RESEARCH ARTICLE DOI: 10.53555/8nper167

EVALUATION OF BACILLUS SPP. FOR PHOSPHATE SOLUBILIZATION AND PLANT GROWTH PROMOTION PRATIBHA

Pratibha Singh Chandel^{1*}

^{1*}Assistant Professor and Head, Department of Microbiology, Govt. Jajwalyadev Naveen Girls College Jangir (C.G) Corresponding author: pratibhasinghpba@gmail.com

*Corresponding author: Pratibha Singh Chandel
*Assistant Professor and Head, Department of Microbiology, Govt. Jajwalyadev Naveen Girls
College Jangir (C.G) Corresponding author: pratibhasinghpba@gmail.com

ABSTRACT

Plant growth-promoting rhizobacteria (PGPR) represent a group of free-living bacteria inhabiting the rhizospheric soil and improving plant growth. These PGPRs have a dynamic role in plant growth by serving as bio-fertilizers. Therefore, we focused the present research investigation on isolating and characterizing phosphate solubilization and PGPR-producing rhizobacteria. Twenty-two bacteria were isolated, from which three bacteria belong to *Bacillus* spp. and were shown PGPR activity. We examined phosphate solubilizing efficacy, ammonia secretion, hydrogen cyanide production, and IAA production to evaluate the PGPR efficacy of bacterial isolates. *Bacillus* sp. PGPR-1 exhibited significant phosphate solubilization ($2.4\pm0.039~\text{mm}\pm\text{SD}$) zone diameter) and IAA ($16.2\pm0.12~\mu\text{g/mL}\pm\text{SD}$) production along with ammonia and hydrogen cyanide secretion. *Bacillus* sp. PGPR-1 has potentially been used as an additives to fortify bio-fertilizer for sustainable agricultural management.

Keywords: PGPR, rhizospheric soil, phosphate solubilizing efficacy, IAA, ammonia production, Hydrogen cyanide, Bacillus sp. PGPR-1

1. INTRODUCTION

The ecological integrity of the soil is a primary factor that needs to be considered. The effective use of fertilizer and pesticides enhances plant growth (Gouda *et al.*, 2018; Molnár *et al.*, 2020). Plants often use 50% of the chemical fertilizer and the leftovers mostly remain in the soil and later interfere with water pollution during the rainy season (Sharma and Singhvi, 2017). Several literatures have stated the undesirable effects of synthetic inorganic chemical fertilizers and biocides including pesticides, insecticides, weedicides, herbicides and so forth (Rani *et al.*, 2021; Sabarwal *et al.*, 2018). However, the harmful effect of fertilizers on the soil is not reflected immediately due to the buffering capability of the soil. Long-term exposure to pollutant fertilizers is responsible for soil degradation and poor soil profile that further induces soil acidity and severely damages the ecological balance of the soil microbiota (Sharma and Sanghvi, 2017). Besides, the effective use of biofertilizers has the potential to cover up the requirement of chemically derived fertilizers and biocides.

PGPRs promote plant growth and development through nutrient acquisition, phytohormone synthesis, and siderophore production by direct mode (Rai et al., 2020; Nazir et al., 2018). Adnan et al. (2020) mentioned that PGPRs have emerged as sustainable agricultural practices that could enhance plant growth to safeguard the soil system's ecological integrity. Moreover, microbial-derived PGPRs

stimulate plant growth which also have the potential to mitigate the pollution level in the surrounding environment, increase crop yields, control pests, and be considered an ecofriendly approach for agriculture practices. Mustafa *et al.* (2019) mentioned that the PGPRs indirectly activate the immune system of plants against pathogens and simultaneously induce plant growth. Abiotic stress generally triggers the interaction between soil and plant which reduces crop yield. PGPR stimulate abiotic stress response and encourages plant growth by solubilizing phosphorus, nitrogen fixation, phytohormone synthesis, suppressing pathogens and so on (Abdelwahed *et al.*, 2022; Rai *et al.*, 2020; Prasad *et al.*, 2019).

The bacteria and fungi have been predominantly associated with ensuring nutrient availability to the plant and producing PGPRs to induce plant growth and development (Aeron *et al.*, 2020; Péterfi and Domokos, 2018). PGPRs group of bacteria have been widely reported for nitrogen fixation, phosphate solubilization, phytohormones e.g., indole-3-acetic acid (IAA), cytokinin, and siderophores production (Basu *et al.*, 2021). Bacteria genera viz., *Bacillus, Azospirillium, Pseudomonas, Burkholderia*, and *Klebsiella* have been divulged for PGPR synthesis (Kaymak, 2010). Besides, *Bacillus* spp. has been extensively studied for PGPR production (Sansinenea, 2019). *Bacillus* spp. participate in phosphate solubilization, facilitate nitrogen acquisition, phytohormone synthesis (such as Gibberellin and IAA), siderophore production, and suppress phytopathogens alone or with other PGPR species (Kaymak, 2010; Joo *et al.*, 2004; Gutierrez-Manero *et al.*, 2001). Moreover, *Bacillus* spp. has been reported to form endospores, which enables them to survive under a broad range of environmental conditions viz., high temperatures and pH (Kaloterakis *et al.*, 2021). Therefore, these properties enforce them as a suitable candidate for a green agricultural revolution with enhanced crop yield (Saxena *et al.*, 2020). Thus, we have done a systematic evaluation towards the development of biofertilizer using *Bacillus* spp. for phosphate solubilization and plant growth promotion.

2. MATERIALS AND METHODS

Samples were collected from the Agricultural land of Bahtarai Village under the Bilaspur region (22.11, 82.18) in July 2024. The soil samples were collected from 5.0 cm of depth, in a clean and sterile polythene bag and brought to the laboratory for the isolation of PGPR bacteria.

2.1. Isolation of Bacteria

The collected samples were passed through a 0.4 mm mesh sieve to remove soil lumps and processed for serial dilution. Serially diluted samples (10⁻⁵) were inoculated on Nutrient Agar Media (NAM) plates. Inoculated plates were incubated at 37°C for 24 hours.

2.2. Identification of Bacterial Isolates

The potent PGPR-producing bacterial isolates were identified as per the key provided by Bergey's Manual (Garrity *et al.*, 2005). Pure colonies of PGPR-producing bacterial isolates were identified on the observations noted from Gram stain, spore formation, colony characters, and biochemical characteristics.

2.3. Screening of PGPR bacteria

The bacterial isolates were examined for Phosphate solubilizing, IAA, and ammonia production.

2.3.1. Phosphate solubilization

Phosphate solubilizing bacteria were screened using Pikovskaya's Agar Medium (PAM) as mentioned by Rai *et al.* (2020). The bacterial isolates were inoculated in PAM and incubated for 5 days at 37°C. The appearance of clear zones around the bacterial colonies confirms the phosphate solubilizing property of bacterial strains.

2.3.2. IAA Production

The efficacy of bacterial strains to produce IAA was assessed using UV-VIS spectrophotometerbased assay as stated by (Ehmann, 1977) Salkowski reagent using the Salkowski's method (Ehmann, 1977)

with slight modification. The bacterial isolates were inoculated in yeast malt dextrose (YMD) broth with tryptophan and incubated at 28°C for 5 days. The broth was centrifuged at 10000 rpm for 15 min. A 1.0 ml of supernatant was collected and 2.0 ml of Salkowski's reagent was added. The reaction mixture was kept in the dark. The optical density (OD) of the reaction mixture was recorded at 530 nm using UV-VIS Spectrophotometer.

2.3.3. Ammonia production

The bacterial isolates were examined for ammonia production using Nessler's reagent (Mohite, 2013). Fresh bacterial culture was mixed with 10 ml of peptone water and incubated at 30°C for 72 hours. Nessler's reagent (0.5 ml) was mixed with the reaction mixture. The colour change from pale yellow to dark brown confirms the ammonia production by bacterial isolate.

2.3.4. Hydrogen Cyanide Production

Hydrogen cyanide production in bacterial isolates was inspected using the method described by Sehrawat *et al.* (2022) Fresh bacterial cultures were streaked in NAM supplemented with Glycine. Whatman filter paper-soaked reagent consisting of 0.5 % picric acid and 2 % sodium carbonate, was covered over the inoculated NAM plates and incubated at 37°C for 5 days. The development of orange-red colour indicates the presence of hydrogen cyanide.

All the experimental analysis was done in triplicates to minimize the error rate. Observed data were processed and graphs were prepared using MS Office Excel 2021 with an error bar.

3. RESULTS AND DISCUSSIONS

Twenty-two bacterial strains were isolated from the samples. We have scientifically evaluated bacteria isolates for PGPR production efficacy in terms of Ammonia, Hydrogen Cyanide, IAA production. A total of nine bacterial isolates have shown PGPR activity. Among them, three bacterial isolates belong to *Bacillus* spp. The PGPR efficacy of *Bacillus* spp. is shown in Table 1. *Bacillus* sp. PGPR-1 isolate showed significant PGPR efficacy with maximum Phosphate solubilization of 2.4 mm zone diameter (Fig. 1) and IAA production of $16.2 \pm 0.12 \,\mu g/mL \pm SD$ (Fig. 2).

Isolate PGPR-1 PGPR-2 PGPR-3 **Colony Colour** White Cream Cream **Colony Shape** Irregular Irregular Wrinkled Convex **Surface Texture** Rough Rough Smooth Gram Stain + ++0.93 µm Cell diameter $0.87 \mu m$ 1.24 µm Motility + + + Spore ++6.5 % NaCl + +Growth at 55°C +Catalase + ++ Oxidase + + +Citrate +Urease TSI Alk/Acid Butt Alk/Acid Butt Acid/Acid Indole VP + +**Starch Hydrolysis** + +

Table 1. Biochemical Characteristics of Bacterial isolates

Table 2. Screening of Bacterial isolates for PGPR

Tuble 2. Screening of Buccerium isolates for 1 G1 it			
Isolate	Bacillus sp. PGPR - 1	Bacillus sp. PGPR -2	Bacillus sp. PGPR – 3
Phosphate solubilization (mm ±SD zone diameter)	2.4 ±0.039	1.8 ±0.017	2.1 ±0.025
Ammonia Production	++	++	+
Hydrogen Cyanide Production	++	+	-
IAA (μ g/mL \pm SD)	16.2 ± 0.12	13.7 ± 0.084	15.9 ± 0.1

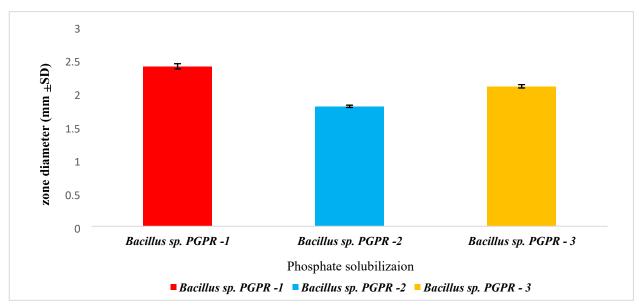


Fig. 1. Phosphate solubilization efficacy of PGPR Bacillus species

Fig. 2. IAA Production efficacy of PGPR Bacillus species

We have observed close similarity of PGPR-1, PGPR-2, PGPR-3 to *Bacillus subtilis*, *Bacillus licheniformis*, and *Bacillus megaterium* respectively. In support to our findings, Kashyap *et al.* (2019) delineated that the *Bacillus* spp. are dominant PGPR-producing rhizobacteria in tropical regions. Besides, *Bacillus* spp. has also been disclosed to minimize the salinity stress in plants (Kaloterakis *et al.*, 2021).

PGPR enhance crop yield by synthesizing ammonia that increases soil pH and combats fungal pathogens by inhibiting mycelial formation (Mohanty et al., 2021) in an indirect mode. HCN has been reported for beneficial action in plants by inhibiting the pathogenic organism in rhizosphere (Mazumdar et al., 2020). Phosphates often occur as insoluble in acidic soils which are predominant in tropical countries like India (Wang et al., 2021). This problem has naturally been compensated by phosphate solubilizing bacteria (PSB) e.g., bacterial genera including Pseudomonas, Bacillus, Flavobacterium, and Rhizobium, by secreting organic acid which acidifies soil and hydroxyl and carboxyl groups of organic acids facilitates conversion of insoluble phosphate to it solubilize form (Pathak et al., 2019; Saritha and Prasad Tollamadugu, 2019). This bioconversion is enormously important to phosphorus uptake by plants (Tang et al., 2020). But, Chen et al. (2021) have reported that long-term use of chemical fertilizers reduces phosphorus uptake by plants. The PGPR bacteria secrete IAA in the rhizosphere which promotes plant growth by stimulating cell elongation and proper organ development (Kumar et al., 2019). IAA induces root length in plants which enhances the nutrient uptake by plants and encourages the growth rate of plants (Kumar et al., 2019). Nevertheless, Antoun and Prevost (2005) mentioned that around 2 to 5% of the rhizosphere bacteria are PGPR and further could be employed for sustainable agriculture.

Conclusions

PGPR bacteria are well-known free-living rhizospheric bacterial communities that induce plant growth by supplying phytohormones and nutrient availability. Nitrogen fixation, phosphate solubilization, suppressing pathogens, and secretion of plant hormones are crucial aspects of PGPR bacteria that attract the scientific group. *Bacillus* spp. have extensively studied for PGPR. However, the genetic engineering tools and techniques integrated with omics studies need to be explored more scientifically for customized applications. Presently, PGPR is considerably applicable in agriculture by means of biofertilizers and the recycling of minerals into soluble form.

References

- 1. Abdelwahed, S., Saadouli, I., Kouidhi, S., Masmoudi, A.S., Cherif, A., Mnif, W. & Mosbah, A. (2022). A new pioneer colorimetric micro-plate method for the estimation of ammonia production by plant growth promoting rhizobacteria (PGPR). *Main Group Chemistry*, 21(1), 55-68. https://doi.org/10.3233/MGC-210077
- 2. Adnan, N, Nordin, S. & Anwar, A. (2020). Transition pathways for Malaysian paddy farmers to sustainable agricultural practices: An integrated exhibiting tactics to adopt Green fertilizer. Land use policy, 90, 104255. https://doi.org/10.1016/j.landusepol.2019.104255
- 3. Aeron, A., Khare, E., Jha, C.K., Meena, V.S., Aziz, S.M.A., Islam, M.T. & Rajashekara, H. (2020). Revisiting the plant growth-promoting rhizobacteria: lessons from the past and objectives for the future. *Archives*
- 4. Basu, A, Prasad, P., Das, S.N., Kalam, S., Sayyed, R., Reddy, M. & El Enshasy, H. (2021). Plant growth promoting rhizobacteria (PGPR) as green bioinoculants: recent developments, constraints, and prospects. *Sustainability*, 13(3), 1140. https://doi.org/10.3390/su13031140 Chen, S., Cade-Menun, B. J., Bainard, L. D., St. Luce, M., Hu, Y., & Chen, Q. (2021). The influence of long-term N and P fertilization on soil P forms and cycling in a wheat/fallow cropping system. *Geoderma*, 404(115274), 115274. https://doi.org/10.1016/j.geoderma.2021.115274
- 5. Ehmann, A. (1977). The Van Urk-Salkowski reagent-a sensitive and specific chromogenic reagent for silica gel thin-layer chromatographic detection and identification of indole derivatives. *Journal of Chromatography*. 132, 267-276.
- 6. Garrity, G.M., Brenner, D.J., Krieg, N., Staley, J. & Manual, B.S. (2005). Systematic bacteriology.
- 7. The Proteobacteria, Part C: The Alpha-, Beta-, Delta-, and Epsiloproteobacteria, Bergey's Manual Trust, Department of Microbiology and Molecular Genetics. Springer USA P2.

- 8. Gouda, S., Kerry, R.G., Das, G., Paramithiotis, S., Shin, H.S. & Patra, J.K. (2018). Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. *Microbiological Research*, 206, 131-140. https://doi.org/10.1016/j.micres.2017.08.01
- 9. Gutierrez-Manero, F.J., Ramos-Solano, B., Probanza, A., Mehouachi, J., Tadeo, F.R. & Talon, M. (2001). The plant-growth promoting rhizobacteria *Bacillus pumilus* and *Bacillus licheniformis* produce high amounts of physiologically active gibberellins. *Physiol Plant*, 111, 206–211.
- 10. Hashemnejad, F., Barin, M., Khezri, M., Ghoosta, Y. & Hammer, E.C. (2021). Isolation and identification of insoluble zinc-solubilising bacteria and evaluation of their ability to solubilise various zinc minerals. *Journal of soil science and plant nutrition*, 21(3), 2501-2509. https://doi.org/10.1007/s42729-021-00540-x
- 11. Joo, G.J., Kim, Y.M., Lee, I.J., Song, K.S. & Rhee, I.K. (2004). Growth promotion of red pepper plugseedlings and the production of gibberellins by *Bacillus cereus*, *Bacillus macroides* and *Bacillus pumilus*. *Biotechnol Lett.*, 26, 487–491.
- 12. Kaloterakis, N, van Delden, S.H., Hartley, S. & De Deyn, G.B. (2021). Silicon application and plant growth promoting rhizobacteria consisting of six pure *Bacillus* species alleviate salinity stress in cucumber (*Cucumis sativus* L). *Scientia Horticulturae*, 288, 110383. https://doi.org/10.1016/j.scienta.2021.110383
- 13. Kashyap, B.K., Solanki, M.K., Pandey, A.K., Prabha, S., Kumar, P. & Kumari, B. (2019). *Bacillus* as plant growth promoting rhizobacteria (PGPR): a promising green agriculture technology Plant health under biotic stress. Springer, pp. 219-236. https://doi.org/10.1007/978-981-13-6040-4 11
- 14. Kaymak, H.C. (2010). Potential of PGPR in Agricultural Innovations. In: Maheshwari, D. (eds) Plant Growth and Health Promoting Bacteria. *Microbiology Monographs*, vol, 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13612-2 3
- 15. Kumar, A., Patel, J., Meena, V.S. & Ramteke, P. (2019). Plant growth-promoting rhizobacteria: strategies to improve abiotic stresses under sustainable agriculture. *Journal of Plant Nutrition*, 42 (11-12),1402-1415. https://doi.org/10.1080/01904167.2019.1616757
- 16. Mazumdar, D., Saha, S.P. & Ghosh, S. (2020). Isolation, screening and application of a potent PGPR for enhancing growth of Chickpea as affected by nitrogen level. *International Journal of Vegetable Science*, 26(4), 333-350. https://doi.org/10.1080/19315260.2019.1632401
- 17. Mohanty, P., Singh, P.K., Chakraborty, D., Mishra, S. & Pattnaik, R. (2021). Insight into the role of PGPR in sustainable agriculture and environment. *Frontiers in Sustainable Food Systems*, 5, 667150. https://doi.org/10.3389/fsufs.2021.667150
- 18. Mohite, B. (2013). Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth. *Journal of soil science and plant nutrition*, 13(3), 638-649. http://dx.doi.org/10.4067/S0718-95162013005000051
- 19. Molnár, K., Nyárádi, I.I., Bíró-Janka, B., Simó, I., Bálint, J. & Domokos, E. (2020). Preliminary Study of the Effect of Chemical and Organic Fertilizers on a Semi-Natural Grassland in Vlăhiţa,
- 20. Harghita Mountains, Romania. *Acta Biologica Marisiensis*, 3(2), 56-65. https://doi.org/10.2478/abmj-2020-0011
- 21. Mustafa, S., Kabir, S., Shabbir, U. & Batool, R. (2019). Plant growth promoting rhizobacteria in sustainable agriculture: from theoretical to pragmatic approach. *Symbiosis*, 78(2), 115-123. https://doi.org/10.1007/s13199-019-00602-w
- 22. Nazir, N., Kamili, A.N. & Shah, D. (2018). Mechanism of plant growth promoting rhizobacteria (PGPR) in Enhancing plant growth: A review. *Int. J. Manag. Technol. Eng.*, 8, 709-721.
- 23. Nicolopoulou-Stamati, P., Maipas, S, Kotampasi, C, Stamatis, P, & Hens, L. (2016). Chemical pesticides and human health: the urgent need for a new concept in agriculture. *Frontiers in public health*, 4, 148. https://doi.org/10.3389/fpubh.2016.00148

- 24. of microbiology, 202(4), 665-676. https://doi.org/10.1007/s00203-019-01779-w Pathak, D., Lone, R., Khan, S. & Koul, K. (2019). Isolation, screening and molecular characterization of free-living bacteria of potato (*Solanum tuberosum* L.) and their interplay impact on growth and production of potato plant under mycorrhizal association. *Scientia Horticulturae*, 252, 388-397. https://doi.org/10.1016/j.scienta.2019.02.072
- 25. Péterfi, O, & Domokos, E. (2018). Mutualistic and Endophytic Microorganisms of: Description, Role and Use. *Acta Biologica Marisiensis*, 1(2), 5-21. https://doi.org/10.2478/abmj-2018-0009
- 26. Prasad, M., Srinivasan, R., Chaudhary, M., Choudhary, M. & Jat, L.K. (2019). Plant growth promoting rhizobacteria (PGPR) for sustainable agriculture: perspectives and challenges. *PGPR amelioration in sustainable agriculture*, 2, 129-157. https://doi.org/10.1016/B978-0-12-8158791.00007-0
- 27. Rai, P.K., Singh, M., Anand, K., Saurabh, S., Kaur, T., Kour, D. & Kumar, M. (2020). Role and Potential Applications of plant growth-promoting rhizobacteria for Sustainable Agriculture. *New and Future Developments in Microbial Biotechnology and Bioengineering*, pp. 49-60. Elsevier. https://doi.org/10.1016/B978-0-12-820526-6.00004-X
- 28. Rani, L., Thapa, K., Kanojia, N., Sharma, N., Singh, S., Grewal, A. S. & Kaushal, J. (2021). An extensive review on the consequences of chemical pesticides on human health and environment. *Journal of Cleaner Production*, 283, 124657. https://doi.org/10.1016/j.jclepro.2020.124657
- 29. Sabarwal, A., Kumar, K. & Singh, R.P. (2018). Hazardous effects of chemical pesticides on human health—Cancer and other associated disorders. *Environmental toxicology and pharmacology*, 63, 103-114. https://doi.org/10.1016/j.etap.2018.08.018
- 30. Sansinenea, E. (2019). *Bacillus* spp. as plant growth-promoting bacteria: Secondary metabolites of plant growth promoting rhizomicroorganisms. pp. 225-237, Springer. https://doi.org/10.1007/978981-13-5862-3 11
- 31. Saritha, M., & Prasad Tollamadugu, N.V.K.V. (2019). The status of research and application of biofertilizers and biopesticides: Global scenario. *Recent Developments in Applied Microbiology and Biochemistry*, 195–207. https://doi.org/10.1016/B978-0-12-816328-3.00015-5
- 32. Saxena, A., Kumar, M., Chakdar, H., Anuroopa, N. & Bagyaraj, D. (2020). *Bacillus* species in soil as a natural resource for plant health and nutrition. *Journal of applied microbiology*, 128(6), 15831594. https://doi.org/10.1111/jam.14506
- 33. Sehrawat, A., Sindhu, S.S, & Glick, B.R. (2022). Hydrogen cyanide production by soil bacteria: Biological control of pests and promotion of plant growth in sustainable agriculture. *Pedosphere*, 32(1), 15-38. https://doi.org/10.1016/S1002-0160(21)60058-9
- 34. Sharma, N. & Singhvi, R. (2017). Effects of chemical fertilizers and pesticides on human health and environment: a review. *International journal of agriculture, environment and biotechnology*,
- 35. 10(6), 675-680. https://doi.org/10.5958/2230-732X.2017.00083.3 Somers, E., Vanderleyden, J. & Srinivasan, M. (2004). Rhizosphere bacterial signalling: a love parade beneath our feet. *Crit. Rev. Microbiol.*, 30, 205–240.
- 36. Tang, A., Haruna, A.O., Majid, N.M.A. & Jalloh, M.B. (2020). Potential PGPR properties of cellulolytic, nitrogen-fixing, phosphate-solubilizing bacteria in rehabilitated tropical forest soil. *Microorganisms*, 8(3), 442. https://doi.org/10.3390/microorganisms8030442
- 37. Wang, Y., Peng, S., Hua, Q., Qiu, C., Wu, P., Liu, X. & Lin, X. (2021). The long-term effects of using phosphate-solubilizing bacteria and photosynthetic bacteria as biofertilizers on peanut yield and soil bacteria community. *Frontiers in Microbiology*, 3, 12-18. https://doi.org/10.3389/fmicb.2021.693535