RESEARCH ARTICLE DOI: 10.53555/jptcp.v29i04.5929

THE METABOLISM OF BERBERINE AND ITS CONTRIBUTION TO THE PHARMACOLOGICAL EFFECTS

Abdullah Ahmad Adawi^{1*}, Abed Abdullah Qashqari², Shoug Odah Alhamdi³, Basmah Hussain Ageeli⁴, Ibtisam Hussain Alharbi⁵ And Najwan Fahad Abuzinadah⁶ And Haneen Ahmad Abduljabbar Aljubailan⁷

^{1*}Technician pharmacy, aaadawi@moh.gov.sa, King Fahd hospital in Jeddah ²Technician pharmacy, aaqashqari@moh.gov.sa, King Fahd hospital in Jeddah ³Technician pharmacy, Soalhamdi@moh.gov.sa, King Fahd hospital in Jeddah ⁴Technician pharmacy, bageeli@moh.gov.sa, King Fahd hospital in Jeddah ⁵Technician pharmacy, ibtisamha@moh.gov.sa, King Fahd hospital in Jeddah ⁶Technician pharmacy, Nabuzinadah@moh.gov.sa, King Fahd hospital in Jeddah ⁷Pharmacist, Haljubailan@moh.gov.sa, Dept of Pharmacy, MOH, SA

*Corresponding Author: Abdullah Ahmad Adawi *Technician pharmacy, aaadawi@moh.gov.sa, King Fahd hospital in Jeddah

Abstract:

Berberine is a natural compound found in various medicinal plants, such as Berberis vulgaris and Hydrastis Canadensis. It has been used in traditional medicine for centuries and has gained popularity in recent years due to its various pharmacological effects, including anti-inflammatory, antimicrobial, and antidiabetic properties. The metabolism of berberine plays a crucial role in its pharmacological effects, as it affects the bioavailability and distribution of the compound in the body. In this essay, we will explore the metabolism of berberine and its contribution to its pharmacological effects, discussing the key enzymes involved in berberine metabolism, as well as the factors that influence its metabolism and bioavailability.

Keywords: berberine, metabolism, pharmacological effects, bioavailability, enzymes

Introduction:

Berberine is a isoquinoline alkaloid with a long history of use in traditional Chinese and Ayurvedic medicine. Over the years, research has revealed a wide range of pharmacological effects associated with berberine, including anti-inflammatory, antimicrobial, antidiabetic, and anticancer properties. These effects are largely attributed to the compound's ability to modulate various signaling pathways and target key molecules involved in disease processes. However, the metabolism of berberine is a critical factor that influences its pharmacokinetic and pharmacodynamic properties.

Berberine is a natural alkaloid compound found in several plants, including goldenseal, Chinese goldthread, and barberry. It has been used in traditional medicine for centuries and has gained significant attention in recent years due to its potential pharmacological effects.

When berberine is ingested, it undergoes metabolism in the liver by various enzymes, including cytochrome P450 (CYP) enzymes, such as CYP3A4 and CYP2D6. These enzymes play a crucial role in the breakdown of berberine into its metabolites. The primary metabolites of berberine include dihydroberberine (DHB), thalifendine, jatrorrhizine, and berberrubine.

Dihydroberberine (DHB) is an important metabolite of berberine that exhibits similar pharmacological properties. It is formed through the reduction of berberine by the enzyme dihydroberberine oxidase. DHB has been shown to have similar or even greater bioavailability and bioactivity compared to berberine itself. It is believed to contribute significantly to the pharmacological effects of berberine.

The pharmacological effects of berberine and its metabolites are diverse and have been studied extensively. Berberine has been found to possess antimicrobial, anti-inflammatory, antioxidant, and anticancer properties. It can also modulate various cellular signaling pathways and interact with molecular targets, such as enzymes, receptors, and ion channels.

One of the well-established pharmacological effects of berberine is its ability to regulate glucose and lipid metabolism. It has been shown to improve insulin sensitivity, promote glucose uptake in cells, and inhibit gluconeogenesis in the liver. Berberine's effects on glucose metabolism are mediated through the activation of AMP-activated protein kinase (AMPK), which is a key regulator of cellular energy metabolism.

Furthermore, berberine has been investigated for its potential cardiovascular benefits. It has been reported to lower blood pressure, reduce cholesterol levels, and inhibit platelet aggregation. These effects are believed to be mediated through multiple mechanisms, including the activation of AMPK, inhibition of inflammatory pathways, and modulation of lipid metabolism.

Berberine also exhibits potential neuroprotective effects and has been studied for its role in various neurological disorders. It can cross the blood-brain barrier and has shown promising results in preclinical studies for conditions like Alzheimer's disease, Parkinson's disease, and depression. However, further research is needed to fully understand its mechanisms of action and therapeutic potential in these disorders.

In summary, the metabolism of berberine involves its conversion into metabolites such as dihydroberberine (DHB), which contribute to its pharmacological effects. Berberine and its metabolites exert a wide range of pharmacological activities, including regulation of glucose and lipid metabolism, antimicrobial effects, cardiovascular benefits, and potential neuroprotective properties. Nevertheless, it's important to note that more research is still needed to fully elucidate the mechanisms of action and optimize the clinical use of berberine.

Methodology:

To understand the metabolism of berberine and its contribution to its pharmacological effects, we conducted a comprehensive literature review using various databases, including PubMed, Scopus, and Google Scholar. We searched for relevant studies published in English within the last 10 years, focusing on the metabolism of berberine in humans and animal models. We also looked for information on the key enzymes involved in berberine metabolism, factors influencing its metabolism, and its bioavailability.

Results:

Berberine is primarily metabolized in the liver by various enzymes, including cytochrome P450 (CYP) enzymes, UDP-glucuronosyltransferases (UGTs), and sulfotransferases (SULTs). CYP enzymes, particularly CYP3A4, play a significant role in the phase I metabolism of berberine, leading to the formation of several metabolites, such as dihydroberberine and berberrubine. Subsequently, phase II enzymes, such as UGTs and SULTs, are involved in the conjug of berberine metabolites with glucuronic acid and sulfate, respectively, facilitating their excretion.

Factors such as genetic polymorphisms, drug interactions, and the gut microbiota can influence the metabolism of berberine, affecting its bioavailability and pharmacological effects. For example, genetic variations in CYP enzymes can alter the rate of berberine metabolism, leading to interindividual differences in drug response. Additionally, co-administration of drugs that induce or inhibit CYP enzymes can affect the metabolism of berberine, potentially impacting its therapeutic efficacy.

Discussion:

The metabolism of berberine is a complex process involving multiple enzymes and pathways. Understanding the metabolic fate of berberine is essential for optimizing its therapeutic use and minimizing potential adverse effects. The interplay between berberine metabolism and its pharmacological effects highlights the importance of personalized medicine approaches, taking into account individual variations in drug metabolism and response.

Conclusion:

In conclusion, the metabolism of berberine plays a crucial role in pharmacological effects, influencing its bioavailability, distribution, and elimination. The interaction between berberine metabolism and various factors, such as genetic polymorphisms and drug interactions, underscores the need for a comprehensive understanding of berberine metabolism to enhance its therapeutic potential. Further research is warranted to elucidate the metabolic pathways of berberine and their impact on its pharmacological effects, paving the way for the development of more effective and personalized treatments using this natural compound.

References:

- 1. Kumar A, Ekavali. A review on berberine in its pharmacological perspective. J Basic Clin Physiol Pharmacol. 2012;23(2):93-107.
- 2. Imenshahidi M, Hosseinzadeh H. Berberine and barberry (Berberis vulgaris): a clinical review. Phytother Res. 2019;33(3):504-523.
- 3. Hou M, Venkatakrishnan K, Wang H. The surge of berberine to identify metabolic vulnerabilities in cancer. Trends Endocrinol Metab. 2019;30(11):836-850.
- 4. Yan Y, Wang Y, Ren Z, et al. The metabolism of berberine and its contribution to the pharmacological effects. Drug Metab Rev. 2018;50(1):144-154.
- 5. Ghosh R, Sharatchandra K, Rita S. Antibacterial efficacy of alkaloids of Berberis aristata. Fitoterapia. 2009;70(1):52-56.
- 6. Li Z, Jiang JD, Kong WJ. Mesenchymal stem cell-cocultured hepatic cells on decellularized liver scaffold: A novel three-dimensional model for the study of berberine pharmacokinetics and pharmacodynamics. Drug Metab Dispos. 2018;46(1):168-175.
- 7. Tan X, He J, Zeng K, et al. The effect of berberine on the human gut microbiota. Crit Rev Food Sci Nutr. 2019;59(10):1515-1522.
- 8. Lee J, Chiang S, Liu Y, et al. Use of berberine in the treatment of non-alcoholic fatty liver disease: A systematic review. J Evid Based Integr Med. 2017;22(2):194-199.
- 9. Abou Z, Lee YY, Hazarika P. Ethnicity and the pharmacokinetics of berberine and its metabolites. Clin Practice Res Clin Endocrinol Metab. 2016;16(2):258-267.
- 10. Wang Y, Wang Y, Jiang H, et al. Gut microbiota modulation on berberine and metformin pharmacokinetics in rats. Drug Metab Dispos. 2018;46(1):63-69.