RESEARCH ARTICLE DOI: 10.53555/jptcp.v29i04.5916

ADVANCEMENTS IN PEDIATRIC IMAGING: A REVIEW OF TECHNIQUES FOR REDUCING RADIATION EXPOSURE

Suad Hamadi Al Talhi^{1*}, Nawaf Hossain Khabrani², Zahra Abdulmohsen Al Khamis³, Shatha Magboul Alzaidi², Jasser Ahmed Alghamdi⁴, Abdulmajeed Hussain Zughaibi⁵, Adil Mohmmed Al Tamimi⁶, Abed Aqel Al-Zaidi⁷, Abdullah Mushabbab Alqahtani⁸

^{1*}Department of Radiology, King Faisal Hospital, Ministry of Health, Taif, Saudi Arabia
²Department of Radiology, King Faisal Medical Complex, Taif, Saudi Arabia
³Department of Radiology, Ministry of Health, Dammam, Saudi Arabia
⁴Department of Pediatrics, Khulais General Hospital, Makkah, Saudi Arabia
⁵Department of Radiology, Sabya General Hospital, Jazan, Saudi Arabia
⁶Department of Radiology, Ministry of Health, Alqassim, Saudi Arabia
⁷Department of Radiology, Ministry of Health, Taif, Saudi Arabia
⁸Department of Radiology, King Fahad Hospital, Buraydah Alqassim, Saudi Arabia

*Corresponding Author: Suad Hamadi Al Talhi *Department of Radiology, King Faisal Hospital, Ministry of Health, Taif, Saudi Arabia, email: suadaltalhi@hotmail.com

Abstract

Pediatric imaging is a crucial component of medical diagnostics, offering vital insights into various medical conditions affecting children. However, the associated risks of ionizing radiation exposure have prompted significant advancements in imaging techniques aimed at minimizing this exposure while maintaining diagnostic accuracy. Recent technological innovations, including digital radiography and computed tomography (CT) equipped with dose-reduction software, have been central to these efforts. These technologies not only reduce radiation doses but also improve image quality, enhancing the diagnostic process. Advancements such as the application of advanced software algorithms enhance image clarity and detail. The use of artificial intelligence (AI) in image analysis improves the detection of subtle abnormalities, potentially reducing the need for repeat scans and further lowering radiation exposure. Additionally, dual-energy X-ray absorptiometry (DEXA) has been adapted for pediatric use, providing detailed images with minimal radiation. These advancements are complemented by protocol optimization strategies tailored specifically for pediatric patients, which adjust imaging parameters based on individual needs to minimize unnecessary radiation exposure. Challenges such as the cost of new technologies, the need for standardized protocols across institutions, and the importance of specialized training for healthcare professionals are significant. The continued development and integration of innovative imaging technologies are crucial for enhancing pediatric patient care. As these technologies evolve, they promise to further refine diagnostic accuracy and reduce health risks, ensuring that pediatric imaging remains a safe and effective tool for diagnosing and managing health conditions in children.

Keywords pediatric imaging, techniques, radiation exposure

Introduction

Pediatric imaging is a critical component of modern medical diagnostics, allowing for the early detection and management of various conditions in children. However, the use of radiological procedures in children has been a growing concern due to the potential risks associated with ionizing radiation (1). Children are more susceptible to radiation-induced risks compared to adults, owing to their longer life expectancy and the rapidly dividing cells during their growth, which makes them more vulnerable to radiation (2). Consequently, reducing radiation exposure in pediatric imaging without compromising diagnostic accuracy has become a significant focus of research and development in the field. Over the past decade, various advancements have been made to address these concerns. Techniques such as digital radiography and dual-energy X-ray absorptiometry have been refined to lower radiation doses while maintaining image quality (3). Moreover, the introduction of more sophisticated imaging technologies, such as MRI and ultrasound, which do not use ionizing radiation, offers alternatives to traditional radiographic techniques in certain clinical scenarios. Despite these technological advancements, challenges remain in balancing radiation safety with the need for accurate diagnostic imaging. It is crucial to evaluate the efficacy of these new technologies and techniques, particularly their ability to provide clinically relevant information while adhering to the principle of ALARA (As Low As Reasonably Achievable) (4). The review will discuss the evolution of imaging technologies, focusing on innovations that have significantly reduced radiation doses. It will also evaluate the impact of these advancements on diagnostic accuracy and the potential implications for pediatric healthcare. By analyzing recent studies and technological developments, this paper seeks to contribute to the ongoing discussion on optimizing pediatric imaging practices to enhance patient safety without compromising the quality of care.

Methods

A comprehensive literature search in the PubMed, Science Direct and Cochrane databases utilizing the medical topic headings (MeSH) and relevant keywords which were performed. All relevant peer-reviewed articles involving human subjects and those available in the English language were included. Using the reference lists of the previously mentioned studies as a starting point, a manual search for publications was conducted through Google Scholar to avoid missing any potential studies. There were no limitations on date, publication type, or participant age.

Discussion

The quest to reduce radiation exposure in pediatric imaging without compromising diagnostic effectiveness has led to several notable advancements in imaging technology and technique modifications. The transition from traditional film-based systems to digital radiography represents a pivotal shift, as digital systems offer significant reductions in radiation dose due to their higher sensitivity to X-rays (5). Moreover, digital systems provide the flexibility to manipulate images postexposure, potentially reducing the need for repeat scans, which is crucial in pediatric care where minimizing radiation exposure is paramount. Another significant advancement is the implementation of protocol optimization strategies tailored specifically for pediatric patients. These strategies involve adjusting imaging parameters such as voltage, current, and exposure time to suit the specific anatomical and physiological characteristics of children. This approach not only reduces unnecessary radiation exposure but also ensures that the quality of the images produced is sufficient for accurate diagnosis (6). Despite these improvements, there remain challenges in the widespread adoption and implementation of these advanced technologies and techniques. Cost considerations, lack of standardized protocols across institutions, and the need for specialized training for radiologists and technicians are significant barriers. Additionally, while newer technologies such as computed tomography (CT) scanners equipped with dose-reduction software are promising, there is a need for more comprehensive studies to validate their effectiveness in routine clinical practice. To address these challenges, ongoing research and collaboration among industry stakeholders, regulatory bodies, and the medical community are essential. Enhancing awareness about the risks of radiation and the available methods to mitigate these risks is also crucial to ensure the safety and efficacy of pediatric imaging practices.

Comparative Analysis of Low-Dose Techniques

In pediatric imaging, the development and adoption of low-dose techniques have been pivotal in enhancing patient safety while maintaining diagnostic accuracy. A comparative analysis of these techniques reveals distinct advantages and considerations that guide their use in clinical settings. One of the most prominent low-dose techniques is the use of digital radiography, which significantly reduces radiation doses compared to conventional film-based radiography. Digital systems not only reduce exposure but also provide superior image quality, which is crucial for accurate diagnoses in pediatric patients (7).

Another critical advancement is the optimization of computed tomography (CT) protocols. Modern CT scanners now include automated exposure control systems that adjust the radiation dose based on the patient's size and the specific diagnostic task. These systems significantly lower the risk of overexposure while ensuring the images obtained are of sufficient quality for effective clinical evaluation (8). Additionally, the use of iterative reconstruction techniques in CT has shown a potential reduction in radiation dose by as much as 30-50% compared to traditional filtered back projection methods, without compromising image resolution (9).

Furthermore, the application of dose-management software in both X-ray and CT imaging provides real-time feedback on dose settings and suggests adjustments to optimize the radiation used during a scan. This software not only helps in reducing the dose but also aids in achieving a balance between radiation safety and image quality, especially in varied clinical scenarios where different imaging resolutions may be required. Comparing these techniques, it becomes apparent that while all aim to reduce radiation exposure, their application and effectiveness can vary significantly based on the clinical context, the specific needs of the pediatric patient, and the available technology at the healthcare facility. Therefore, choosing the most appropriate low-dose technique requires a thorough understanding of these factors and a clear strategy for implementing the technology in a way that maximizes patient safety without compromising diagnostic outcomes.

Impact of Radiation Reduction on Diagnostic Accuracy

The implementation of radiation reduction techniques in pediatric imaging raises crucial questions regarding their impact on diagnostic accuracy. A key concern is whether lowering radiation doses could result in decreased image clarity and detail, potentially leading to misdiagnoses or the need for additional imaging tests. Various studies have explored this issue, demonstrating that with careful application and technological enhancements, it is possible to maintain, and in some cases even enhance, diagnostic accuracy despite reduced radiation exposure.

Advanced imaging modalities and techniques such as digital radiography and computed tomography (CT) with dose reduction technologies have been central to achieving this balance. Digital radiography, for instance, utilizes advanced detectors that are highly sensitive to radiation, thereby producing high-quality images even at significantly lower doses. This technology not only ensures reduced radiation exposure but also enhances image quality by minimizing the noise-to-signal ratio, which is crucial for accurate diagnosis in pediatric patients (10). Similarly, the use of iterative reconstruction (IR) techniques in CT scans has shown promising results. IR techniques can significantly reduce the noise typically associated with lower dose scans, thereby improving image quality. Studies comparing IR with traditional image reconstruction methods have reported that IR can maintain or even improve diagnostic accuracy while using substantially lower doses of radiation (11). These findings are particularly relevant in pediatric care, where the long-term safety of imaging procedures is a significant concern.

Moreover, the role of protocol optimization cannot be overstressed. By tailoring scan parameters specifically for pediatric patients, such as adjusting the voltage and current based on the patient's size and the specific diagnostic requirement, radiologists can ensure that the minimal necessary radiation

is used without compromising image quality. This approach not only supports radiation safety standards but also upholds the diagnostic integrity of the imaging process (12). While the reduction of radiation doses in pediatric imaging is imperative for patient safety, it is equally crucial to maintain diagnostic accuracy. The advancements in imaging technology and technique optimization play a pivotal role in achieving this dual objective. Ongoing research and development in this field continue to refine these techniques, promising even greater improvements in safe and accurate diagnostic imaging for children.

Innovations in Imaging Technology

The field of pediatric imaging has witnessed substantial technological innovations aimed at enhancing diagnostic capabilities while minimizing radiation exposure. These advancements are pivotal in ensuring that imaging remains a safe, accurate, and efficient diagnostic tool for pediatric patients. One of the key innovations in this realm has been the development of advanced software algorithms that enhance image quality and allow for lower doses of radiation during scans.

Digital radiography, for example, has undergone significant enhancements with the integration of software that can optimize image capture and processing. This technology not only reduces the amount of radiation needed but also improves the clarity and detail of the images, which is crucial for accurate diagnosis in young patients (13). Additionally, the use of artificial intelligence (AI) in image analysis has started to play a transformative role. AI algorithms can analyze images for subtleties that might be missed by the human eye, improving diagnostic accuracy and potentially reducing the need for repeat scans, further minimizing exposure (14). Another notable innovation is the advancement of dual-energy X-ray absorptiometry (DEXA) in pediatric imaging. This technique uses two X-ray beams at different energy levels, allowing for detailed differentiation of bone and soft tissue without increasing radiation dose. The enhanced contrast provided by DEXA is particularly useful in pediatric orthopedics, where it can assist in the precise diagnosis of bone injuries and diseases (15).

These technological advancements are complemented by improvements in hardware, such as the development of newer, more sensitive X-ray detectors and CT scanners designed specifically for pediatric use. These devices are engineered to operate efficiently at lower power settings, reducing radiation exposure while maintaining high-quality imaging results. Looking to the future, the continuous integration of AI and machine learning with imaging technology holds promise for further advancements. These could include automated optimization of scan parameters in real-time and even more sophisticated image analysis capabilities that could refine diagnostic accuracy and reduce the need for invasive procedures. The integration of these innovative technologies into pediatric imaging practices not only enhances diagnostic precision but also significantly contributes to the safety and well-being of young patients. As these technologies continue to evolve, they will likely set new standards for pediatric imaging practices worldwide.

Conclusion

Advancements in pediatric imaging technologies have significantly enhanced the safety and efficacy of diagnostic procedures by reducing radiation exposure without compromising image quality. Ongoing innovations, particularly in digital radiography and artificial intelligence, hold promise for further improvements. It is crucial to continue developing and integrating these technologies to ensure optimal care for pediatric patients while adhering to safety standards.

References

- 1. Frush DP, Donnelly LF, Rosen NS. Computed tomography and radiation risks: what pediatric health care providers should know. Pediatrics. 2003;112(4):951-957.
- Brenner DJ, Hall EJ. Computed tomography an increasing source of radiation exposure. N Engl J Med. 2007;357:2277-2284.
- 3. Seibert JA, Morin RL. The standardized exposure index for digital radiography: an opportunity for optimization of radiation dose to the pediatric population. Pediatric radiology. 2011 May;41:573-81.

- 4. Goske MJ, Applegate KE, Boylan J, et al. The Image Gently campaign: working together to change practice. AJR Am J Roentgenol. 2008;190:273-274
- 5. Donnelly LF. Pediatric Imaging E-Book: The Fundamentals. Elsevier Health Sciences; 2011 Oct 17.
- 6. Strauss KJ, Kaste SC. The ALARA (as low as reasonably achievable) concept in pediatric interventional and fluoroscopic imaging: striving to keep radiation doses as low as possible during fluoroscopy of pediatric patients—a white paper executive summary. Radiology. 2006 Sep;240(3):621-2.
- 7. Mulkens TH, Broers C, Fieuws S, Termote JL, Bellnick P. Comparison of effective doses for low-dose MDCT and radiographic examination of sinuses in children. American Journal of Roentgenology. 2005 May;184(5):1611-8.
- 8. Frush DP, Soden B, Frush KS, Lowry C. Improved pediatric multidetector body CT using a size-based color-coded format. American journal of roentgenology. 2002 Mar;178(3):721-6.
- 9. Kalra MK, Maher MM, Toth TL, et al. Techniques and applications of automatic tube current modulation for CT. Radiology. 2004;233:649-657
- 10. Donnelly LF, Emery KH, Brody AS, et al. Minimizing radiation dose for pediatric body applications of single-detector helical CT: strategies at a large children's hospital. AJR Am J Roentgenol. 2001;176:303-306.
- 11. Huda W, Ogden KM, Khorasani MR. Converting dose-length product to effective dose at CT. Radiology. 2008;248:995-1003.
- 12. Qurashi A, Rainford L, Ajlan A, Khashoggi K, Ashkar L, Al-Raddadi M, Al-Ghamdi M, Al-Thobaiti M, Foley S. Optimal abdominal CT protocol for obese patients. Radiography. 2018 Feb 1;24(1):e1-2.
- 13. Lehnert T, Naguib NN, Korkusuz H, Bauer RW, Kerl JM, Mack MG, Vogl TJ. Image-quality perception as a function of dose in digital radiography. American journal of roentgenology. 2011 Dec;197(6):1399-403.
- 14. Ranschaert ER, Morozov S, Algra PR, editors. Artificial intelligence in medical imaging: opportunities, applications and risks. Springer; 2019 Jan 29.
- 15. Brix R, Nissen-Meyer S, Nuran MR. Dual-energy X-ray absorptiometry in pediatric radiology: A valuable technique for young patients. European Journal of Radiology. 2017;92:147-154