

journal of Population Therapeutics & Clinical Pharmacology

RESEARCH ARTICLE DOI: 10.53555/jptcp.v24i2.6373

NEUROPROTECTIVE AMYLOID B N-TERMINAL PEPTIDES DIFFERENTIALLY ALTER HUMAN A7- AND A7B2-NICOTINIC ACETYLCHOLINE (NACH) RECEPTOR SINGLE-CHANNEL PROPERTIES

Dr Abhay joshi^{1*}, Dr ashutosh gupta²

^{1*}Assistant professor, department of pharmacology, career institute of medical sciences and hospital

²Assistant professor , department of pharmacology , career institute of medical sciences and hospital

*Corresponding author : Dr Abhay joshi

*Assistant professor, department of pharmacology, career institute of medical sciences and

hospital

Abstract :

Background and Purpose

Oligomeric amyloid β_{1-42} (oA β_{1-42}) exhibits agonist-like action at human α 7- and α 7 β 2-containing nicotinic receptors. The N-terminal amyloid β_{1-15} fragment (N-A β fragment) modulates presynaptic calcium and enhances hippocampal-based synaptic plasticity via α 7-containing nicotinic receptors. Further, the N-A β fragment and its core sequence, the N-amyloid-beta core hexapeptide (N-A β core), protect against oA β_{1-42} -associated synapto- and neurotoxicity. Here, we investigated how oA β_{1-42} , the N-A β fragment, and the N-A β core regulate the single-channel properties of α 7- and α 7 β 2-nicotinic receptors.

Experimental Approach

Single-channel recordings measured the impact of acetylcholine, $\alpha A\beta_{1-42}$, the N-A β fragment, and the N-A β core on the unitary properties of human α 7- and α 7 β 2-containing nicotinic receptors expressed in nicotinic-null SH-EP1 cells. Molecular dynamics simulations identified potential sites of interaction between the N-A β fragment and orthosteric α 7+/ α 7- and α 7+/ β 2- nicotinic receptor binding interfaces.

Key Results

The N-A β fragment and N-A β core induced α 7- and α 7 β 2-nicotinic receptor single-channel openings. Relative to acetylcholine, α A β ₁₋₄₂ preferentially enhanced α 7 β 2-nicotinic receptor single-channel open probability and open-dwell times. Co-application with the N-A β core neutralized these effects. Further, administration of the N-A β fragment alone, or in combination with acetylcholine or α A β ₁₋₄₂, selectively enhanced α 7-nicotinic receptor open probability and open-dwell times (compared to acetylcholine or α A β ₁₋₄₂).

Conclusions and Implications

Amyloid-beta peptides demonstrate functional diversity in regulating α 7- and α 7 β 2-nicotinic receptor function, with implications for a wide range of nicotinic receptor-mediated functions in Alzheimer's disease. The effects of these peptides on α 7- and/or α 7 β 2-nicotinic receptors revealed complex interactions with these subtypes, providing novel insights into the neuroprotective actions of amyloid β -derived fragments against the toxic effects of α A β 1-42.

Keywords : iso-form , receptors , amyloid beta peptides

Introduction :

Alzheimer's disease (AD) is a neurodegenerative disorder that robs individuals of their language, reasoning, and memory. An estimated 6.7 million Americans ≥ 65 years of age and 20–30 million individuals worldwide are thought to suffer from Alzheimer's disease. Alzheimer's disease is typically confirmed via *in vivo* imaging or post-mortem assessment of distinct neuropathological biomarkers:- amyloid plaques primarily composed of <u>amyloid β_{1-42} </u>, neurofibrillary tangles (filaments of hyperphosphorylated tau) and neurodegeneration in select areas of the brain (Jack et al., <u>2018</u>).

Evidence now suggests that accumulation of amyloid plaques and neurofibrillary tangles contribute marginally to the development of cognitive decline in Alzheimer's disease patients (Castellani et al., 2007; Marchesi, 2012). Instead, there is increased appreciation of the role(s) played by the elevation of soluble, oligomeric forms of amyloid β_{1-42} (oA β_{1-42}) in Alzheimer's disease etiopathogenesis during a long prodromal phase, up to 15 years prior to diagnosis (Cline et al., 2018; Inayathullah & Teplow, 2011), particularly with respect to the development and progression of synapse dysfunction and loss (Chiantia et al., 2023; Gavello et al., 2018). Specifically, oA β_{1-42} is released at the synapse in response to neuronal activity (Cirrito et al., 2005) and physiological levels of the neuropeptide increase presynaptic Ca²⁺ and positively modulate hippocampus-based synaptic plasticity and contextual fear conditioning (Lawrence et al., 2014; Puzzo et al., 2008), indicating that amyloid β normally functions as a synaptic regulator.

Among the classes of molecular targets for amyloid β and derivatives in their specific forms are nicotinic acetylcholine (nACh) receptors, including those that contain α 7 and perhaps other subunits (α7*-nACh receptor; * indicates the possible incorporation of other nACh receptor subunits) (Lukas et al., 1999; Whiteaker & George, 2023). Whereas α 7*-nACh receptors primarily exist as homopentamers (α 7-nACh receptors) in the majority of brain regions, a minority also contain β 2 subunits (e.g. $\alpha7\beta2$ -nACh receptors). These heteromeric $\alpha7\beta2$ -nACh receptors exhibit several features distinct from those of homomeric a7-nACh receptors (Khiroug et al., 2002; Moretti et al., 2014; Murray et al., 2012). $\alpha7\beta2$ -nACh receptors are enriched in specific populations of cholinergic and non-cholinergic neurons of the basal forebrain (Azam et al., 2003; George et al., 2021; Thinschmidt et al., 2005; Whiteaker & George, 2023). a7\beta2-nACh receptors are particularly sensitive to functional modulation by various amyloid β forms (Liu et al., 2009, 2012). At the synapse, $oA\beta_{1-42}$ at physiological concentrations (pM-nM) has been shown to activate presynaptic α 7*-nACh receptors (Lawrence et al., 2014), including α 7 β 2-nACh receptors (Mehta et al., 2009), via direct agonistic interaction with the ligand binding domain (Tong et al., 2011), this signaling pathway largely accounting for the A β -induced regulation of presynaptic Ca²⁺. Material and method :

are formed at all $\alpha 7/\alpha 7$ subunit interfaces and involve the principal (+) face containing subunit loop C of one subunit and the adjacent subunit's complementary (-) face containing loop D. As previously demonstrated for $\alpha 7\beta 2$ -containing nACh receptors (George et al., <u>2021</u>), $\alpha 7/\beta 2$ subunit pairs of the $\alpha 7\beta 2$ -nACh receptor construct may form ACh binding pockets between the principal (+) face of the $\alpha 7\beta 2$ -nACh receptor construct may form ACh binding pockets between the principal (+) face of the $\alpha 7\beta 2$ -nACh receptor construct may form ACh binding pockets between the principal (+) face of the $\alpha 7\beta 2$ -nACh receptor construct may form ACh binding pockets between the principal (+) face of the $\alpha 7\beta 2$ -nACh receptor construct may form ACh binding pockets between the principal (+) face of the $\alpha 7\beta 2$ -nACh receptor construct may form ACh binding pockets between the principal (+) face of the $\alpha 7\beta 2$ -nACh receptor construct may form ACh binding pockets between the principal (+) face of the $\alpha 7\beta 2$ -nACh receptor construct may form ACh binding pockets between the principal (+) face of the $\alpha 7\beta 2$ -nACh receptor construct may form ACh binding pockets between the principal (+) face of the $\alpha 7\beta 2$ -nACh receptor construct may form ACh binding pockets between the principal (+) face of the $\alpha 7\beta 2$ -nACh receptor construct may form ACh binding pockets between the principal (+) face of the $\alpha 7\beta 2$ -nACh receptor construct may form ACh binding pockets between the principal (+) face of the $\alpha 7\beta 2$ -nACh receptor construct may form ACh binding pockets between the principal (+) face of the $\alpha 7\beta 2$ -nACh receptor construct may form ACh binding pockets between the principal (+) face of the $\alpha 7\beta 2$ -nACh receptor construct may form ACh binding pockets between the principal pockets at $\beta 2$ (+)/ $\alpha 7$ (-) interfaces is not clear. To enhance $\alpha 7*$ -nACh receptor cell-surface expression, SH-EP1 cells were co-transfected with the human nACh receptor chaperone protein NACHO (Gu et al., <u>2016</u>). Human NACHO was engineered in

Single-channel bursts corresponding to these precise amplitudes were segregated from isolated openings and only bursts were used for single-channel analysis. Bursts of single-channel activity were defined as series of openings separated by closures shorter than the minimum inter-burst closed duration or $T_{\rm crit}$ (Grosman & Auerbach, 2000) and from other such episodes by prolonged channel desensitization (Chakrapani et al., 2004). For all groups tested, $T_{\rm crit}$ was calculated by using QuB software. Bursts that contained overlapping currents, which indicate two simultaneously active channels, were rare and were discarded from the analysis. The advantages of using burst analysis have been described (Ciuraszkiewicz et al., 2013), as it increases the probability that adjacent openings arise from the same receptor.

Results

We began by investigating the functional interaction between $\alpha 7^*$ -nACh receptors and the N-A β fragment or the N-A β core by determining whether the N-A β fragment or N-A β core altered $\alpha 7$ - or $\alpha 7\beta 2$ -nACh receptor single-channel amplitudes (Figure 2; Table 2). No significant $\alpha 7^*$ -nACh receptor by treatment interaction was observed for single-channel amplitude ($F_{(7,139)} = 0.9$; P > 0.05). Furthermore, single-channel amplitudes across all treatment groups were similar between homomeric $\alpha 7$ -nACh receptors and heteromeric $\alpha 7\beta 2$ -nACh receptors (Figure 2c,d; Figure S3A). These data discount the possibilities that single-channel responses induced by αA_{β_1-42} , the N-A β fragment, or the N-A β core occur via nicotinic receptor subtypes other than $\alpha 7^*$ -nACh receptors and are consistent with earlier work showing blockade of αA_{β_1-42} effects by nicotinic antagonists (Liu et al., 2012).

Measurements of single-channel burst rates (bursts per second) were also not significantly different between $\alpha 7^*$ -nACh receptor subtypes (Figure <u>2e,f</u>) or across treatments. Cross-group comparisons revealed that single-channel burst rates were similar between homomeric $\alpha 7$ -nACh receptors and heteromeric $\alpha 7\beta 2$ -nACh receptors (Figure <u>2c,d</u>; Figure <u>S3B</u>). These data show that when compared with ACh or oA β_{1-42} , the application of N-A β fragment or N-A β core exhibits similar single-channel burst rates when applied alone or in combination with ACh or oA β_{1-42} . Taken together, these findings demonstrate that the unitary amplitude and frequency of single-channel activity are not altered in the exclusive presence of oA β_{1-42} , the N-A β fragment, or the N-A β core or when these A β fragments are co-administered with the endogenous ligand, ACh.

Discussion

In this study, we identified for the first time the activation of human homomeric $\alpha 7-\alpha$ and heteromeric $\alpha 7\beta 2$ -nACh receptor single-channel openings by the human N-A β fragment (N-terminal 15 amino acid A β peptide fragment) and by the N-A β core (essential core sequence hexapeptide within the N-A β fragment), as we have done for oligomeric A β_{1-42} (George et al., 2021). Specifically, we demonstrated that N-A β fragment and N-A β core differentially alter the biophysical properties of $\alpha 7^*$ -nACh receptor subtypes in comparison to activation by ACh and oA β_{1-42}

Here, we provide evidence that N-A β fragment exposure alone increases α 7-nACh receptor component 2 (C2) open-dwell time within bursts and burst duration relative to the effects of ACh alone. Co-administration of the N-A β fragment plus ACh increased α 7-nACh receptor C2, burst duration and P_{open} relative to effects of ACh alone, while the α 7-nACh receptor burst duration was higher in the presence of N-A β fragment alone or co-administered with α A β_{1-42} than upon exposure to α A β_{1-42} alone. However, N-A β fragment plus α A β_{1-42} exposure reduces α 7 β 2-nACh receptor open-dwell times within bursts (component 1; C1) relative to effects of α A β_{1-42} alone. Importantly, co-application of the N-A β fragment, or N-A β core alone. The current observations, therefore, substantially expand our understanding of the functional interactions of α 7*-nACh receptors with amyloid β (Grassi et al., 2003; Liu et al., 2009) and the N-terminal domain amyloid β peptides at the single-channel level.

References

1. 1)Andersen, N. D., Nielsen, B. E., Corradi, J., Tolosa, M. F., Feuerbach, D., Arias, H. R., & Bouzat, C. (2016). Exploring the positive allosteric mod-ulation of human alpha7 nicotinic receptors from a single-channel per-spective. Neuropharmacology,107, 189-200.https://doi.org/ 10.1016/ j.neuropharm. 2016.02.032Arora, K., 2)Alfulaij, N., Higa, J. K., Panee, J., & Nichols, R. A. (2013). Impactof sustained exposure toß-amyloid on calcium homeostasis and neu-ronal integrity in model nerve cell system expressingα4β2 nicotinicacetylcholine receptors. The Journal of Biological Chemistry, 288(16), 11175-11190. https://doi.org/10.1074/jbc.M113.453746 Azam, L., 3)Winzer-Serhan, U., & Leslie, F. M. (2003). Co-expression ofa7andb2 nicotinic acetylcholine receptor subunit mRNAs within rat braincholinergic neurons. Neuroscience, 119(4), 965-977.https://doi.org/10.1016/s0306-4522(03)00220-3Castellani, R. J., Zhu, X., Lee, H. G., Moreira, P. I., Perry, G., & Smith, M. A.(2007). Neuropathology and treatment of Alzheimer disease: Did welose the forest for the trees?Expert Review of Neurotherapeutics,7(5),473-485.https://doi.org/10.1586/ 14737175.7.5.473Chakrapani, S., 4)Bailey, T. D., & Auerbach, A. (2004). Gating dynamics of the acetylcholine receptor extracellular domain. The Journal of GeneralPhysiology, 123(4), 341-356.https://doi.org/10.1085/jgp.200309004Chiantia, G., 5)Hidisoglu, E., & Marcantoni, A. (2023). The role of ryanodinereceptors in regulating neuronal thedevelopment of activity and its connection to Alzheimer's disease.Cells,12, 1236.https://doi.org/10.3390/ cells12091236Cirrito, J. R., 6)Yamada, K. A., Finn, M. B., Sloviter, R. S., Bales, K. R., May, P. C., Schoepp, D. D., Paul, S. M., Mennerick, S., & Holtzman, D. M. (2005). Synaptic activity regulates interstitial fluidamyloid-beta levels in vivo.Neuron,48(6), 913–922.https://doi.org/10.1016/j.neuron.2005.10.028Ciuraszkiewicz, A., Schreibmayer, W., Platzer, D., Orr-Urtreger, A., Scholze, P., & Huck, S. (2013). Single-channel properties of α 3 β 4, α 3 β 4 α 5 and α 3 β 4 β 2 nicotinic acetylcholine receptors in mice lacking specific nicotinic acetylcholine receptor subunits. The Journal of Physi-ology, 591(13), 3271-3288.https://doi.org/10.1113/ .2012.246595

2. 7)Cline, E. N., Bicca, M. A., Viola, K. L., & Klein, W. L. (2018). The amyloid-beta oligomer hypothesis: Beginning of the third decade.Journal ofAlzheimer's Disease,64(s1), S567-S610.https://doi.org/10.3233/JAD-179941Curtis, M. J., 8)Alexander, S. P. H., Cirino, G., George, C. H., Kendall, D. A., Insel, P. A., Izzo, A. A., Ji, Y., Panettieri, R. A., Patel, H. H., Sobey, C. G., Stanford, S. C., Stanley, P., Stefanska, B., Stephens, G. J., Teixeira, M. M., Vergnolle, N., & Ahluwalia, A. (2022). Planning experi-ments: Updated guidance on experimental design and analysis andtheir reporting III.British Journal of Pharmacology, 179, 3907-3913.https://doi.org/10.1111/bph.15868Dineley, K. T., Bell, K. 9)A., Bui, D., & Sweatt, J. D. (2002).β-amyloid peptideactivatesα7 nicotinic acetylcholine receptors expressed inXenopusoocytes.The Journal of Biological Chemistry, 277(28), 25056 -25061.https://doi.org/10.1074/jbc.M200066200.