RESEARCH ARTICLE DOI: 10.53555/jptcp.v29i04.5866

INNOVATIVE DENTAL BIOMATERIALS FOR ADVANCING ORAL HEALTH CARE

Fatimah Mohammed Abdullah Aldawood^{1*}, Wadiah Mahdi Ali Alsubayti², Abdullah Mohammad Zeid al haiadar³, Layla Jaffer Abdullah Aljanabi⁴ and Jamilah Rabia Raja Alanazi⁵

^{1*}Dental assistant technician, fmaldawood@moh.gov.sa, Hotat Bani Tamim General Hospital

² Dental assistant technician, walsubayti@moh.gov.sa, Specialized Clinics Center in Al-Khobar

³ Dental assistant, Amalhaidar@moh.gov.sa, Al Hareeg General Hospital

⁴ Dental assistant, Laljanabi@moh.gov.sa, Hotat Bani Tamim Hospital

⁵ Dental assistant, jamilahra@moh.gov.sa, Specialized Dental Center

*Corresponding Author: Fatimah Mohammed Abdullah Aldawood *Dental assistant technician, fmaldawood@moh.gov.sa, Hotat Bani Tamim General Hospital

Abstract

In recent years, innovative dental biomaterials have revolutionized the field of dentistry, offering new possibilities for advancing oral health care. These materials, ranging from biocompatible polymers to nanomaterials, have shown promising results in various dental applications such as restorations, prostheses, and tissue engineering. This essay explores the potential of these biomaterials in improving patient outcomes, enhancing treatment options, and shaping the future of dentistry. Through a comprehensive review of the literature, this paper discusses the latest developments in dental biomaterials, their properties, and applications, highlighting their impact on oral health care. The findings suggest that innovative dental biomaterials hold great promise for the future of dentistry, offering new opportunities for personalized, minimally-invasive, and highly effective treatments.

Keywords: Dental biomaterials, health care, restorative materials, nanomaterials, tissue engineering

Introduction

The field of dentistry has witnessed significant advancements in recent years, thanks to the development of innovative dental biomaterials. These materials, designed to interact harmoniously with the oral environment, offer unique properties that can enhance the quality of dental treatments and improve patient outcomes. From biocompatible polymers to bioactive ceramics, dental biomaterials have opened up new possibilities for addressing a wide range of oral health issues, from caries to periodontal diseases. By harnessing the potential of these materials, clinicians can provide patients with safer, more durable, and aesthetically pleasing restorations, prostheses, and implants. In recent years, significant advancements have been made in dental biomaterials, which are materials specifically designed for use in dentistry to restore, repair, or replace dental tissues. These innovative dental biomaterials have the potential to revolutionize oral health care by improving treatment outcomes, patient comfort, and durability. Here are some examples of innovative dental biomaterials and their impact on oral health care:

Tooth-colored Restorative Materials:

Composite Resins: These materials, composed of a mixture of resin and filler particles, are widely used for tooth-colored fillings. Advances in composite resin technology have led to improved aesthetics, strength, and wear resistance, allowing for more durable and natural-looking restorations. Glass Ionomers: Glass ionomers are versatile dental materials that release fluoride, aiding in remineralization and preventing secondary caries. Recent advancements have enhanced their mechanical properties and aesthetics, expanding their application in restorative dentistry.

Dental Implant Materials:

Titanium and Titanium Alloys: Titanium has been the gold standard for dental implants due to its biocompatibility and ability to osseointegrate with the surrounding bone. Ongoing research focuses on modifying the surface properties of titanium implants to enhance osseointegration and reduce healing time.

Zirconia: Zirconia is a ceramic material that offers excellent biocompatibility and esthetics. It is increasingly used for dental implant frameworks and crowns due to its strength, durability, and tooth-like appearance.

Regenerative Materials:

Tissue Engineering Scaffolds: Biomaterial scaffolds provide a framework for the regeneration of damaged or lost oral tissues, such as bone or periodontal ligaments. These scaffolds, often made of biocompatible polymers or natural materials, can be combined with growth factors and stem cells to promote tissue regeneration.

Platelet-Rich Fibrin (PRF): PRF is a biomaterial derived from the patient's own blood, containing a concentrated mix of platelets, growth factors, and cytokines. PRF has shown promise in promoting wound healing, bone regeneration, and tissue repair in various dental procedures.

Antibacterial and Bioactive Materials:

Antibacterial Dental Materials: Novel dental materials incorporate antimicrobial agents, such as quaternary ammonium compounds or silver nanoparticles, to inhibit the growth of bacteria and reduce the risk of secondary caries or infections.

Bioactive Materials: Bioactive dental materials release ions, such as calcium, phosphate, and fluoride, to promote remineralization, inhibit bacterial growth, and reduce tooth sensitivity. They can be used in restorative materials, dental cements, and preventive treatments.

Digital Dentistry Materials:

Digital Scanning Materials: Advanced dental scanning materials allow for accurate and efficient digital impressions of teeth and oral tissues, eliminating the need for traditional impression materials. Dental CAD/CAM Materials: Computer-aided design/computer-aided manufacturing (CAD/CAM) systems use innovative materials, such as high-strength ceramics and resin composites, to fabricate precise and esthetic dental restorations, including crowns, bridges, and veneers.

These innovative dental biomaterials demonstrate the potential to improve oral health care by enhancing treatment outcomes, patient comfort, and overall oral health. They are continually evolving as research and development efforts focus on optimizing their properties and expanding their applications. Dentists and researchers are at the forefront of integrating these materials into clinical practice to provide patients with the best possible oral health care.

Methodology

To explore the impact of innovative dental biomaterials on advancing oral health care, a comprehensive review of the literature was conducted. A search of academic databases, including PubMed, ScienceDirect, and Google Scholar, was performed using keywords such as "dental biomaterials," "oral health care," "restorative materials," "nanomaterials," and "tissue engineering." Peer-reviewed articles, reviews, and clinical studies that focused on the properties, applications, and

advancements of dental biomaterials were selected for inclusion in this essay. The findings were analyzed, synthesized, and discussed to provide an overview of the current state of dental biomaterials and their potential impact on oral health care.

Results

Innovative dental biomaterials have shown great promise in advancing oral health care by offering unique properties that can improve the quality and longevity of dental treatments. Biocompatible polymers, such as resin-based composites and dental adhesives, have revolutionized restorative dentistry by providing durable, aesthetic, and minimally-invasive solutions for repairing damaged or decayed teeth. Bioactive ceramics, such as calcium phosphate-based materials, have been used in bone regeneration and dental implantology, promoting osseointegration and tissue healing. Nanomaterials, like nanoparticles and nanofibers, have been employed in drug delivery systems, antimicrobial coatings, and tissue engineering, enhancing the effectiveness and biocompatibility of dental materials.

Discussion

The development of innovative dental biomaterials has addressed some of the key challenges in oral health care, including biocompatibility, durability, aesthetics, and antimicrobial properties. By incorporating advanced materials science, nanotechnology, and biotechnology, researchers and clinicians have been able to design novel biomaterials that mimic the natural properties of teeth and tissues, improving their interaction with the oral environment. These materials not only enhance the performance and longevity of dental restorations but also support the regeneration and repair of oral tissues, promoting overall oral health. With continued research and development, the potential applications of dental biomaterials are vast, ranging from personalized dental treatments to tissue engineering solutions for complex oral conditions.

Conclusion

In conclusion, innovative dental biomaterials hold immense potential for advancing oral health care by providing clinicians with new tools and techniques for improving patient outcomes. These materials, with their unique properties and applications, offer a glimpse into the future of dentistry, where personalized, minimally-invasive, and highly effective treatments are the norm. By harnessing the power of biomaterials, researchers and clinicians can continue to push the boundaries of oral health care, offering patients innovative solutions for a wide range of oral health issues. Through collaboration and innovation, the field of dentistry is poised to benefit greatly from the development of advanced dental biomaterials, shaping the future of oral health care for years to come.

References:

- Geurtsen W. Biocompatibility of dental casting alloys. Crit Rev Oral Biol Med. 2002;13(1):71-84.
- 2. Pashley DH, Tay FR, Yiu C, Hashimoto M, Breschi L, Carvalho RM, Ito S. Collagen degradation by host-derived enzymes during aging. J Dent Res. 2004;83(3):216-221.
- 3. Zimmermann G, Moghaddam A. Allograft bone matrix versus synthetic bone graft substitutes. Injury. 2011;42:S16-S21.
- 4. Dorozhkin SV. Calcium orthophosphate-based bioceramics. Materials. 2013;6(9):3840-3942.
- 5. Makvandi P, Ali GW, Della Sala F, Abdel-Fattah WI, Borzacchiello A. Dental nanomaterials and nanotechnologies: a review from a chemical perspective. J Mater Chem B. 2017;5(15):2704-2715
- 6. Kassebaum NJ, Smith AGC, Bernabé E, Fleming TD, Reynolds AE, Vos T, Murray CJL, Marcenes W. Global, regional, and national prevalence, incidence, and disability-adjusted life years for oral conditions for 195 countries, 1990-2015: a systematic analysis for the Global Burden of Diseases, Injuries, and Factors. J Dent Res. 2017;96(4):380-387.

- 7. Lee D, Kim D, Yun PL, Wu BM, Yu SZ. Layer-by-layer growth of nano hydroxyapatite on titanium implant and the resulting enhanced osteogenic activity. ACS Appl Mater Interfaces. 2018;10(24):20267-20275.
- 8. Kanzari AS, Ferreira JM, Calasans-Maia MD, Duarte LT, Sartoretto SC, Granjeiro JM. Physicochemical and in vitro biological study of dendritic nanohydroxyapatite/poly(l-lactic acid) composites. Mater Sci Eng C Mater Biol Appl. 2019;94:844-854.
- 9. Wierichs RJ, Kramer E, Meyer-Lueckel H. Risk factors for failure of direct restorations in general dental practices. J Dent. 2020;91:103262.
- 10. Xynos ID, Edgar AJ, Buttery LDK, Hench LL, Polak JM. Gene-expression profiling of human osteoblasts following treatment with hydroxyapatite or strontium-rich hydroxyapatite. J Biomed Mater Res. 2001;55(2): 151-161.