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ABSTRACT
In the present study, we are interested in modeling repose time periods (the length of the time intervals 
between successive deaths) caused by a new, widespread disease called covid-19. This is useful for predict-
ing probabilities of new deaths that occur within pre-determined time intervals. In practical applications, 
the choice of the statistical model is crucial for obtaining accurate estimates of death hazard rates. Based 
on an earlier research, we propose to use a mixture of exponential distributions; this model is simple to 
implement when hazard rates obtained from the components of the mixture are easily calculated, and it 
is adequate for dealing with nonstationary time series as those appearing in the case of this disease. The 
model is then applied to the example of Italy, and it appears to be also useful for comparing hazard rates 
along time.
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INTRODUCTION

A new coronavirus called SARS-CoV-2, 
which causes Covid-19, surfaced a few months ago 
in China. The new virus affects a patient’s lungs, 
causing severe pneumonia, thereby increasing the 
risk of death, especially among the elderly or those 
suffering from other diseases. A major problem is 

that this infectious disease rapidly spreads in the 
population, and the high rates of infection lead to 
a large number of intensive care admissions. As a 
result, death rates are particularly high, causing a 
lot of fear and distress in the population, and this is 
even more so because presently there are no drugs 
or vaccine to treat this disease. At the same time, 
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health systems in affected countries face many 
difficulties in tackling the high number of cases 
as well as in dealing with patients who need inten-
sive care. In this scenario, in this work, we focus 
on forecasting death rates of patients with covid-
19. The distribution of the time periods between 
deaths (repose periods) provides useful information 
about the probability that the next death will occur 
within some specific time interval, and thus it is 
very important for forecasting purposes. In general, 
Exponential, Binomial, and Weibull distributions 
are widely used in survival analyses for modeling 
occurrence rates. However, in a somewhat differ-
ent context concerning volcanic hazard data, mix-
tures of exponentials1 have been proposed in earlier 
literature as an alternative to the aforementioned 
methods; note that Exponential and Binomial dis-
tributions are not generally adequate because of the 
nonstationary nature of the time series involved. 
On the other hand, the authors have underlined the 
advantages of using mixtures of exponentials in 
comparison to a Weibull distribution. In the pres-
ent study, we are also faced with nonstationary time 
series, as there are different regimes suggested by 
the data as will be shown in the sequel. In view of 
this, we also propose to use a mixture of exponen-
tial distributions for modeling death hazards over 
time due to covid-19. Results of this research could 
then be used for better organizing the health system 
(for instance, forecasting needs of hospitals with 
respect to numbers of ventilators, increasing inten-
sive care units, etc.). We applied this model in the 
case of Italy, which is amongst the European coun-
tries most affected by the disease, with thousands 
of fatalities; however, the model can also be used 
in any heavily affected country. It is remarkable 
that there is a flourishing international literature 
on covid-19, and the case of Italy has been particu-
larly investigated2,3 (e.g., reference 2 describes how 
the Italian government takes measures in order to 
contain the health risk, whereas in reference 3, a 
model is proposed for predicting the course of the 
epidemic).

METHODS

The theoretical approach
Finite mixtures have been well documented 

in the existing literature. More specifically, a finite 
mixture of unknown exponential distributions with 
two components has a probability density function 
of the form4

	 f(t;Λ) = pf1 (t;λ1) + (1 – p)f2 (t;λ2)

with f1(t;λ1) = λ1e
(–λ1t) and f2(t;λ2) = λ2e

–λ2t; Λ is 
the vector parameter (p,λ1,λ2); the symbol t( ≥ 0) 
stands for time; p is the weight of the first compo-
nent and 1 – p the weight of the second component, 
with p > 0; f1 and f2 are the component densities, 
which are both exponentials with correspond-
ing parameters λ1 > 0 and λ2 > 0, also called rate 
parameters or hazard rates (for our case, these will 
be the rate of mortality per minute). Remark that 
this model can also be easily generalized to include 
more than two components. The cumulative dis-
tribution function of a two-component mixture of 
exponentials takes the form F(t;Λ) = p(1 – e–λ1t) + 
(1 – p)(1 – e–λ2t). Then, the probability that at least 
a new death will occur in the next t min supposing 
that the last death has just occurred is a special case 
of equation (5) of Mendoza-Rosas and De la Cruz-
Reyna,1 obtained for s = 0, and it is equal to F(t;Λ). 
In order to compute this probability, we need to 
estimate the parameters λ1 and λ2, and the weights 
p (and 1 – p) using the data in hand. In order to 
proceed, we use the idea of Mendoza-Rosas and De 
la Cruz-Reyna1 for fitting a mixture model; that is, 
we consider the number of regimes to be the num-
ber of components of the model. Regimes can be 
represented graphically using the change of slope 
in the cumulative plot of the number of deaths.

Data collection design
Data concerning fatal cases were collected for 

the time period between 21 February 2020 (date 
of the first fatal case in Italy) and 30 April 2020, 
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(Figure 2), where the latter period can be viewed as 
a complement to the former.

Statistical analysis
We now implement this model for the period 

from 21 February 2020 to 30 April 2020. The 
first category consists of 45 days (i.e. 45 × 1440 = 
64,800 min), whereas the second one consists of 25 
days (i.e. 25 × 1440 = 36,000 min). We thus have a 
two-component mixture model with 15,887 deaths 
for the category corresponding to 21 February 
2020–5 April 2020 (see https://bing.com/covid/
local/italy) and 12,080 deaths for the other cate-
gory corresponding to 6 April 2020–30 April 2020 
(calculated as total number of deaths up to 30 April 
2020 = 27,967 – 15,887). The duration in minutes 
for each regime are D1 = 45 × 1440 = 64,800 (for 21 
February 2020–5 April 2020) and D2 = 25 × 1440 = 
36,000 (for 6 April 2020–30 April 2020).

The rates of deaths per minute λ1 and λ2 can be 

calculated as 1
15887 0.24517
64800

=λ =  for the regime 

corresponding to 21 February 2020 to 5  April 

2020 and 2
12080 0.33556
36000

λ = =  for the regime 

corresponding to 6 April 2020 to 30 April 2020. 

and between the 21 February 2020 and 8 May 2020 
for comparison reasons using the World Health 
Organization database (https://bing.com/covid/
local/italy).

Data classification
In the case of Italy, it appears from Figures 1 

and 2, replicated from https://bing.com/covid/local/
italy (see arrow for cumulative distribution function 
of deaths), that there are two regimes – representing 
the components of the mixture – which concern 
time periods from 21 February 2020 to 5 April 2020 
(first category), corresponding to 45 days, and from 
6 April 2020 onward (second category). The first 
category refers to increasing number of deaths on a 
daily basis, whereas the second one refers to num-
ber of deaths becoming stable on a daily basis and 
then slowly decreasing. This is because from the 
first week of April onward, the number of deaths on 
a daily basis appeared to stabilize and then slowly 
started to decrease. In view of this visual inspec-
tion,1 a two-component mixture of exponentials 
seems suitable for modeling death rates, each com-
ponent being assigned to a specific category. For 
comparison reasons, we consider two time peri-
ods corresponding to 21 February 2020–30 April 
2020 (Figure 1) and 21 February 2020–8 May 2020 

250,000

200,000

150,000

100,000

50,000

5/195/94/294/194/93/303/203/102/292/192/9

Click to show: Con�rmed

Con�rmed   205463

4/30/2020

State/ProvinceItalyGlobal

Deaths        27967

Deaths

0

250,000

200,000

150,000

100,000

50,000

5/195/94/294/194/93/303/203/102/292/192/9

Click to show: Con�rmed

Con�rmed   217185

5/8/2020

State/ProvinceItalyGlobal

Deaths        30201

Deaths

0

FIG 2. Cumulative distribution of the number of 
deaths for the time period between 21 February 
2020 and 8 May 2020.

FIG 1. Cumulative distribution of number of deaths 
for the period between 21 February 2020 and 30 
April 2020.
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Note that the regime with a duration of 25 days 
(36,000  min) has a higher death rate (λ2) than 
the regime with a duration of 45 days (64,800 
min) with death rate (λ1); this result is compati-
ble with the remark by Mendoza-Rosas and De 
la Cruz-Reyna,1 namely, that regimes of shorter 
duration tend to have higher occurrence rates. 
On the other hand, the corresponding weights are 

calculated as 2

1 2

36000 0.357
100800

= = =
+
Dp

D D
 and 

1

1 2

648001 0.643
100800

− = = =
+
Dp

D D
. This result is a 

direct consequence of equation (6) of Mendoza-
Rosas and De la Cruz-Reyna,1 where p = w1 =  

1 2 1

1 2 1 1 2 2

( )
(( ) ) (( ) )

+ −
+ − + + −

D D D
D D D D D D

 and 1 – p =  

1 2 2
2

1 2 1 1 2 2

( )
(( ) ) (( ) )

+ −
=

+ − + + −
D D Dw

D D D D D D
 are the 

normalized complements of the duration in years 
of each regime. Weighting factors and rates of 
deaths per minute for the period between 21 
February 2020 and 30 April 2020 appear in 
Table  1. Using these results, probabilities of at 
least one death occurring within the next t min 
for period between 21 February 2020 and 30 April 
2020 are immediately obtained via the cumula-
tive distribution function F for pre-specified val-
ues of t. For instance, assume that a death has 
just occurred; then, the probability that at least 
a new death will occur within the next 10 min is 
F(10;0.357,0.24517,0.33556) = 0.94625.

We also repeated the same reasoning for 
the time period between 21 February 2020 and 8 
May 2020, with the same first category as before 
and a second category pertaining to data col-
lected between 6 April 2020 and 8 May 2020. In 
that case, D1 = 64,800 min (as previously) and 
D2  = 47,520 min. Noticing that the number of 
deaths concerning the second regime is now 14,314 

(30,201–15,887), we obtain 1
15887 0.24517
64800

λ = =  

(as previously) and 2
14314 0.30122
47520

=λ =  (Note 

that again a regime of shorter duration has a 
higher occurrence rate). On the other hand, we 

obtain 2

1 2

47520 0.4231
112320

= = =
+
Dp

D D
 and 1 – p = 

1

1 2

64800 0.5769
112320

= =
+
D

D D
. Weighting factors and 

rates of deaths per minute for the period between 21 
February 2020 and 8 May 2020 appear in Table 2. 
We can now compute probabilities of occurrence 
of at least one death in a predetermined time inter-
val. For example, taking time t to be 10 min, and 
using our estimated parameters w1,λ1,λ2, we find 
F(10;0.4231,0.24517,0.30122) = 0.9352.

Assessment of the model
The mixture model was assessed for the time 

period between 21 February 2020 and 8 May 2020 
using a Kolmogorov–Smirnov goodness-of-fit test.5 
Like in Mendoza-Rosas and De la Cruz Reyna,1 we 
also tested sensitivity in the quality of the fit by tak-
ing neighboring dates to 5 April 2020 (last day of 
the first regime selected by graphical inspection) as 
final dates for the first category and implementing 
again the Kolmogorov–Smirnov test.

RESULTS

Using the aforementioned analysis, we now 
present in Tables 1, 2, and 3, the estimated param-
eters and probabilities of deaths within predeter-
mined time intervals.

The cumulative distribution function  is com-
puted in the same way for values of t = 2, 5, 10, 15, 
and 20 min, for both periods, and results are pre-
sented in Table 3.

DISCUSSION

Results presented in Table 3 are obtained using 
the hazard rates and the weighting factors, pertaining 
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to the mixtures of exponentials that appear in Tables 
1 and 2. These results show that the survival func-
tion, that is, the probability of exceeding some 
pre-specified t (= 1 – value from cumulative distri-
bution) is slightly larger for the period between 21 
February 2020 and 8 May 2020, which reflects the 
fact that the number of deaths occurring within the 
period between 1 May 2020 and 8 May 2020 have 
decreased in comparison to previous dates.

It is interesting to note that if we had used a sin-
gle exponential distribution (instead of a mixture), 
we would then have obtained very close results to 
those provided by our mixture model for both peri-
ods, namely, 21 February 2020–30 April 2020 and 
21 February 2020–8 May 2020. Indeed, let us con-
sider the cdf F0*(t) of a single exponential distribu-

tion with parameter 
302010.27

112320
  λ = = 

 
, where λ 

is the overall hazard rate, for, say, the period between 
21 February 2020 and 8 May 2020. We observe that 
the survival functions for the single exponential 
distribution at times 1, 2, and 3, corresponding to 
1 – F0*(1) = 0.763, 1 – F0*(2) = 0.583, 1 – F0*(3) = 
0.445, are approximately equal to the survival func-
tions 1 – F(1) = 0.758, 1 – F(2) = 0.575, 1 – F(3) = 

TABLE 1. Observed Death Regimes and Calculated Parameters of the Mixture Model for the Period 
Between 21 February 2020 and 30 April 2020.
Regime Time period Number of 

deaths
Duration of regime 

(minutes)
Rate per  
minute λ

Weighting 
factor w 

1 21 February 2020– 
5 April 2020 15,887 64,800 0.24517 0.357

2 6 April 2020– 
30 April 2020 12,080 36,000 0.33556 0.643

TABLE 2. Observed Death Regimes and Calculated Parameters of the Mixture Model for the Period 
Between 21 February 2020 and 8 May 2020.
Regime Time period Number of 

deaths
Duration of regime 

(minutes)
Rate per 
minute λ

Weighting 
factor w

1 21 February 2020– 
5 April 2020

15,887 64,800 0.24517 0.4231

2 6 April 2020– 
8 May 2020

14,314 47,520 0.30122 0.5769

TABLE 3. Probabilities of Occurrence of at Least 
One Death in the Next t min.
t Cumulative 

Distribution  
21 February 2020–

30 April 2020

Cumulative 
Distribution

21 February 2020– 
8 May 2020

2 0.467 0.4251

5 0.775 0.7479

10 0.94625 0.9352

15 0.9883 0.983

20 0.99657 0.9955

0.437, corresponding to the mixture of exponentials, 
and this result holds good for any value of t. This is 
a consequence of the fact that hazard rates λ1 and 
λ2 are close enough in this case and so the mixture 
model can be approximated by a single exponential 
distribution with hazard rate λ; therefore, in the case 
of Italy, one can use equivalently either a mixture of 
exponentials or a single exponential distribution for 
prediction purposes. However, the proposed model 
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would certainly be useful for those cases where the 
rates are quite different, as it would also catch large 
changes in regimes. Finally, we conclude from the 
above that the probability of surviving more than 
t min obtained from the mixture distribution steeply 
declines as duration increases in the same way as 
mentioned in Indrayan and Holt6 [see in particular 
Figure E.8(b)], which is a characteristic feature of 
an exponential distribution.

CONCLUSIONS

In the present paper, we have proposed a 
method, based on mixtures of exponentials, for fore-
casting death hazards in populations hit by covid-19. 
In an earlier application to volcanic hazards, this 
method was shown to outperform standard tech-
niques used in survival analysis. Two main advan-
tages of the method are that it captures the different 
underlying categories (or regimes) suggested by the 
data and that it is quite handy and simple to imple-
ment, as component-wise hazard rates are readily 
obtained from the data. This is a very important 
asset in the context of covid-19 because, in contrast 
with volcanic hazards, repose periods are very short 
and so it would be useful to apply the method as 
many times as required in order to follow the course 
of the disease and thus help officials cope with dif-
ficulties concerning the health system at any stage 
of the pandemic. As an example, an application to 
the case of Italy was performed, and hazard rates 
were provided for two time periods for comparison 
reasons. The mixture model provided encouraging 
results, as it showed that a decrease in death num-
bers results, as expected, in larger values of the sur-
vival function.
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