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ABSTRACT
Deep learning in medical image analysis has indicated increasing interest in the classification of signs of 
abnormalities. In this study, a new convolutional neural network (CNN) architecture (MIDNet18) Medical 
Image Detection Network was proposed for the classification of retinal diseases using optical coherence 
tomography (OCT) images. The model consists of 14 convolutional layers, seven Max Pooling layers, four 
dense layers, and one classification layer. A multi-class classification layer in the MIDNet18 is used to clas-
sify the OCT images into either normal or any of the three abnormal types: Choroidal Neovascularization 
(CNV), Drusen, and Diabetic Macular Edema (DME). The dataset consists of 83,484 training images, 
41,741 validation images, and 968 test images. According to the experimental results, MIDNet18 obtains 
an accuracy of 98.86%, and their performances are compared with other standard CNN models; ResNet-50 
(83.26%), MobileNet (93.29%) and DenseNet (92.5%). Also, MIDNet18 with a p-value < 0.001 has been 
proved to be statistically significant than other standard CNN architectures in classifying retinal diseases 
using OCT images.

Keywords: retinal image classification, convolutional neural network (CNN), deep learning, choroidal 
neovascularization, diabetic macular edema, drusen, medical image detection network (MIDNet18)
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an automated classification system for retinal dis-
eases from OCT images. The approach successfully 
recognized retinal disease and normal vision. For 
OCT images.8 developed a surrogate-aided classi-
fication CNN model. Surrogate images for training 
are created using image denoising and morpholog-
ical dilations9 provided a signed distance map and 
segmentation approach for automated segmenta-
tion of retinal diseases. Topology preservation was 
enhanced and post-processing was reduced using 
CNN with space regression.

MATERIALS AND METHODS

A CPU with 8 GB of RAM and an NVIDIA 
Tesla K80 GPU with 12 GB of memory were used 
in the experiment. SPSS software is used for all of 
the analyses.10 The input images (NORMAL, CNV, 
DME, DRUSEN retina images) are considered to be 
independent variables. The output variables or the 
correctly classified images are the dependent variables 
(Accuracy, Loss, and F1 score). To evaluate the perfor-
mance of the algorithms, an independent t-test is used.

This dataset was retrieved from the Kaggle 
repository.11 It has three folders (train, test, vali-
dation), each with subfolders for four categories 
of images (NORMAL, CNV, DME, DRUSEN). 
There are 1,26,193 OCT images of various shapes 
included. Training images comprise 83,484, val-
idation images comprise 41,741, and test images 
comprise 968 OCT images, as shown in Table 1. 
Figure 1 gives the Sample Retina disease images.

INTRODUCTION

Eye disorders that are prominently seen in a 
huge proportion of the population lead to loss of 
vision. Vision loss1 is an alarming threat which 
needs to be identified at an early stage for proper 
diagnosis and treatment. From the statistics,2 it is 
observed that most eye impairments occur in the 
age group above 40 years.

One of the most common vision loss diseases 
affecting the retina is Choroidal NeoVascularization 
(CNV), Diabetic Macular Edema (DME), and 
Drusen. A laser-based technology, optical coher-
ence tomography (OCT), helps to capture retinal 
images more precisely.3 It is further used to diagnose 
epiretinal membranes, macular holes, and macular 
swellings for many eye diseases, including glau-
coma, diabetic retinopathy, macular degeneration, 
hypertension, and glaucoma.4 If these disorders are 
not addressed, they can lead to serious vision loss 
and blindness. The medical image analysis commu-
nity contributes to the development of automated 
systems to aid ophthalmologists in using artificial 
intelligence for retinal image analysis.

This study is being conducted to assist physi-
cians in providing correct and timely treatment using 
enhanced diagnostic processes. Artificial intelli-
gence aids in diagnosing retinal disorders, allowing 
for effective and early treatment of retinal diseases.

Ref.5 suggested a convolutional neural network 
(CNN) approach, Lesion Aware Convolutional 
Neural Network (LACNN) for the classification 
of retina OCT images. They introduce the lesion 
attention map technique, which is used by the clas-
sification network to speed up the training process 
and to improve OCT classification with a good 
accuracy rate. Instead of using CNN,6 used a cap-
sule network to learn positional information from 
images. The accuracy achieved was higher than 
that of classical CNN.3 used DCNN-based classi-
fiers to classify retinal OCT images. The training 
process is enhanced by using Downsampling and 
weight- sharing techniques.7 used CNN to create 

TABLE 1. Dataset of retina diseases from retina 
OCT images.
Data Training 

set
Validation 

set
Testing 

set
CNV 37,205 18,602 242
DME 11,348 5674 242
DRUSEN 8616 4308 242
NORMAL 26,315 13,157 242
TOTAL 83,484 41,741 968
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Figure 2 depicts the MIDNet18 CNN archi-
tecture. The 14 convolutional layers in the 
MIDNet18 architecture have a 3 × 3 kernel (filter) 
size. According to a review of several research 
articles, the ReLu activation function is the most 
suited since it allows values greater than zero.12 As 
a result, in convolutional layers, the ReLu activa-
tion function is applied. The image’s final feature 
map is derived from the 14th convolutional layer. 
The model makes use of a 224 × 224 input image. 
The model contains seven max-pooling layers with 
a pooling size of 2.13 Max pooling has been used 
in the MIDNET18 to emphasize the advantage 
of considering brighter pixels.14–18 The proposed 
method does not favor average pooling since it 
smoothens the pixels in images and reduces the 
potential of predicting abnormalities in images. 
The proposed model additionally employs batch 
normalization, which aids in avoiding model 
overfitting and also assists each layer in learning 
more independently.

CNV DME DRUSEN NORMAL

FIGURE 1. Sample retina disease images.

FIGURE 2. Proposed MIDNET18 Architecture for retinal OCT image classification.

MIDNET 18 ALGORITHM

Step 1:  Selection of an appropriate dataset for 
the specified problem.

Step 2:  Preparation of dataset for training and 
testing which involves the process of 
creating labels and resizing the image 
to an appropriate size.

Step 3: Defining the MIDNet Model

(i) Input layer is defined with pixel size 
(224 × 224), filter number as 16, and kernel 
size as 3 × 3.

(ii) Defining MIDNet18 model with 14 convo-
lutional layers
(a) convolution layers with a kernel size of 

(3 × 3), stride value as 1, and padding 
as “nil,” and activation function as 
ReLu is defined.

(b) convolutional layers are implemented 
with varying the number of filters for 
every convolutional layer from 16 to 512.
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testing loss of value 0.0532, when compared with 
RESNET-50, MOBILENET, and DENSENET test-
ing loss of 0.4233, 0.01697, and 0.2332, respectively. 
Similarly, MIDNET-18 achieved the testing F1_
score of 98.86%, which is the highest in comparison 
with RESNET-50, MOBILENET, and DENSENET 
which got only 79.32%, 93.20%, and 92.5%, respec-
tively. All the performance metrics indicate that the 
accuracy of the MIDNET-18 model performs better 
in classifying the retinal diseases from the Retina 
OCT dataset compared to other standard models 
(RESNET-50, MOBILENET, DENSENET).

Average loss for each epoch
Figure 4A represents the training and valida-

tion loss of MIDNET-18 for 30 epochs. It could be 
inferred from Figure 4A that the Validation loss for 
MIDNET-18 was high at 1.02 in initial epochs and 
later reduced to 0.1, which is the least loss value of 
all other standard models. Similarly, the training 
loss value was 0.7157 at the initial epochs and got 
reduced to 0.0969 in the 30th epoch.

Figure 4B–D represent the training and the 
validation loss of RESNET-50, MOBILENET, and 
DENSENET, respectively. It is observed that the 
initial training loss for all these models was more 
than 50% while validation loss was higher than 90% 
for all the models. After the 10th epoch, it could be 
noticed that there was a gradual decrease in the loss 
value reaching less than 20% in 30 epochs.

Average accuracy for each epoch
Figure 5A demonstrates the training and val-

idation accuracy of the MIDNet18 model for 30 
epochs. It could be inferred from Figure 4, that the 
validation accuracy for MIDNET-18 was fluctuat-
ing between 80% and 90% in the initial epochs. 
After the seventh epoch, it constantly increased 
and achieved 96.3% in 30 epochs, which is a higher 
accuracy value compared to all other standard mod-
els. Similarly, the training accuracy value starts at 
76% in the first epoch and gradually increases to 
96.69% in the 30th epoch.

Step 4:  Defining MIDNet18 model with four 
pooling layers with type max-pooling 
and pool size as 2 × 2.

Step 5:  Defining the MIDNet18 model with 
a 20 batch normalization function by 
distributing the data, thereby stabiliz-
ing the network.

Step 6:  The output after convolution is given to 
a fully connected layer for selecting the 
best or max value.

RESULT

The MIDNET18 model is evaluated using OCT 
retinal images, and the results were compared with 
existing standard models like ResNet50, DenseNet. 
According to Ranjbarzadeh et al. (2021),19 the sam-
ple size for the study was 14 with the parameters 
alpha 0.05, beta 0.2, and g-power 0.8, as indicated 
in Figure 3. Four study groups are considered for 
this study. The dataset used for this experiment 
is collected from the Kaggle repository (https://
www.kaggle.com). As it was a public database, no 
ethical approval was required. The dataset is cat-
egorized into three folders (training, testing, and 
validation) with subfolders for each image category 
as NORMAL, CNV, DME, and DRUSEN. Images 
are labeled with the type of disease, patient ID, and 
image number, which are further organized into 
four directories based on image categories.

The dataset was executed for a maximum of 30 
epochs in the MIDNet18 model. Table 2 shows the 
performance comparison of MIDNet with various 
algorithms.

Comparison of MIDNET-18 with RESNET-50, 
MOBILENET, and DENSENET for various perfor-
mance metrics is given in Table 2. The MIDNET-18 
model obtained an improved testing accuracy 
of 98.86% in comparison with RESNET-50, 
MOBILENET, and DENSENET having a testing 
accuracy of 83.26%, 93.29%, and 92.5% respec-
tively. In comparison with the testing loss rate, 
the MIDNET-18 model had achieved the lowest 

https://www.kaggle.com�
https://www.kaggle.com�
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FIGURE 3. Sample size calculation using g-power calculator.

TABLE 2. Comparison of MIDNET-18 with RESNET-50, MOBILENET, and DENSENET models on 
various metrics, namely, maximum training accuracy, maximum testing accuracy, F1_Score, training 
loss, testing loss, value for classification of retinal diseases.
Algorithms Maximum 

training 
accuracy

Maximum 
testing 

accuracy

Training 
F1-score

Testing 
F1-score

Training 
loss

Testing 
loss

MIDNET18 96.69 98.86 95.21 98.86 0.09 0.0532
RESNET50 85.94 83.26 92.74 79.32 0.3996 0.4233
MOBILENET 91.59 93.29 87.50 93.20 0.2319 .01697
DENSENET 95.04 92.5 89.77 92.5 0.1528 0.2332
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FIGURE 4. (A) Training and validation loss of MIDNET-18, (B) training and validation loss of 
RESNET-50, (C) Training and validation of MOBILENET, (D) training and validation loss of DENSENET.

Figure 5B–D represent the training accu-
racy and validation accuracy rate of RESNET-50, 
MOBILENET, and DENSENET, respectively. It is 
observed that the initial training accuracy and val-
idation accuracy was higher than 50% for all the 
models. After the 6th epoch, it could be noticed that 
there was a constant increase in the accuracy value 
reaching higher than 85% in 30 epochs.

Average F1_Score for each epoch
Figure 6A shows the training F1_Score rate 

and validation F1_Score rate of MIDNet18 for 30 
epochs. It could be inferred from Figure 5 that 
the F1_Score of the validation set was above 65% 
in the initial epochs. After the Fifth epoch, it con-
stantly increased and achieved 94.74% in the 30th 
epoch, which is a higher F1_Score rate than all other 

standard models. Similarly, the F1_Score of the 
training set starts with 52.12% at the initial epochs 
and gradually increases to 95.21% in the 30th epoch.

Figure 6B–D represent the F1_Score value of 
the training and the validation set using RESNET-50, 
MOBILENET, and DENSENET, respectively. It 
is observed that F1_Score at the initial epoch for 
the validation set was higher than 40% for all the 
models. After the 4th epoch, it could be noticed that 
there was a constant increase in the F1_Score rate 
and it reached higher than 90% in 30 epochs for all 
models.

The bar chart in Figure 7 depicts the com-
parison of the mean accuracy of MIDNET mod-
els with various standard models (RESNET-50, 
MOBILENET, DENSENET) for classifying the ret-
inal diseases from the retina OCT images.
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FIGURE 5. (A) Training and validation accuracy of MIDNET-18, (B) training and validation accuracy 
of ResNet50, (C) training and validation accuracy of MOBILENET, (D) training and validation accuracy 
of DenseNet.

It shows that the MIDNET-18 is significantly 
more accurate than RESNET-50, MOBILENET, 
and DENSENET in classifying the retinal dis-
eases from the retina OCT images. It could also be 
observed from the statistical test conducted (one 
way ANOVA with p < 0.05) that the MIDNET-18 
model performs better in terms of prediction accu-
racy, and it is statistically significant as shown in 
Tables 3 and 4.

DISCUSSION

This research was carried out in the Artificial 
Intelligence Research Lab, at Saveetha School of 

Engineering. From the experiment results, it was 
observed that the MIDNet18 model’s performance 
was significantly better in terms of accuracy over 
RESNET-50, MOBILENET, and DENSENET 
(one-way ANOVA and Paired-Wise Comparison 
Bonferroni with p < 0.05).

Several studies on medical image classifi-
cation using CNN have been published. In this 
study, the author uses four CNN architectures for 
retinal image classification, comprising AlexNet, 
GoogLeNet, VGG16, and ResNet50, and chooses 
the best-performing network. The chosen network 
is further fine-tuned and evaluated based on its per-
formance. The overall loss of the network is equal 
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FIGURE 6. (A) F1-Score of training and validation set using MIDNET-18, (B) F1-score of training and 
validation set using RESNET-50, (C) F1-Score of training and validation set using MobileNet, (D) training 
and validation F1-Score using DENSENET.

to the sum of the losses of all channels. It is proved 
that the suggested approach performs better on a 
large dataset of retinal pictures, achieving an ideal 
accuracy of 97.12%.20 The author’s suggested DR 
classifier algorithm provides an asymmetric opti-
mization solution by combining Gaussian Mixture 
Model (GMM), Visual Geometric Group Network 
(VGGNet), Single Value Analysis (SVD), and prin-
cipal component analysis (PCA), as well as softmax. 
For region segmentation and basic image classifica-
tion, experiments were carried out using the pub-
licly available KAGGLE dataset, which consists of 
35,126 images. The performance of the experiments 
was evaluated in terms of classification accuracy 

and computation time. The proposed DR model out-
performs AlexNet and the Spatial Invariant Feature 
Transform (SIFT), PCA, and SVD. The classifica-
tion accuracy obtained is 92.21%, 98.3%, 97.96%, 
and 98.13% for FC7-PCA, FC7-SVD, FC8-PCA, and 
FC8-SVD, respectively.21 The CNN method is being 
used in the article to categorize DR images. They 
employed pretrained CNN models such as AlexNet, 
VGG16, and SqueezeNet, which obtains the accu-
racy rates of 93%, 91.82%, and 99%, respectively.

CNN algorithms are capable of learning abstract 
characteristics and operating with fewer parameters. 
Despite of its performances, it also have significant 
drawbacks while training the CNN model, such as 
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FIGURE 7. Bar chart to represent comparison of the mean accuracy rate of MIDNET-18 with various 
standard models (RESNET-50, MOBILENET, DENSENET). MIDNET18 is significantly more accurate 
than RESNET50, MOBILENET, and DENSENET algorithms in the prediction of diseases for the given 
retina dataset.

TABLE 3. Comparison of accuracy of MIDNET-18 with RESNET-50, MOBILENET, and DENSENET 
models in detecting retinal diseases in retina OCT images (one-way ANOVA sample test p < 0.05). MIDNET-
18’s improved accuracy in prediction over other mentioned models is proved to be statistically significant.
Multiple comparisons Dependent variable: Bonferroni
(I) ALGORITHM Mean difference 

(I-J)
Std. 

error
Sig. 95% Confidence interval

Lower bound Upper bound
MIDNET-18 RESNET-50 0.1278075* 0.0136740 .000 0.091103 0.164512

MOBILENET 0.0769737* 0.0134479 0.000 0.040876 0.113071
DENSENET 0.0500167* 0.0135576 0.002 0.013624 0.086409

RESNET-50 MIDNET-18 –0.1278075* 0.0136740 0.000 –0.164512 –0.091103
MOBILENET –0.00508338* 0.0135652 0.002 –0.087246 –0.014421
DENSENET –0.0777908* 0.0136740 .000 –0.114495 –0.041086

MOBILENET MIDNET-18 –0.0769737* 0.0134479 0.000 –0.113071 –0.040876
RESNET-50 0.0508338* 0.0135652 0.002 0.014421 0.087246
DENSENET –0.0269570 0.0134479 0.284 –0.063054 0.009140

DENSENET MIDNET-18 –0.0500167* 0.0135576 0.002 –0.086409 –0.013624
RESNET-50 0.0777908* 0.0136740 0.000 0.041086 0.114495
MOBILENET 0.0269570 0.0134479 0.284 –0.009140 0.063054

*The mean difference is significant at the 0.05 level.
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TABLE 4. Statistical comparison of MIDNET18 with RESNET-50, MOBILENET, and DENSENET 
models. The MIDNET18 achieved a better mean accuracy rate of 96.8% over other mentioned standard 
models.
ANOVA TRAIN_ACCURACY  
 Sum of squares df Mean square F Sig.
Between groups 0.252 3 0.084 30.463 0.000
Within groups 0.320 116 0.003 — — 
Total 0.572 119 —  — — 

overfitting, explosive gradients, and class imbalance. 
These issues may impair the model’s performance. 
Understanding and employing proper metrics can 
help to greatly overcome these hurdles and improve 
performance effectiveness.22,23 Despite the fact that 
CNN models are generally utilized for image pro-
cessing, sequential data necessitate the conversion 
of 1D data to 2D data. The usage of DCNN for 
sequential data is becoming more popular because 
of its outstanding feature extraction and efficient 
computation with a minimal number of parame-
ters. Ensemble learning using CNN may be used 
to extract unique semantic representations, and the 
model’s generalization can be improved. Ensemble 
learning using CNN may be used to extract distinct 
semantic features, and by integrating varied archi-
tectures, the model can enhance the applicability 
and robustness of numerous image categories.24

CONCLUSION

The proposed MIDNet-18 model outperformed 
the RESNET-50, MOBILENET, and DENSENET 
models in NORMAL, CNV, DME, and DRUSEN 
retinal image classification. The MIDNet18 model 
is trained well and obtained high accuracy in mul-
ticlass classification of more than 96.69%, which is 
significantly better with a p-value < 0.001 based on 
the Independent sample t-test. MIDNET18 perfor-
mance is evaluated with different performance met-
rics like accuracy, loss, and F1_score. MIDNet18 
has proven to perform significantly better than the 

other traditional CNN models in retina OCT image 
classification.
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