

RESEARCH ARTICLE DOI: 10.53555/jptcp.v31i8.7317

EFFECTS OF BOBATH APPROACH WITH CORE STABILITY TO IMPROVE BALANCE IN STROKE

Sanya Ashraf^{1*}, Muhammad Junaid Ijaz², Asha³, M Daniyal Zeerak⁴, Adiba Javed⁵, Zeeshan Khattak⁶, Ahsan Taqweem⁷, Masooma Irfan⁸, Hafiz Ali Bin Asim⁹

^{1*,2}Superior University, Lahore
 ³United College of Physical Therapy, Karachi
 ⁴Liaquat National Hospital, Karachi
 ⁵Fazal Hospital, Lahore
 ⁶Sarhad University of Information and Technology, Peshawar
 ⁷Riphah International University, Lahore Campus
 ⁸Physiotherapist at Ganga Ram Hospital, Lahore
 ⁹Foundation University College of Physical Therapy

*Corresponding Author: Sanya Ashraf *Email: Sanyaashraf052@gmail.com

ABSTRACT

Background : A stroke occurs when a blood artery bursts or is disrupted, cutting off the brain's blood supply and resulting in cell death in specific brain regions. It is one of the primary causes of long-term functional impairment, which lowers the quality of life for patients and increases their dependence and social isolation.

Objective : To determine effects Of Bobath Approach with Core Stability to Improve Balance in Stroke.

Methodology: Study design was Randomized Controlled Trial. Sample size was 38 .Simple random sampling technique was utilized . Age 30-65 having more than 1 month or less than 6 months onset of stroke were included . Comorbidities like IHD and Rheumatologic disease were excluded.2 group were made. Group A received Bobath approach with core stability training while Group B received Conventional Physical Therapy. Trunk Impairment Scale and Berg Balance Scale were assessment tools .SPSS 25 was used in this study for data analysis.

Results: Revealed post-treatment, Group A mean score increased to 17.000 ± 1.374 , whereas Group B's mean score increased to 14.421 ± 2.545 . The P value for the post-treatment comparison was 0.001, indicating a statistically significant difference between the groups. For "Standing to Sitting", pre-treatment scores were (P = .589) Post-treatment, showing a significant difference (P = .001) after intervention both group A experimental group an B showed improvement but group A showed more prominent results as compare B to control group.

Conclusion: Study concluded intervention bobath approach with core stability had significant improvement on balance among stroke survivors.

Keywords :Balance, Bobath Approach, Core Stability, Stroke

INTRODUCTION

A stroke is an event in which there is a disruption or rupture of a blood artery blocking off the brain's blood supply and causing cell death in certain brain regions(1). In Western nations stroke is the primary cause of disability among adults. In high-income nations, stroke is the most frequent cause for urgent hospitalization in neurology departments(2). Stroke is one of the main causes of long-term functional impairment which worsens patients' quality of life and increases their reliance and social isolation(3). The number of stroke cases has increased recently and this trend is predicted to continue in the years to come. According to WHO definitions, a stroke is characterized by the rapid onset of localized and global indications associated with compromised brain function that last for more than twenty-four hours as a consequence of cerebral vascular problems. A patient suffering from a stroke usually indicates some of the following five symptoms: sudden weakness or numbness in the face, arms or legs especially in one half of the body sudden confusion most of which is followed by speech problems, sudden problems with vision in one or both eyes, sudden difficulty walking, feeling lightheaded, losing balance and coordination, sudden severe dizziness that doesn't seem to be related to anything. A stroke is a condition affecting the central nervous system (CNS)(4).

Pakistan is one of the top Asian nations with the highest stroke death rates(5). In Pakistan, the estimated yearly incidence of stroke is 250/100,000. About 10.9% of the population had no formal education and the majority (74.66%) came from rural regions. There were 271 instances of stroke found and the frequency was 1.2%. It found that the community had a 4.8% prevalence of stroke with a similar ratio for men and women. Additionally, 30% of all strokes were reported to have happened in people under the age of 45, which suggests that Pakistan has a high rate of young strokes(6). The ensuing neurological impairments have a significant influence on everyday activities, life quality and medical expenses. To develop innovative interventional strategies and suggest suitable therapies for neurological abnormalities and subsequent recovery rehabilitation need a thorough grasp of the underlying processes (7).

One of the most prevalent disabilities experienced by stroke survivors is balance impairment, which increases the risk of falls and reduces mobility. The most prevalent type of impairment is hemiparesisrelated decreased mobility. Two primary causes are directly linked to this impairment decrease in central motor control and a quick change in muscle thickness and composition that becomes apparent within a month of the commencement. Reduced balance function is another consequence of all these deficits the patient is unable to keep his center of gravity within his support base, whether or not external forces are at play (8).

The Bobath Concept is a technique that enhances control over postural and selected motions with an emphasis on exercises involving natural movement patterns. Postural muscle tone has a major role in the efficacy and efficiency of the motion generated during motion activities. The patient's posture and balance should improve as a result of completing a Core Stability Exercise utilising the Bobath Concept technique, which is intended to reawaken the postural muscles(9). Bobath is also known as the neuro-developmental approach worldwide. Recently, many in the rehabilitation sector have become interested in this idea, particularly with regard to stroke victims' recuperation(10). The theoretical underpinnings of NDT/Bobath on stroke recovery have been investigated in previous studies, the majority of which were controlled trials.Karl Bobath developed this procedure in 1990, and she described how hemiplegic patients experience motor dysfunctions. Patients who have had a stroke must actively participate in exercises with the support of the therapist(11). Different types of manual handling can be gradually eradicated to assist the patient become more independent in their motor duties. This type of therapy promotes independence and functional control. The NDT/Bobath concept has been recognised as a treatment for stroke patients with movement dysfunctions; nevertheless, in order to explain its widespread use by physiotherapists, further research is needed to determine its effectiveness(12). Therefore, "core stability training" uses targeted pelvic movement and abdominal contractions to activate the deep trunk muscles. In recent years, sports and low back pain rehabilitation have placed a strong emphasis on the idea of "core" and the necessity of retraining "core stability." A number of studies have recently looked into the role that core stability training plays in stroke recovery. Numerous studies have demonstrated the benefits of trunk control and core stability

training for sitting, standing, balance, mobility, and neuromuscular integration, all of which have a favourable impact on day-to-day activities. Rehabilitative regimens are therefore now focusing on core stability through the strengthening of the lumbar, pelvic, and abdominal muscles. Neuroplasticity and learning in stroke patients can be influenced by several circumstances(13).

METHODS

Study design was Randomized Controlled Trial. Data gathered from Pakistan Institute of Neuro Sciences (PINS), Lahore's rehabilitation center and home sessions in various Lahore neighborhoods. A sample size of 38 was calculated through epitool software by using Confidence Interval (CI=95%), Anticipated population proportion (p=0.60), and Absolute precision (d=0.08).Simple random sampling technique was utilized .Duration of Study was 6 months after the approval of synopsis Feb 2024 to 10 July 2024. Age 30 - 65 both Genders having more than 1 month or less than 6 months since onset of stroke and GCS score 11 to 15 were included .GCS less than 10, Any Pathological fracture, Diagnosed Orthostatic hypotension and Comorbidities like IHD and Rheumatologic disease were excluded. Ethical consideration was followed throughout study. Consent was get from patients . Both groups were pass through rehabilitative exercise program. Group A (Experimental group); received Bobath approach with core stability training while Group B (Control group) received Conventional Physical Therapy for 40 min 5 days a week up to 8 weeks (14). Trunk Impairment Scale and Berg Balance Scale were assessment tools .SPSS 25 was used in this study for data analysis.

Table 4.1 :Frequency Distribution of Demographics								
	Trea	tment Group						
		Group A		Gro	Group B		1	
		Ν	%	Ν	%	Ν	%	
Gender	Male	12	63.2%	11	57.9%	23	60.5%	
	Female	7	36.8%	8	42.1%	15	39.5%	
Duration of stroke	1-3 Months	13	68.4%	11	57.9%	24	63.2%	
	4-6 Months	6	31.6%	8	42.1%	14	36.8%	
Paralysis side	Right side	12	63.2%	13	68.4%	25	65.8%	
	Left side	7	36.8%	6	31.6%	13	34.2%	
Total		19	100.0%	19	100.0%	38	100.0%	

RESULTS

Table demonstrated the Demographics of study population

	Treatment	Ν	Mean	Std	P value
	Group			Deviation	1 / 0100
Sitting to standing Pre treatment	Group A	19	1.789	.976	.235
	Group B	19	1.421	.901	-
Sitting to standing Post Treatment	Group A	19	3.736	.452	.001
	Group B	19	2.736	.561	
Standing unsupported Pre Treatment	Group A	19	1.473	1.123	.735
	Group B	19	1.368	.895	
Standing unsupported Post Treatment	Group A	19	3.210	.787	.029
	Group B	19	2.736	.452	
Sitting with back unsupported Pre	Group A	19	2.263	1.147	.760
Treatment	Group B	19	2.368	.955	
Sitting with back unsupported Post	Group A	19	3.947	.229	.038
Treatment	Group B	19	3.631	.597	
Standing to sitting Pre treatment	Group A	19	1.421	1.346	.589
	Group B	19	1.631	1.011	1
Standing to sitting Post Treatment	Group A	19	3.315	.820	.001
	Group B	19	2.578	.606	
Transfer Pre treatment	Group A	19	1.736	.991	1.00
	Group B	19	1.736	.561	
Transfer post treatment	Group A	19	3.526	.512	.001
1	Group B	19	2.736	.561	-
Standing with eyes closed Pre treatment	Group A	19	1.473	1.389	.536
	Group B	19	1.684	.477	
Standing with eyes closed post treatment	Group A	19	3.526	.512	.001
	Group B	19	3.000	.333	
Standing with feet together Pre treatment	Group A	19	1.105	.809	.401
	Group B	19	1.578	2.292	
Standing with feet together post	Group A	19	3.684	.477	.001
treatment	Group B	19	2.105	.458	
Reaching forward with outstretched arm	Group A	19	.736	.653	.001
Pre treatment	Group B	19	1.631	.495	
Reaching forward with outstretched arm	Group A	19	3.421	.507	.005
post treatment	Group B	19	3.000	.333	
Retrieving object from floor Pre	Group A	19	1.473	1.123	.118
treatment	Group B	19	1.052	.229	
Retrieving object from floor post	Group A	19	3.210	.787	.001
treatment	Group B	19	2.368	.597	
Turning to look behind Pre treatment	Group A	19	1.315	1.293	.337
C C	Group B	19	1.631	.495	
Turning to look behind Post treatment	Group A	19	3.526	.512	.001
	Group B	19	2.789	.535	1
Turning 360 degrees Pre treatment	Group A	19	1.526	1.172	.721
	Group B	19	1.631	.495	1
Turning 360 degrees Post treatment	Group A	19	3.157	.764	.028
	Group B	19	2.684	.477	1
Placing alternate foot on stool Pre	Group A	19	1.000	.881	1.00
treatment	Group B	19	1.000	.000	1
	Group A	19	3.157	.764	.016

Table 4.2: Between group Comparison of Berg Balance Scale using Independent Sample t test

Effects Of Bobath Approach	With Cor	e Stability ⁻	To Improve	Balance I	n Stroke
Lifetis Of Dobath Approach	with COI	c Stability .	10 mpiove	Dalance I	II SUOKC

Placing alternate foot on stool Post	Group B	19	2.631	.495	
treatment					
Standing with one foot in front Pre	Group A	19	1.000	.881	.255
treatment	Group B	19	.736	.452	
Standing with one foot in front Post	Group A	19	3.157	.764	.001
treatment	Group B	19	2.052	.229	
Standing on one foot Pre treatment	Group A	19	1.052	.848	.181
	Group B	19	.736	.452	
Standing on one foot Post treatment	Group A	19	3.210	.713	.001
	Group B	19	2.052	.229	

For the "Sitting to Standing" task, pre-treatment scores P = .235. Post-treatment, scores (P =.001). Standing Unsupported pre-treatment scores were P = .735. Post-treatment, scores were (P =.029).For "Sitting with Back Unsupported", pre-treatment scores were (P = .760). Post-treatment, scores showing a significant difference (P = .038).For "Standing to Sitting", pre-treatment scores were (P = .589). Post-treatment, showing a significant difference (P = .001).For "Transfer", pre-treatment (P = 1.00). Post-treatment, significant difference (P = .001).For "Standing with Eyes Closed", pretreatment scores were (P = .536). Post-treatment, scores were a significant difference (P = .001). For "Standing with Feet Together", pre-treatment scores were (P = .401). Post-treatment, scores showing a significant difference (P = .001).For "Reaching Forward with Outstretched Arm", pre-treatment scores were (P = .001). Post-treatment, scores showing a significant difference (P = .005). For "Retrieving Object from Floor", pre-treatment scores were (P = .118). Post-treatment, scores significant difference (P = .001).For "Turning to Look Behind", pre-treatment scores were (P = .337). Post-treatment, scores were showing a significant difference (P = .001).For "Turning 360 Degrees", pre-treatment scores were (P = .721). Post-treatment, scores were showing a significant difference (P = .028).For "Placing Alternate Foot on Stool", pre-treatment scores were (P = 1.00). Post-treatment, scores were showing a significant difference (P = .016).For "Standing with One Foot in Front", pretreatment scores were (P = .255). Post-treatment, scores were showing a significant difference (P = .255). .001).For "Standing on One Foot", pre-treatment scores were (P = .181). Post-treatment, scores were showing a significant difference (P = .001).

Table 4.3: Between groups Comparison of Trunk Impairment scale using Independent Sample
t test

	Treatment	N	Mean	Std.	P value
	Group			Deviation	
Trunk Impairment	Group A	19	11.947	2.570	.908
Scale Pre Treatment	Group B	19	11.842	2.967	
Trunk Impairment	Group A	19	17.000	1.374	.001
Scale Post Treatment	Group B	19	14.421	2.545	

Post-treatment, Group A's mean score increased to 17.000 ± 1.374 , whereas Group B's mean score increased to 14.421 ± 2.545 . The P value for the post-treatment comparison was 0.001, indicating a statistically significant difference between the groups.

Table 4.4: Within	group com	parison of	BBS in G	roup A usi	ng Paired Sam	ple T test
	8- · · · · · · · · · · ·					r

Treatment Group			Mean	Std. Deviation	P value
Group A	Dain 1	Sitting to standing Pre treatment	1.789	.976	001
	Fall I	Sitting to standing Post treatment	3.736	.452	.001
	Dair 2	Standing unsupported Pre treatment	1.473	1.123	001
r all 2		Standing unsupported Post treatment	3.210	.787	.001
	Pair 3	Sitting with back unsupported Pre treatment	2.263	1.147	.001

	Sitting with back unsupported Post treatment	3.947	.229	
Dair 1	Standing to sitting Pre treatment	1.421	1.346	001
Fall 4	Standing to sitting Post Treatment	3.315	.820	.001
Dain 5	Transfer Pre treatment	1.736	.991	001
Fall 5	Transfer post treatment	3.526	.512	.001
Dain 6	Standing with eyes closed Pre treatment	1.473	1.389	001
Pair o	Standing with eyes closed post treatment	3.526	.512	.001
Dain 7	Standing with feet together Pre treatment	1.105	.809	001
Pair /	Standing with feet together post treatment	3.684	.477	.001
Doin 9	Reaching forward with outstretched arm Pre treatment	.736	.653	001
Pair o	Reaching forward with outstretched arm post treatment	3.421	.507	1.001
Doir 0	Retrieving object from floor Pre treatment	1.473	1.123	001
Fall 9	Retrieving object from floor post treatment	3.210	.787	1.001
Dair 10	Turning to look behind Pre treatment	1.315	1.293	001
rall 10	Turning to look behind Post treatment	3.526	.512	.001
Dain 11	Turning 360 degrees Pre treatment	1.526	1.172	001
Fall 11	Turning 360 degrees Post treatment	3.157	.764	.001
Dair 12	Placing alternate foot on stool Pre treatment	1.000	.881	001
	Placing alternate foot on stool Post treatment	3.157	.764	.001
Dair 13	Standing with one foot in front Pre treatment	1.000	.881	001
1 all 13	Standing with one foot in front Post treatment	3.157	.764	.001
Pair 14	Standing on one foot Pre treatment	1.052	.848	001
1 all 14	Standing on one foot Post treatment	3.210	.713	.001

These results indicate significant improvements in all measured tasks of the Berg Balance Scale for Group A after treatment.

Table 4.5: Within group comparison of BBS in Group B using Paired Sample 1 test						
Treatmen	nt Group		Mean	Std. Deviation	P value	
Group B Pair 1		Sitting to standing Pre treatment	1.421	.901	001	
		Sitting to standing Post treatment	2.736	.561	.001	
	Pair 2	Standing unsupported Pre treatment	1.368	.895	001	
		Standing unsupported Post treatment	2.736	.452	.001	
	Pair 3	Sitting with back unsupported Pre treatment	2.368	.955	001	
		Sitting with back unsupported Post treatment	3.631	.597	.001	
	Pair 4	Standing to sitting Pre treatment	1.631	1.011	001	
		Standing to sitting Post Treatment	2.578	.606	.001	
	Pair 5	Transfer Pre treatment	1.736	.561	.001	
		Transfer post treatment	2.736	.561		
	Pair 6	Standing with eyes closed Pre treatment	1.684	.477	001	
		Standing with eyes closed post treatment	3.000	.333	.001	
	Pair 7	Standing with feet together Pre treatment	1.578	2.292	225	
		Standing with feet together post treatment	2.105	.458	.555	
	Pair 8	Reaching forward with outstretched arm Pre	1.631	.495		
		treatment			001	
		Reaching forward with outstretched arm post	3.000	.333	.001	
		treatment				
	Pair 9	Retrieving object from floor Pre treatment	1.052	.229	001	
		Retrieving object from floor post treatment	2.368	.597	.001	

Pair 10	Turning to look behind Pre treatment	1.631	.495	001
	Turning to look behind Post treatment	2.789	.535	.001
Pair 11	Turning 360 degrees Pre treatment	1.631	.495	001
	Turning 360 degrees Post treatment	2.684	.477	.001
Pair 12	Placing alternate foot on stool Pre treatment	1.000	.000	001
	Placing alternate foot on stool Post treatment	2.631	.495	.001
Pair 13	Standing with one foot in front Pre treatment	.736	.452	001
	Standing with one foot in front Post treatment	2.052	.229	.001
Pair 14	Standing on one foot Pre treatment	.736	.452	001
	Standing on one foot Post treatment	2.052	.229	.001

These results indicate significant improvements in nearly all measured tasks of the Berg Balance Scale for Group B after treatment, except for "Standing with Feet Together

Table 4.6: Within group comparison of Trunk Impairment Scale using Paired Sample T tes
--

Treatment Group			Mean	Std. Deviation	P value
Group A	Pair 1	Trunk Impairment Scale Pre Treatment	11.947	2.570	.001
		Trunk Impairment Scale Post Treatment	17.000	1.374	
Group B	Pair 1	Trunk Impairment Scale Pre Treatment	11.842	2.967	.001
		Trunk Impairment Scale Post Treatment	14.421	2.545	

These results indicate significant improvements in the Trunk Impairment Scale for both Group A and Group B after treatment.

DISCUSSION

Current randomized control trial conducted on 38 stroke survivors 19 were in experimental (bobath and core stability exercise) and 19 were in control group (conventional physical therapy). 15 were female and 23 were male participants undergone 8 week treatment session.

Berg balance and trunk impairment scale were used as assessment tool. Group A experimental group showed significant improvement after 8 week intervention on balance berg scale showed setting to standing mean score 1.789 ± 9.76 to $3.73\pm.452$ with significant p value 0.001 these results were accordance to Verma et al. study concluded core stability comibing with boabth approach improve balance among stroke survivors with significant p <0.05(15).

Present study revealed 39.5% were female subjects and 60.5% were male participant having stroke these population was accordance to Chen X et al. study had 30% female and 70% were male underwent a core stability exercises to improve balance results demonstrated subjects underwent core stability training showed improve balance with significant p value < 0.05 these results were accordance to present study showed improvement core stability training with P < .005(16).

Karthikbaba et al. Study revealed that core stability exercise improve balance and mobility among stroke survivor after 6 week treatment showed significant improvement on trunk impairment scale with p < .05 these results were accordance to current study showed p value 0.001 after 8 week core stability and bobath approach on stroke survivor. Current study worked on 2 intervention but previous study just focued on core stability training (17).

Van Criekinge et al. Study demonstrated core stability exercise showed significant improvement on sitting and standing balance among stroke survivors showed significant p value <0.05 these results were accordance to present study showed For "Standing to Sitting", pre-treatment scores were 1.421 ± 1.346 for Group A and 1.631 ± 1.011 for Group B (P = .589). Post-treatment, scores increased

to $3.315\pm.820$ for Group A and $2.578\pm.606$ for Group B, showing a significant difference (P = .001). For "Standing Unsupported", pre-treatment scores were 1.473 ± 1.123 for Group A and $1.368\pm.895$ for Group B (P = .735). Post-treatment, scores were $3.210\pm.787$ for Group A and $2.736\pm.452$ for Group B, also showing a significant difference (P = .029)(18).Present study revealed post treatment For "Standing with Feet Together", pre-treatment scores were $1.105\pm.809$ for Group A and 1.578 ± 2.292 for Group B (P = .401). Post-treatment, scores were $3.684\pm.477$ for Group A and $2.105\pm.458$ for Group B, showing a significant difference (P = .001) these results were accordance to previous study (19).Preset study demonstrated Standing with One Foot in Front, pre-treatment, scores were $3.157\pm.764$ for Group A and $2.052\pm.229$ for Group B, showing a significant difference (P = .001) these results were accordance (P = .001) these results were accordance to previous study (19).Preset study demonstrated Standing with One Foot in Front, pre-treatment, scores were $3.157\pm.764$ for Group A and $2.052\pm.229$ for Group B, showing a significant difference (P = .001) these results were accordance to previous study by Verheyden G et al. (20).

CONCLUSION

Study concluded intervention bobath approach with core stability had significant improvement on balance among stroke survivors

Funding : No source of funding's

Acknowledgement: .We want to really thank my supervisor for his insightful advice and upbeat attitude regarding this study. We owe him a great deal for making our study session much easier by making sure that the right conditions and atmosphere were provided. Without his assistance and knowledgeable direction, this endeavor would not have been feasible.

REFERENCES

- 1. Sherin A, Ul-Haq Z, Fazid S, Shah BH, Khattak MI, Nabi F. Prevalence of stroke in Pakistan: Findings from Khyber Pakhtunkhwa integrated population health survey (KP-IPHS) 2016-17. Pakistan journal of medical sciences. 2020;36(7):1435-40.
- 2. Grefkes C, Fink GR. Recovery from stroke: current concepts and future perspectives. Neurological research and practice. 2020;2(1):17.
- 3. Park J-S, Yang K-H, Lee D-H. The Effects of Core Stability Exercise with Music on Balance and Functional Activity in Stroke. Journal of Korean Society for Neurotherapy. 2022;26(1):29-34.
- 4. Iqbal M, Perdana SS, Prasetyo D, editors. The Impact of Core Stability Exercise with the New Bobath Concept Method on Post-Stroke Patient Balance at RSPAL Dr Ramelan Surabaya. Academic Physiotherapy Conference Proceeding; 2021.
- 5. Khan M, Sana FA, Ali Y. Strokes Outcome Determinants in Pakistan Primary Stroke Center. Annals of the Romanian Society for Cell Biology. 2022;26(01):2015-24.
- 6. Anwar A, Saleem S, Aamir A, Diwan M. Organization of Stroke Care in Pakistan. International journal of stroke : official journal of the International Stroke Society. 2020;15(5):565-6.
- 7. Guggisberg AG, Koch PJ, Hummel FC, Buetefisch CM. Brain networks and their relevance for stroke rehabilitation. Clinical Neurophysiology. 2019;130(7):1098-124.
- 8. Almarzouki R, Bains G, Lohman E, Bradley B, Nelson T, Alqabbani S, et al. Improved balance in middle-aged adults after 8 weeks of a modified version of Otago Exercise Program: A randomized controlled trial. Plos one. 2020;15(7):e0235734.
- 9. Joy MT, Carmichael ST. Encouraging an excitable brain state: mechanisms of brain repair in stroke. Nature Reviews Neuroscience. 2021;22(1):38-53.
- 10. Michielsen M, Vaughan-Graham J, Holland A, Magri A, Suzuki M. The Bobath concept–a model to illustrate clinical practice. Disability and rehabilitation. 2019;41(17):2080-92.
- 11. Willmore EG, Millar NL, van der Windt D. Post-surgical physiotherapy in frozen shoulder: A review. Shoulder & Elbow. 2022;14(4):438-51.
- 12. Kumar S, Singh AK, Dhiman S. Focusing on Different Therapeutic Approaches in People with Stroke Rehabilitation: A Scoping Review of Literature.

- 13. Salgueiro C, Urrútia G, Cabanas-Valdés R. Influence of core-stability exercises guided by a telerehabilitation app on trunk performance, balance and gait performance in chronic stroke survivors: a preliminary randomized controlled trial. International Journal of Environmental Research and Public Health. 2022;19(9):5689.
- 14. Verma S, Kumar D, Patra A. Effectiveness of Bobath Approach Along with Core Stability Training in Stroke Patient. 2023;16:85-96.
- 15. Verma S, Patra A, Kumar N. To Compare The Effectiveness Of Bobath Approach Along With Core Stability Training Versus Bobath Approach Along With Conventional Therapy On Trunk Function And Sitting Balance In Stroke Patients. NeuroQuantology. 2022;20(13):3699.
- 16. Chen X, Gan Z, Tian W, Lv Y. Effects of rehabilitation training of core muscle stability on stroke patients with hemiplegia. Pakistan journal of medical sciences. 2020;36(3):461.
- 17. Karthikbabu S, Chakrapani M, Ganesan S, Ellajosyula R, Solomon JM. Efficacy of trunk regimes on balance, mobility, physical function, and community reintegration in chronic stroke: a parallelgroup randomized trial. Journal of Stroke and Cerebrovascular Diseases. 2018;27(4):1003-11.
- 18. Van Criekinge T, Truijen S, Schröder J, Maebe Z, Blanckaert K, van der Waal C, et al. The effectiveness of trunk training on trunk control, sitting and standing balance and mobility post-stroke: a systematic review and meta-analysis. Clinical rehabilitation. 2019;33(6):992-1002.
- 19. 김영동, 황병용, 김중환, 염준우. The effects of core stability exercise on the ability of balance in stroke patients. 신경치료. 2011;15(1):17-23.
- 20. Verheyden G, Vereeck L, Truijen S, Troch M, LaFosse C, Saeys W, et al. Additional exercises improve trunk performance after stroke: a pilot randomized controlled trial. Neurorehabilitation and neural repair. 2009;23(3):281-6.