequate data ought to be gathered with 

comprehensively acknowledged appraisal standards for information quality (10). Thus, this study 

aims at developing reliable computational models, thereby providing more insight on metal oxide 

nanoparticles cytotoxicity towards Escherichia coli 

 

Materials and methods 

For the development of nanoQSAR model, 17 metal oxide nanoparticles (ZnO, CuO, Y2O3, Bi2O3, 

In2O3, Al2O3, Fe2O3, SiO2, SnO2, V2O3, TiO2, Sb2O3, ZrO2, CoO, NiO, Cr2O3 and La2O3) for Escherichia 

coli were included in the study. The selection of the above-mentioned metal oxide nanoparticles 

depends on the availability of their associated toxicity data towards Escherichia coli (affecting 

viability). The obtained toxicity data for Escherichia coli is expressed in terms of logarithmic values 

of molar 1/EC50 (the effective concentration of a given metal oxide nanoparticle causing reduction of 

bacteria viability by 50%), which was considered as a dependant variable. Since nanopowder form of 

all metal oxide nanoparticles give rise to similarly sized aggregates in water suspension, regardless of 

their size (11). Therefore, the considered size range i.e., 15 to 90 nm for the selected metal oxide 

nanoparticles did not contribute to the cytotoxic mechanism towards Escherichia coli. Thus, the size 

effect of the selected metal oxide nanoparticles is nullified here. In the given study, logarithmic values 

of molar 1/EC50 were the observed toxic endpoint for Escherichia coli for which nanoQSAR modeling 

was done. Computation of three size-independent nanodescriptors for the selected metal oxide 

nanoparticles includes sum of metal electronegativity for individual metal oxide divided by the 

number of oxygen atoms present in a particular metal oxide (∑χ=nO) and metal cation charge 

corresponding to a given oxide (χox). These nanodescriptors were easily obtained from their molecular 

formula and information acquired from the periodic table (12). However gaseous cation enthalpy of 

formation (∆H Me+) nanodescriptors were calculated using computational software PaDEL descriptor 

(v. 2.20) (13). Computed nanodescriptors were then used as a machine learning input in Weka 

platform employing machine learning algorithms including multiple linear regression (MLR) (14) and 

neural networks (NN) (15) for model development. In addition, different modules in Weka were used 

for model validation and models performance analysis. In the present study, validation was achieved 

by randomly splitting the dataset into training set including ZnO, CuO, Y2O3, Bi2O3, In2O3, Al2O3, 

Fe2O3, SiO2, SnO2 and TiO2 and test set also called as validation set including V2O3, Sb2O3, ZrO2, CoO, 

NiO, Cr2O3 and La2O3. Internal validation of the training sets was performed to measure the goodness 
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of fit and robustness of the developed nanoQSAR model using statistical parameters including 

Coefficient of determination between the experimental and predicted value i.e., least squares fit (R2), 

Root Mean Square Error (RMSE) etc (16, 17).In the current study the external validity of the 

developed nanoQSAR models were checked by the test set using externally validated determination 

coefficient Q2
Ext and the root mean square error of prediction (RMSEP).Furthermore applicability 

domain of the developed nanoQSAR model was calculated for species training set employing leverage 

approach (18) for the analysis of model’s prediction performance. Finally, interpretation of the 

developed nanoQSAR models to recognize the most suitable metal oxide nanoparticles associated 

toxicity mechanisms in Escherichia coli. In addition, comparison of the developed models for 

Escherichia coli on the basis of their F-measure was also performed. 

 

Results 

Based on the obtainable experimental data for the specific target endpoints i.e., 1/EC50 a multiple 

linear regression (MLR) and neural network (NN), based nanoQSAR models were developed to 

describe the relationship of the studied metal oxide nanoparticles versus the structural parameters 

involved in exhibiting cytotoxic effects in Escherichia coli , The observed cytotoxicity experimental 

values expressed in terms of logarithmic values of molar 1/EC50 for Escherichia coli is given in Table 

1. 

 

Table 1: Observed cytotoxicity values of 17 metal oxides nanoparticles for Escherichia coli (log 

1/EC50) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Computed constitutional and quantum chemical nanodescriptors values for the studied metal oxides 

nanoparticles is given in Table 2. 

 

Table 2: Computed values of nanodescriptors for 17 metal oxides nanoparticles 

S.no Metal oxide  

NPs 

∑χ=nO χox ∆H Me+ (Kcal mol-1) 

1 ZnO 1.65 2 662.44 

2 CuO 1.9 2 706.25 

3 V2O3 1.087 3 1097.73 

4 Y2O3 0.813 3 837.15 

5 Bi2O3 1.347 3 1137.40 

6 In2O3 1.187 3 1271.13 

7 Sb2O3 1.367 3 1233.06 

S.no Metal oxide NPs Observed log 1/EC50 (mol l -1) 

1 ZnO 3.45 

2 CuO 3.20 

3 V2O3 3.14 

4 Y2O3 2.87 

5 Bi2O3 2.82 

6 In2O3 2.81 

7 Sb2O3 2.64 

8 Al2O3 2.49 

9 Fe2O3 2.29 

10 SiO2 2.20 

11 ZrO2 2.15 

12 SnO2 2.01 

13 TiO2 1.74 

14 CoO 3.51 

15 NiO 3.45 

16 Cr2O3 2.51 

17 La2O3 2.87 
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8 Al2O3 1.073 3 1187.83 

9 Fe2O3 1.220 3 1408.29 

10 SiO2 0.950 4 1686.38 

11 ZrO2 0.665 4 1357.66 

12 SnO2 0.980 4 1717.32 

13 TiO2 0.770 4 1575.73 

14 CoO 1.880 2 601.80 

15 NiO 1.910 2 596.70 

16 Cr2O3 1.107 3 1268.70 

17 La2O3 0.733 3 1017.22 

 

The predicted cytotoxicity values of 1/EC50 for the studied metal oxide nanoparticles is given in Table 

3. Figure 1 and 2 displays the plot of experimentally observed versus predicted values of 1/EC50 

obtained from the developed nanoQSAR models respectively. 

 

Table 3: Predicted cytotoxicity values of 17 metal oxide nanoparticles for Escherichia coli (log 

1/EC50) from the developed nanoQSAR models 

 

 

 

 

 

 

 

 

 

 

 

S.no Metal oxide 

NPs 

Observed 

1/EC50 

(Mol l -1) 

Predicted 1/EC50 

(Mol l -1) 

MLR NN 

1 ZnO 3.45 3.29 3.44 

2 CuO 3.20 3.24 3.47 

3 V2O3 3.14 2.74 2.79 

4 Y2O3 2.87 3.07 2.99 

5 Bi2O3 2.82 2.69 2.89 

6 In2O3 2.81 2.52 2.55 

7 Sb2O3 2.64 2.57 2.73 

8 Al2O3 2.49 2.62 2.63 

9 Fe2O3 2.29 2.34 2.43 

10 SiO2 2.20 1.99 2.07 

11 ZrO2 2.15 2.41 1.60 

12 SnO2 2.01 1.95 1.97 

13 TiO2 1.74 2.13 1.85 

14 CoO 3.51 3.37 3.46 

15 NiO 3.45 3.38 3.46 

16 Cr2O3 2.51 2.52 2.53 

17 La2O3 2.87 2.84 2.51 
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Figure 1: Plot of observed versus predicted log values of 1/EC50 for MLR model 

 

 
Figure 2: Plot of observed versus predicted log values of 1/EC50 for NN model 

 

Results of internal validation on the training sets for Escherichia coli is given in Table 4. 

 

Table 4: Internal validation performed on the training sets for Escherichia coli on the 

developed nanoQSAR models 

 

Table 5: External validation performed on the test sets for both Escherichia coli on the 

developed nanoQSAR models 

Escherichia coli 

S.no Model Data set No of NPs No of 

descriptors 

Q2
Ext RMSEP 

1 MLR Test 7 3 0.93 0.19 

2 NN Test 7 3 0.93 0.28 
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Prediction by NN nanoQSAR model

Observed

Predicted

Escherichia coli 

S.no Model Data set No of 

NPs 

No of 

descriptors 

R2 R2
adj Q2

cv RMSE RMSECV 

1 MLR Training  10 3 0.92 0.85 0.83 0.19 0.30 

2 NN Training 10 3 0.96 0.92 0.75 0.15 0.37 

Results of external validation on test sets for both Escherichia coli is given in Table 5 
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The computed applicability domain critical leverage value for the training sets is given below: 

h*(critical leverage value) = 1.5 

The calculated leverage value for each metal oxide nanoparticle (hi) is given in Table 6 

 

Table 6: Computed leverage values of the studied metal oxides nanoparticles for Escherichia 

coli 

S.no Metal oxide NPs Escherichia coli 

1 ZnO 1.31 

2 CuO 1.28 

3 V2O3 1.01 

4 Y2O3 1.21 

5 Bi2O3 1.15 

6 In2O3 1.08 

7 Sb2O3 1.13 

8 Al2O3 1.21 

9 Fe2O3 1.14 

10 SiO2 1.25 

11 ZrO2 1.02 

12 SnO2 1.20 

13 TiO2 1.11 

14 CoO 1.37 

15 NiO 1.39 

16 Cr2O3 1.12 

17 La2O3 1.13 

 

Evaluation results of the compared nanoQSAR models built using MLR and NN algorithms for 

Escherichia coli is given in Table 7. 

 

Table 7: Evaluation results of the two nanoQSAR models 

 Performance (F-measure at 0.05 level of significance) 

S.no Algorithms Escherichia coli  

1 MLR 0.85  

2 NN 0.74  

                   

Discussion 

From the data showed in Table 4 we can derive that the descriptors χ=nO, χox and ∆H Me+ are critical 

at 83% certainty level for MLR and 75% certainty level for NN while anticipating the test set 

information. The models, MLR and NN could explicate 92% and 96% of the variance (R2) 

respectively while it could anticipate 83% and 75% of the cross-validated predicted variance (Q2
cv). 

Our internal validation results are comparable with the outcomes of Kar et al, (2016) (19) for MLR 

based model, and Fjodorova et al, (2017) (20) for NN. In any case, remembering this that the previous 

studies however employed similar algorithms as we did yet utilize different sort/number of 

nanodescriptors, different composition of metal oxide nanoparticles training/test sets as well as 

different model development insilico tools hence exact critical evaluation of the statistical quality of 

our built models with the previously reported ones is not always possible. The anticipated toxicity 

assessments of 17 metal oxide nanoparticles against Escherichia coli is given in Table 3. Figure 1 and 

2 displays the distribution of the two nanoQSAR models determined predicted values which were 

seen to be adjusted exceptionally near their corresponding experimental values. Consequently, for the 

studied metal oxides nanoparticles, a good agreement between the observed and those anticipated by 

the nanoQSAR models were noticed (21). In the ongoing study, our developed models uncovered that 

the descriptor χox has a negative coefficient towards toxicity i.e., Cytotoxicity of metal oxide 
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nanoparticles diminishes with an increase in their cationic charge (22). On the other hand, our models 

also revealed that an increased cationic charge (χox) results in a positive value increase of ∆H Me+ and 

in return decreased cytotoxicity log(1/EC50) is observed. Besides, both of our developed models have 

good internal stability and statistical robustness signifying that the models were not obtained by 

chance as verified by internal and external validation metrices (23). On the other hand, obtained 

external validation parameters i.e., Q2
Ext and RMSEP (Table 5) revealed confirmation that our 

developed models are applicable for predicting toxicity of any other metal oxide nanoparticles if their 

structures fall within the applicability domain of the training set hi < 1.5 for Escherichia coli. In 

addition, Comparison analysis of the developed models based on F-measure metrices revealed that 

the value of F-measure for linear MLR based model was higher i.e., 85% than non-linear NN model 

i.e.,74% indicating improved prediction competence of linear MLR model over non-linear NN model 

in Escherichia coli. Thus, our developed nanoQSAR models for Escherichia coli were consistent 

since it has passed all the internal/external validation metrices and have satisfied all the criteria’s 

required for its statistical acceptance. 

 

Conclusion 

Thus, MLR based QSAR model displayed high statistical robustness in the proposed specie for 

toxicity profiling. 
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