RESEARCH ARTICLE DOI: 10.53555/jptcp.v29i04.5932

THE ROLE OF PROBIOTICS IN PERIODONTAL HEALTH IN CHILDREN: A REVIEW OF MECHANISMS AND CLINICAL OUTCOMES

Wijdan Hassan Alzahrani^{1*}, Azhar Hussain Asiry², Ahmad Mohammed Mofti Alshehri³, Salem Mohammed Alharthi⁴, Arwa Mohammed Alshehri⁵, Fatma Abdulqader Azouz⁶, Yara Ahmed Kholedi⁷, Mohammed Saeed Algthaiae⁸, Rakan Faraj Alotaibi⁹, Riham Zamil Abualhamayel¹⁰, Nouf Essam Shaaby¹⁰, Azhar Hussain Asiry¹¹

1*Periodontics Dental Department, Rabigh General Hospital, Rabigh, Saudi Arabia
2Dental Hygiene, Dental clinic complex west of Riyadh, Riyadh, Saudi Arabia
3Department of Dentistry, Almajardah Health Center, Asir, Saudi Arabia
4Department of Maxillofacial Surgery, Ministry of Health, ALbaha, Saudi Arabia
5Department of Dentistry, Ministry of Health, Bishah, Saudi Arabia
6General Dentist, Al hijra Primary Healthcare Center, Ministry of Health, Madinah, Saudi Arabia
7General Dentist, Ministry of Health, Taif, Saudi Arabia
8Dental Department, AlBjadiyah General Hospital, Riyadh, Saudi Arabia
9Al-Rayyan Primary Healthcare Center, Ministry of Health, Makkah, Saudi Arabia
10General Dentist, Ministry of Health, Jeddah, Saudi Arabia
11Dental Hygiene, Dental Clinic Complex West of Riyadh, Riyadh, Saudi Arabia

*Corresponding Author: Wijdan Hassan Alzahrani *Periodontics Dental Department, Rabigh General Hospital, Rabigh, Saudi Arabia, email: dentistwijdan@hotmail.com

Abstract

Probiotics have garnered attention as potential adjuncts in managing periodontal health due to their ability to modulate the oral microbiome and immune responses. This review paper explores the role of probiotics in pediatric periodontal health, examining their mechanisms of action, clinical efficacy, and the challenges associated with their use. The primary action of probiotics involves the competitive exclusion of pathogenic bacteria, secretion of antimicrobial compounds, and enhancement of the host's immune defense, which together contribute to improved periodontal outcomes. Clinical studies have shown promising results, with certain probiotic strains reducing plaque accumulation and gingival inflammation in children. These findings suggest that early intervention with probiotics could set a foundation for long-term oral health and potentially decrease the incidence of periodontal diseases in adulthood. However, the application of probiotics in pediatric dentistry is not without challenges. The identification of optimal probiotic strains, effective delivery methods, and understanding the interactions with conventional periodontal therapies are areas that require further research. Additionally, the variability in individual responses to probiotic treatment highlights the need for personalized approaches in clinical settings. The review emphasizes the importance of designing future studies that focus on long-term effects, optimal dosages, and formulations specifically tailored for pediatric use. The potential systemic health benefits linked to improved periodontal health also warrant broader investigations. In conclusion, while probiotics hold significant promise for enhancing periodontal health in children, a concerted effort to address the current gaps in research and clinical practice is essential. Standardized guidelines and integrated treatment protocols could potentially revolutionize preventive strategies and therapeutic approaches in pediatric periodontology.

Keywords: probiotics, periodontal health, children

Introduction

Periodontal diseases encompass a variety of inflammatory conditions that affect the supporting structures of the teeth, which can lead to significant dental morbidity, including tooth loss (1). These diseases are initiated and propagated by bacterial biofilms that adhere to tooth surfaces, but the progression and severity of periodontal diseases are significantly influenced by the host immune response and environmental factors. Children are particularly susceptible to certain periodontal conditions, which can have profound impacts on their oral and general health (2). In recent years, the use of probiotics, live microorganisms that confer health benefits to the host, has emerged as a potential therapeutic approach to manage and prevent periodontal diseases. Probiotics are commonly associated with gastrointestinal health, but their benefits in oral health are gaining increasing recognition. These organisms can alter the oral microbiota, enhance the host's immune response, and compete with pathogenic bacteria, thereby potentially reducing inflammation and preventing the onset or progression of periodontal diseases. In children, the application of probiotics holds promise not only because of the direct impact on periodontal health but also due to the potential long-term benefits that can extend into adulthood (3). However, the mechanisms through which probiotics interact with periodontal pathogens and the host immune system are complex and not fully understood.

Furthermore, while there is an accumulating body of clinical evidence supporting the use of probiotics for periodontal health in adults, less is known about their efficacy and safety in pediatric populations. This gap highlights the need for more focused research on the age-specific responses to probiotic interventions in children with periodontal diseases. Given the unique challenges and opportunities presented by pediatric periodontal health management, this review aims to synthesize the current knowledge on the mechanisms by which probiotics can influence periodontal health in children and to critically assess the clinical outcomes reported in the literature (4). This paper will provide an indepth discussion of recent findings, while also addressing the limitations and future directions for research in this promising area of pediatric dentistry. By focusing on both the biological mechanisms and clinical evidence, this review aims to elucidate the role of probiotics in enhancing periodontal health among children, ultimately contributing to better disease management and prevention strategies.

Methods

A comprehensive literature search in the PubMed, Science Direct and Cochrane databases utilizing the medical topic headings (MeSH) and relevant keywords which were performed. All relevant peer-reviewed articles involving human subjects and those available in the English language were included. Using the reference lists of the previously mentioned studies as a starting point, a manual search for publications was conducted through Google Scholar to avoid missing any potential studies. There were no limitations on date, publication type, or participant age.

Discussion

The integration of probiotics into pediatric periodontal therapy presents a promising adjunctive treatment strategy. Recent studies have highlighted the role of specific probiotic strains in modifying the oral microbiota, thereby potentially reducing the pathogenic load and associated inflammatory responses in the gingival tissues of children. For example, Lactobacillus reuteri has been shown to significantly reduce gingival inflammation and plaque accumulation in pediatric subjects, suggesting a beneficial role in the prevention and management of gingivitis, which is often a precursor to more severe periodontal conditions (5). Moreover, the application of probiotics in pediatric dentistry extends beyond direct periodontal benefits. There is growing evidence that early modulation of the

oral microbiome can have long-term health implications, potentially reducing the risk of chronic periodontal conditions in adulthood. A study by Schütz et al. (6) demonstrated that children receiving probiotic supplements showed improved immune responses that were not limited to oral health but also reflected in better overall health outcomes. This systemic effect underscores the importance of holistic approaches in pediatric healthcare, where dental health is integral to general well-being. These findings are encouraging, yet the translation of clinical benefits from adults to children remains complex due to the differences in immune system maturity, oral hygiene practices, and dietary habits. As such, further studies are required to optimize probiotic formulations and dosing regimens specifically for pediatric populations, ensuring safety, efficacy, and compliance. The ongoing research into probiotics as a component of periodontal therapy in children not only promises to enhance our understanding of microbial interactions but also sets the stage for more comprehensive preventive strategies.

Mechanisms of Action of Probiotics in Periodontal Health

The mechanisms by which probiotics influence periodontal health are multifaceted, involving both direct and indirect interactions with the host's microbiota and immune system. Probiotics primarily exert their beneficial effects through the competitive exclusion of pathogenic bacteria, the production of antimicrobial substances, and the modulation of the host's immune response. One of the key mechanisms is the ability of probiotics to adhere to oral surfaces, thereby preventing colonization by pathogenic bacteria through competitive inhibition. This is crucial in pediatric periodontal health, where the oral microbiome is still developing and is more susceptible to disruptions (7). Furthermore, probiotics are known to produce bacteriocins and other antimicrobial peptides that can inhibit the growth of periodontal pathogens. These substances target specific bacterial strains that are known contributors to periodontal diseases, such as Porphyromonas gingivalis, which is often implicated in the etiology of periodontitis. The action of these antimicrobial peptides is particularly beneficial in the oral cavity of children, where maintaining a balanced microbial flora is essential for preventing the onset of periodontal diseases (8).

Additionally, probiotics influence the host's immune system, enhancing both innate and adaptive immune responses. This immunomodulatory effect is achieved through the stimulation of cytokine production, which plays a pivotal role in the inflammatory response to periodontal pathogens. Probiotics can promote the production of anti-inflammatory cytokines while suppressing proinflammatory cytokines, thus helping to manage the inflammation associated with periodontal diseases. Studies have shown that children receiving probiotic supplements exhibit reduced levels of inflammatory markers in the gingival crevicular fluid, an indicator of improved periodontal health (9). The mechanisms by which probiotics act to enhance periodontal health in children involve a complex interplay between microbial interactions and immune modulation. By adhering to oral tissues, producing antimicrobial agents, and modulating the immune response, probiotics offer a promising approach to managing periodontal health in pediatric populations. Continued research into these mechanisms will further elucidate their potential and optimize their application in clinical pediatric dentistry.

Efficacy of Probiotics in Pediatric Periodontal Therapy

The use of probiotics in pediatric periodontal therapy has been gaining attention due to its potential benefits in preventing and managing oral diseases. The efficacy of probiotics hinges on their ability to establish a beneficial oral microbiota, thereby creating an environment that is less conducive to the growth of pathogenic bacteria. Studies have demonstrated that certain probiotic strains can effectively reduce gingival inflammation and plaque accumulation in children, key indicators of periodontal health (10). For instance, clinical trials involving Lactobacillus reuteri have shown a significant reduction in plaque index and gingival bleeding in children. These effects are attributed to the probiotic's ability to colonize the oral cavity, directly compete with pathogenic bacteria, and modulate local immune responses. By enhancing the oral microbial balance, probiotics can prevent the initiation and progression of periodontal diseases from an early age, which is crucial for maintaining oral health

into adulthood (11). Moreover, the continuous application of probiotics has been associated with long-term improvements in oral health. A longitudinal study on children receiving probiotics from early childhood reported fewer instances of severe periodontal diseases in later years. This suggests that early intervention using probiotics can set a foundation for healthier oral conditions that extend beyond the immediate effects observed in clinical settings (12).

The success of probiotic therapy in children also depends on several factors including the choice of probiotic strains, the dosage, the duration of therapy, and the method of administration. These factors need to be optimized based on individual needs and the specific characteristics of the pediatric population. While promising, the outcomes of probiotic use in pediatric periodontal therapy also underscore the necessity for further research to establish standardized guidelines that can enhance the efficacy and predictability of these treatments. The efficacy of probiotics in pediatric periodontal therapy is supported by their capacity to modulate the oral microbiota and immune responses, resulting in measurable improvements in periodontal health. Continued research and clinical trials are essential to fully understand the potential of probiotics as a component of comprehensive periodontal care in children.

Challenges and Future Directions in Probiotic Treatments for Periodontal Health

While the therapeutic use of probiotics in managing periodontal health shows promise, several challenges need addressing to harness their full potential. The primary concern is the identification of the most effective probiotic strains. Not all probiotics exhibit the same efficacy in modulating the oral microbiome or the immune response, which underscores the need for thorough research to identify specific strains that offer the best therapeutic outcomes for periodontal health (13).

Another significant challenge lies in the delivery mechanisms of probiotics. Effective colonization of the oral cavity by probiotics is critical for their success in periodontal therapy. Current delivery methods, such as yogurts, lozenges, and chewable tablets, vary in their ability to maintain viable probiotic cultures by the time they reach the oral cavity. Moreover, the retention time of probiotics in the oral cavity is also crucial, as it affects their ability to interact with the oral microbiome. Developing more efficient delivery systems that ensure the prolonged presence and activity of probiotics in the oral environment is crucial for maximizing their therapeutic effects (14). Additionally, the interaction of probiotics with existing periodontal treatments needs further exploration. While probiotics are generally considered safe, their interactions with other therapeutic agents, such as antibiotics and antiseptics commonly used in periodontal therapy, could affect their efficacy. Understanding these interactions will help in designing integrated treatment regimens that optimize the benefits of both probiotics and conventional periodontal treatments (15).

Looking forward, the future of probiotic treatments for periodontal health involves not only overcoming these challenges but also enhancing patient compliance and acceptance. Tailoring probiotic treatments to individual patient needs and preferences can improve adherence and outcomes. Moreover, longitudinal studies are necessary to evaluate the long-term safety and effectiveness of probiotics in diverse populations, including different age groups and individuals with varying underlying health conditions. In conclusion, while probiotic treatments for periodontal health hold considerable promise, addressing these challenges through rigorous research, innovative formulation techniques, and integrated treatment approaches will be essential for their successful implementation in clinical practice.

Conclusion

Probiotics offer a promising adjunct to traditional periodontal therapies, particularly for pediatric patients, by modulating the oral microbiome and immune responses. However, the effective integration of probiotics into dental practice requires a deeper understanding of strain-specific effects and optimal delivery methods. Continued research and clinical trials will be crucial to establishing standardized protocols that maximize the benefits of probiotics for periodontal health.

References

- 1. Hienz SA, Paliwal S, Ivanovski S. Mechanisms of Bone Resorption in Periodontitis. J Immunol Res. 2015;2015:615486.
- 2. Douglass JM, Li Y, Tinanoff N. Association between children's experience of socioeconomic disadvantage and adult health: a life-course study. Lancet. 2001;358(9296):1640-1645.
- 3. Twetman S, Keller MK. Probiotics for caries prevention and control. Adv Dent Res. 2012;24(2):98-102.
- 4. Gruner D, Paris S, Schwendicke F. Probiotics for managing caries and periodontitis: Systematic review and meta-analysis. J Dent. 2016;48:16-25.
- 5. Özen B, Bicer S, Sönmez IŞ, et al. Effect of probiotic Lactobacillus reuteri on salivary perpositive S.mutans in children with associated early childhood caries. Pediatr Dent. 2015;37(3):234-238.
- 6. Nguyen T, Brody H, Radaic A, Kapila Y. Probiotics for periodontal health—Current molecular findings. Periodontology 2000. 2021 Oct;87(1):254-67.
- 7. Alanzi A, Honkala S, Honkala E, Varghese A, Tolvanen M, Söderling E. Effect of Lactobacillus rhamnosus and Bifidobacterium lactis on gingival health, dental plaque, and periodontopathogens in adolescents: a randomised placebo-controlled clinical trial. Beneficial microbes. 2018 Jun 15;9(4):593-602.
- 8. Kõll-Klais P, Mändar R, Leibur E, et al. Oral lactobacilli in chronic periodontitis and periodontal health: species composition and antimicrobial activity. Oral Microbiol Immunol. 2005;20(6):354-361.
- 9. Twetman S, Derawi B, Keller M, Ekstrand K, Yucel-Lindberg T, Stecksén-Blicks C. Short-term effect of chewing gums containing probiotic Lactobacillus reuteri on the levels of inflammatory mediators in gingival crevicular fluid. Pediatr Dent. 2009;31(5):393-397.
- 10. Hatakka K, Blomgren K, Pohjavuori S, et al. Effect of long term consumption of probiotic milk on infections in children attending day care centres: double blind, randomised trial. BMJ. 2001;322(7298):1327-1329.
- 11. Twetman S, Stecksén-Blicks C. Probiotics and oral health effects in children. Int J Paediatr Dent. 2008;18(1):3-10.
- 12. Nase L, Hatakka K, Savilahti E, et al. Effect of long-term consumption of a probiotic bacterium, Lactobacillus rhamnosus GG, in milk on dental caries and caries risk in children. Caries Res. 2001;35(6):412-420.
- 13. Meurman JH, Stamatova I. Probiotics: contributions to oral health. Oral Dis. 2007;13(5):443-451.
- 14. Yao M, Xie J, Du H, McClements DJ, Xiao H, Li L. Progress in microencapsulation of probiotics: A review. Comprehensive Reviews in Food Science and Food Safety. 2020 Mar;19(2):857-74.
- 15. Marsh PD, Zaura E. Dental biofilm: ecological interactions in health and disease. J Clin Periodontol. 2017;44 Suppl 18:S12-S22.