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ABSTRACT

Plant growth-promoting rhizobacteria (PGPR) represent a group of free-living bacteria inhabiting the
rhizospheric soil and improving plant growth. These PGPRs have a dynamic role in plant growth by
serving as bio-fertilizers. Therefore, we focused the present research investigation on isolating and
characterizing phosphate solubilization and PGPR-producing rhizobacteria. Twenty-two bacteria
were isolated, from which three bacteria belong to Bacillus spp. and were shown PGPR activity. We
examined phosphate solubilizing efficacy, ammonia secretion, hydrogen cyanide production, and [AA
production to evaluate the PGPR efficacy of bacterial isolates. Bacillus sp. PGPR-1 exhibited
significant phosphate solubilization (2.4 £0.039 mm £SD zone diameter) and IAA (16.2 £0.12 pg/mL
+SD) production along with ammonia and hydrogen cyanide secretion. Bacillus sp. PGPR-1 has
potentially been used as an additives to fortify bio-fertilizer for sustainable agricultural management.

Keywords: PGPR, rhizospheric soil, phosphate solubilizing efficacy, 1AA, ammonia production,
Hydrogen cyanide, Bacillus sp. PGPR-1

1. INTRODUCTION

The ecological integrity of the soil is a primary factor that needs to be considered. The effective use
of fertilizer and pesticides enhances plant growth (Gouda et al., 2018; Molnar et al., 2020). Plants
often use 50% of the chemical fertilizer and the leftovers mostly remain in the soil and later interfere
with water pollution during the rainy season (Sharma and Singhvi, 2017). Several literatures have
stated the undesirable effects of synthetic inorganic chemical fertilizers and biocides including
pesticides, insecticides, weedicides, herbicides and so forth (Rani ez al., 2021; Sabarwal et al., 2018).
However, the harmful effect of fertilizers on the soil is not reflected immediately due to the buffering
capability of the soil. Long-term exposure to pollutant fertilizers is responsible for soil degradation
and poor soil profile that further induces soil acidity and severely damages the ecological balance of
the soil microbiota (Sharma and Sanghvi, 2017). Besides, the effective use of biofertilizers has the
potential to cover up the requirement of chemically derived fertilizers and biocides.

PGPRs promote plant growth and development through nutrient acquisition, phytohormone synthesis,
and siderophore production by direct mode (Rai et al., 2020; Nazir et al., 2018). Adnan et al. (2020)
mentioned that PGPRs have emerged as sustainable agricultural practices that could enhance plant
growth to safeguard the soil system's ecological integrity. Moreover, microbial-derived PGPRs
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stimulate plant growth which also have the potential to mitigate the pollution level in the surrounding
environment, increase crop yields, control pests, and be considered an ecofriendly approach for
agriculture practices. Mustafa et al. (2019) mentioned that the PGPRs indirectly activate the immune
system of plants against pathogens and simultaneously induce plant growth. Abiotic stress generally
triggers the interaction between soil and plant which reduces crop yield. PGPR stimulate abiotic stress
response and encourages plant growth by solubilizing phosphorus, nitrogen fixation, phytohormone
synthesis, suppressing pathogens and so on (Abdelwahed et al., 2022; Rai et al., 2020; Prasad et al.,
2019).

The bacteria and fungi have been predominantly associated with ensuring nutrient availability to the
plant and producing PGPRs to induce plant growth and development (Aeron et al., 2020; Péterfi and
Domokos, 2018). PGPRs group of bacteria have been widely reported for nitrogen fixation, phosphate
solubilization, phytohormones e.g., indole-3-acetic acid (IAA), cytokinin, and siderophores
production (Basu et al., 2021). Bacteria genera viz., Bacillus, Azospirillium, Pseudomonas,
Burkholderia, and Klebsiella have been divulged for PGPR synthesis (Kaymak, 2010). Besides,
Bacillus spp. has been extensively studied for PGPR production (Sansinenea, 2019). Bacillus spp.
participate in phosphate solubilization, facilitate nitrogen acquisition, phytohormone synthesis (such
as Gibberellin and IAA), siderophore production, and suppress phytopathogens alone or with other
PGPR species (Kaymak, 2010; Joo et al., 2004; Gutierrez-Manero et al., 2001). Moreover, Bacillus
spp. has been reported to form endospores, which enables them to survive under a broad range of
environmental conditions viz., high temperatures and pH (Kaloterakis et al., 2021). Therefore, these
properties enforce them as a suitable candidate for a green agricultural revolution with enhanced crop
yield (Saxena et al., 2020). Thus, we have done a systematic evaluation towards the development of
biofertilizer using Bacillus spp. for phosphate solubilization and plant growth promotion.

2. MATERIALS AND METHODS

Samples were collected from the Agricultural land of Bahtarai Village under the Bilaspur region
(22.11, 82.18) in July 2024. The soil samples were collected from 5.0 cm of depth, in a clean and
sterile polythene bag and brought to the laboratory for the isolation of PGPR bacteria.

2.1. Isolation of Bacteria

The collected samples were passed through a 0.4 mm mesh sieve to remove soil lumps and processed
for serial dilution. Serially diluted samples (10~°) were inoculated on Nutrient Agar Media (NAM)
plates. Inoculated plates were incubated at 37°C for 24 hours.

2.2. Identification of Bacterial Isolates

The potent PGPR-producing bacterial isolates were identified as per the key provided by Bergey’s
Manual (Garrity et al., 2005). Pure colonies of PGPR-producing bacterial isolates were identified on
the observations noted from Gram stain, spore formation, colony characters, and biochemical
characteristics.

2.3. Screening of PGPR bacteria
The bacterial isolates were examined for Phosphate solubilizing, IAA, and ammonia production.

2.3.1. Phosphate solubilization

Phosphate solubilizing bacteria were screened using Pikovskaya’s Agar Medium (PAM) as mentioned
by Rai ef al. (2020). The bacterial isolates were inoculated in PAM and incubated for 5 days at 37°C.
The appearance of clear zones around the bacterial colonies confirms the phosphate solubilizing
property of bacterial strains.

2.3.2. TAA Production
The efficacy of bacterial strains to produce [AA was assessed using UV-VIS spectrophotometerbased
assay as stated by (Ehmann, 1977) Salkowski reagent using the Salkowski's method (Ehmann, 1977)
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with slight modification. The bacterial isolates were inoculated in yeast malt dextrose (YMD) broth
with tryptophan and incubated at 28°C for 5 days. The broth was centrifuged at 10000 rpm for 15
min. A 1.0 ml of supernatant was collected and 2.0 ml of Salkowski's reagent was added. The reaction
mixture was kept in the dark. The optical density (OD) of the reaction mixture was recorded at 530
nm using UV-VIS Spectrophotometer.

2.3.3. Ammonia production

The bacterial isolates were examined for ammonia production using Nessler's reagent (Mohite, 2013).
Fresh bacterial culture was mixed with 10 ml of peptone water and incubated at 30°C for 72 hours.
Nessler's reagent (0.5 ml) was mixed with the reaction mixture. The colour change from pale yellow
to dark brown confirms the ammonia production by bacterial isolate.

2.3.4. Hydrogen Cyanide Production

Hydrogen cyanide production in bacterial isolates was inspected using the method described by
Sehrawat et al. (2022) Fresh bacterial cultures were streaked in NAM supplemented with Glycine.
Whatman filter paper-soaked reagent consisting of 0.5 % picric acid and 2 % sodium carbonate, was
covered over the inoculated NAM plates and incubated at 37°C for 5 days. The development of
orange-red colour indicates the presence of hydrogen cyanide.

All the experimental analysis was done in triplicates to minimize the error rate. Observed data were
processed and graphs were prepared using MS Office Excel 2021 with an error bar.

3. RESULTS AND DISCUSSIONS

Twenty-two bacterial strains were isolated from the samples. We have scientifically evaluated bacteria
isolates for PGPR production efficacy in terms of Ammonia, Hydrogen Cyanide, IAA production. A
total of nine bacterial isolates have shown PGPR activity. Among them, three bacterial isolates belong
to Bacillus spp. The PGPR efticacy of Bacillus spp. is shown in Table 1. Bacillus sp. PGPR-1 isolate
showed significant PGPR efficacy with maximum Phosphate solubilization of 2.4 mm zone diameter
(Fig. 1) and IAA production of 16.2 £0.12 pg/mL +SD (Fig. 2).

Table 1. Biochemical Characteristics of Bacterial isolates

Isolate PGPR-1 PGPR-2 PGPR-3
Colony Colour Cream Cream White
Colony Shape Irregular Irregular Wrinkled | Convex
Surface Texture Rough Rough Smooth
Gram Stain + + +

Cell diameter 0.93 pm 0.87 pm 1.24 pm
Motility + + +

Spore + + +

6.5 % NaCl + + -
Growth at 55°C - + -
Catalase + + +
Oxidase - - +
Citrate + + +
Urease - - -

TSI Alk/Acid Butt Alk/Acid Butt Acid/Acid
Indole - - -

VP + + -

Starch Hydrolysis - + +
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Table 2. Screening of Bacterial isolates for PGPR

Isolate Bacillus sp. PGPR -| Bacillus sp. PGPR -2 | Bacillus sp. PGPR -3
1
Phosphate
solubilization (mm| 2.4 +£0.039 1.8 +£0.017 2.1 +£0.025
+SD zone diameter)
Ammonia Production | ++ ++ +
Hydroggn Cyanide it N i
Production
IAA (ug/mL +£SD) 16.2 £0.12 13.7 £0.084 15.9 +0.1
3
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Fig. 2. IAA Production efficacy of PGPR Bacillus species

We have observed close similarity of PGPR-1, PGPR-2, PGPR-3 to Bacillus subtilis, Bacillus
licheniformis, and Bacillus megaterium respectively. In support to our findings, Kashyap et al. (2019)
delineated that the Bacillus spp. are dominant PGPR-producing rhizobacteria in tropical regions.

Besides, Bacillus spp. has also been disclosed to minimize the salinity stress in plants (Kaloterakis et
al.,2021).
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PGPR enhance crop yield by synthesizing ammonia that increases soil pH and combats fungal
pathogens by inhibiting mycelial formation (Mohanty ef al., 2021) in an indirect mode. HCN has
been reported for beneficial action in plants by inhibiting the pathogenic organism in rhizosphere
(Mazumdar et al., 2020). Phosphates often occur as insoluble in acidic soils which are predominant
in tropical countries like India (Wang et al., 2021). This problem has naturally been compensated by
phosphate solubilizing bacteria (PSB) e.g., bacterial genera including Pseudomonas, Bacillus,
Flavobacterium, and Rhizobium, by secreting organic acid which acidifies soil and hydroxyl and
carboxyl groups of organic acids facilitates conversion of insoluble phosphate to it solubilize form
(Pathak et al., 2019; Saritha and Prasad Tollamadugu, 2019). This bioconversion is enormously
important to phosphorus uptake by plants (Tang et al., 2020). But, Chen et al. (2021) have reported
that long-term use of chemical fertilizers reduces phosphorus uptake by plants. The PGPR bacteria
secrete IAA in the rhizosphere which promotes plant growth by stimulating cell elongation and proper
organ development (Kumar et al., 2019). IAA induces root length in plants which enhances the
nutrient uptake by plants and encourages the growth rate of plants (Kumar et al., 2019). Nevertheless,
Antoun and Prevost (2005) mentioned that around 2 to 5% of the rhizosphere bacteria are PGPR and
further could be employed for sustainable agriculture.

Conclusions

PGPR bacteria are well-known free-living rhizospheric bacterial communities that induce plant
growth by supplying phytohormones and nutrient availability. Nitrogen fixation, phosphate
solubilization, suppressing pathogens, and secretion of plant hormones are crucial aspects of PGPR
bacteria that attract the scientific group. Bacillus spp. have extensively studied for PGPR. However,
the genetic engineering tools and techniques integrated with omics studies need to be explored more
scientifically for customized applications. Presently, PGPR is considerably applicable in agriculture
by means of biofertilizers and the recycling of minerals into soluble form.
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