

RESEARCH ARTICLE DOI: 10.53555/jptcp.v31i6.5850

BIOLOGICAL AND GAS CHROMATOGRAPHY MASS SPECTROMETRY STUDIES ON EXTRACT AND FRACTIONS OF *IPHIONIA GRANTIOIDES*

Farzana Kamalan¹, Jahangir Khan Achakzai²*, Muhammad Anwar Panezai³, Basira Akhtar⁶, Abdul Raoof¹⁰, Ali Akbar⁷, Shahabuddin Kakar⁴, Nisar Ahmed Shahwani⁹, Javed Khan⁸, Nazima Yousaf Khan³, Ghulam Mustafa Khan⁵, Nizam Baloch⁵, Bakht Zareen Rahim⁶, Noor Hassan³, Abdul Manan Kakar³

¹Department of Chemistry, University of Turbat Kech, 92600 Balochistan, Pakistan
 ²*Discipline of Biochemistry, Department of Natural and Basic Sciences, University of Turbat Kech, 92600 Balochistan, Pakistan
 ³Institute of Biochemistry, University of Balochistan, Quetta 87300, Pakistan
 ⁴Department of Zoology, University of Balochistan, Quetta 87300, Pakistan
 ⁵Department of Chemistry, University of Balochistan, Quetta 87300, Pakistan
 ⁶Department of Botany, University of Balochistan, Quetta 87300, Pakistan
 ⁷Centre for Biotechnology and Microbiology (CBM) University of Swat, Swat 19130 Khyber Pakhtun Khwa.
 ⁸Department of Microbiology, Quaid-i-Azam University, Islamabad 45320, Pakistan

¹⁰Agriculture Research Institute, Sariab Quetta, Pakistan

*Corresponding Author: Dr. Jahangir Khan Achakzai

*Discipline of Biochemistry, Department of Natural and Basic Sciences, University of Turbat Kech, 92600 Balochistan, Pakistan, jahangir.khan@uot.edu.pk

Abstract

In the health system, the demand for different plants as medicinal plants, has achieved key importance all over the world in the case of both plants and humans. In this research study, the biological activities for instance Antileishmanial, antibacterial, antifungal, anticancer (HeLa, 3T3, and PC3 cell lines), anti-inflammatory, and Brine shrimp lethality assay and Gas chromatography mass spectrometry are studied. Antileishmanial bioassay, microplate alamar blue assay, agar tube dilution method, MTT assay, oxidative burst assay using chemiluminescence technique, β -hatching techniques and Triple quadrupole acquisition method MS parameters are the methods used for Antileishmanial, antibacterial, antifungal, anticancer, anti-inflammatory, Brine shrimp lethality assay and Gas chromatography mass spectrometry. one extract for instance whole plant methanol extract of Iphionia grantioides (WMEIG) and two fractions such as whole plant n-hexane fraction of Iphionia grantioides (WHFIG), whole plant aqueous fraction of Iphionia grantioides (WAFIG) extracted and fractionated from the medicinal plant of Baluchistan, Iphionia grantioides. None of the extracts and fractions of Iphionia grantioides showed Antileishmanial activities and having IC50 above 100. The extract and fractions of Iphionia grantioides were inactive against bacterial strains. All extract and fractions of Iphionia grantioides exhibited no antifungal activities none of the extract and fractions of Iphionia grantioides showed anticancer activities against HeLa, PC3 and 3T3 cell lines. None of the extracts and fractions of Iphionia grantioides showed anti-inflammatory activities and lethality. GC-MS studies revealed that whole plant methanol extract of Iphionia grantioides (WMEIG) consists of 16 compounds, whole plant n-hexane fraction of Iphionia grantioides (WHFIG) consists of 13 compounds, and whole plant aqueous fraction of Iphionia grantioides (WAFIG) consists of 25 compounds.

Keywords: Iphionia grantioides, Extraction, Fractionation, Antileishmanial, Antibacterial, Antifungal, Anticancer, Anti-inflammatory, BSLA, GC-MS

1-Introduction

The genus iphonia grantioides belong to the family asteraceae. Fleshy leaves are 0.8-1.5cm long, acute-apically 3-lobed, cuneate-linear, or oblanceolate. A single terminal radiate with a diameter of 2-3 cm makes up the capitula. Bracts linear-oblong, herbaceous outer bracts, 5-8 0.8-1.5 m, innermembranous, linear, acuminate bracts. Linear-oblong bracts, herbaceous outer bracts, and innermembranous, linear, acuminate bracts make up the involucre, which is 8-12 (-14) mm long, seriate, and thick glandular. The florets are neuter, ligulate, and have 2-3 teeth on the margins. Pappus with just bristles, 2-3 seriate, 22-72 in number, 6-8 mm long, golden-yellow tint. Center florets of hermaphrodites with glandular tips (Naveed et al., 2019).

Hairy, densely coated with glandular trichomes, and nonglandular on both surfaces, the succulent leaves of Iphionia grantioides are hairy, thickly covered with glandular trichomes, and nonglandular on both surfaces. With stomata on both epidermises and anomocyte-type stomatal machinery, the leaf is amphistomatic. Anatomical investigations demonstrate waxy cuticles on both the top and lower epidermises, as well as multicellular non-glandular and glandular trichomes. Trichphyton longitudes, Microsporum canis, candida albicans, and candida glaberata), two human pathogenic fungi (Aspergillus flavus, Aspergillus niger), and three plant pathogenic types (Fusarium Solani, Fusarium Solani) were tested for antifungal activity using crude ethanoic extracts of Iphionia grantioides. (Flower, in the same way, crude extracts of stems, leaves, and roots (500 ug/ml) inhibited fungal strains in the following order: leaves (43.6%) > stem (35%) > root (43.6%) (30 percent). People who have been bitten by a snake are given the plant after it has been cooked in water. Fresh plant paste is applied to wounds to speed up healing. When the leaves are stepped, they are used as an asthma treatment. It's also used as camel fodder and as a washing-machine soup (Naveed et al., 2016).

2 Method and material

2.1 plant material

In this research study, whole plant of iphonia grantioides was used.

2.2 extraction

Iphionia grantioides (Boiss) was dried in its entirety for a month in the shade. This is caused by solar radiation, which eliminates bioactive chemicals found throughout the entire Iphionia grantioides plant (Boiss). Iphionia grantioides (Boiss) was dried and the whole plant was ground into a powder using a mechanical grinder. The 20kg plant powdered was then macerated in 20 L of methanol for just one week, and The mixture was then concentrated at reduced pressure and below 55 °C while being filtered using Whatman filter paper No. 1. There were 600 g of this whole plant crude methanol extract (WMEIG) (Achakzai et al., 2019; Achakzai et al., 2020).

2.3 Fractionation of crude extract

The whole plant n-hexane fraction of Iphionia grantioides was created by fractionating the crude whole plant extract using two solvents, such as aqueous and n-hexane (WHFIG) and whole plant

aqueous fraction of Iphionia grantioides (WAFIG), each weighing 27.72 g and 440 g, respectively(Achakzai et al., 2019; Achakzai et al., 2020; Achakzai et al., 2020)..

2.4 Antileishmanial Activity

Utilizing microplates for culture, the fractions and extracts of medicinal herbs were assessed against Leishmania major (promastigotes). Leishmania major promastigotes (MHOM/Pk/88/DESTO) were cultivated using bulk normal physiological saline in NNN biphasic medium. The mixture was then concentrated at reduced pressure and below 55 °C while being filtered using Whatman filter paper No. 1. There were 37.1 g of this whole plant crude methanol extract (WMEIG). The Leishmania parasites were centrifuged for 10 minutes at 2000 rpm after the promastigotes were extracted at log phase. At the same speed and timing, Leishmania major was washed three times in saline. 180 uL of culture medium were added to each of the 96 wells of a microtitre plate. Fractions and extracts of therapeutic plants were dissolved in PBS with a pH of 7.4 and 0.5% DMSO and 0.5% MeOH to create a 1000 mg/mL stock solution. In order to create a working solution with a concentration range of 1-100 ug/mL, for the fractions and extracts with a 20 ul concentration were added to wells and serially diluted. 100 uL of the parasite culture were given to each well. In this experiment, two rows remained: one for the positive control, which received typical Antileishmanial drugs like amphotericin B (Fluka) and pentamidine, and the other for the negative control, which received medium (ICN). 96-well microtitre plate was incubated for 72 hours at 21- 220C. The program Ezfit 5.03 was used to determine the IC50 values of fractions and extracts with 41 various Antileishmanial activities, such as numbers of motile cells counted on and improved Neubaur counting chamber (Percella Scientific, USA). Examining the culture for signs of cell vitality, such as (Atta-ur-Rahman, 2001).

2.5 Antibacterial activity

Five bacterial strains are used in this research study for instance Salmonella typhi ATCC14028, Pseudomonas aeruginosa ATCC 10145, Staphylococcus aureus NCTC 6571, Bacillus subtilis ATCC 23857 and Escherichia coli ATCC 25922.

Microplate Alamar Blue Assay

The antibacterial activity is assessed using this test. The growing medium for organisms was Mueller Hinton medium. A McFarland turbidity index with a value of 0.5 was employed to modify the inoculums. By dissolving extracts in DMSO, the stock solution was created. media was moved to each well. Except for the control well, where extracts were not added, wells had extracts added to them. Make the wells 200 uL in size. Last but not least, 5x106 cells were added to both the test and control 96-well plates. The plate was sealed with parafilm with the aid of pafilm before being placed in an incubator for 18–20 hours. Alamar Blue Dye was applied to each well, and the plate was shaken for two to three hours at an RPM of 80. The color of the dye, for example, Alamar blue dye was turned pink to demonstrate the development of bacteria. The absorbance at 570 nm was measured with an ELISA reader (Pettit et al., 2005).

2.6 Antifungal Assay

Seven fungi are used in this research study for instance Aspergillus fumigatus, Candida glabarata, Fusarium lini, Microsporum canis, Aspergillus niger, Trichphyton rubrum and Candida albicans.

Agar tube dilution method

It was done by dilution of agar tubes to assess the extracts' antifungal efficacy. Extracts were dissolved in 1 ml of DMSO at a concentration of 24 mg (Merck). In 500 cc of distilled water Sabouraud, 4% glucose agar, and 4 grams of agar-agar were dissolved to create SDA. (SigmaAldrich, Germany). Through a magnetic stirrer, mixture was then carefully stirred. This growth media was steamed until it totally dissolved, then 4ml was added to screw-cap tubes, which were 42 and subsequently autoclaved for 15 minutes at 121oC. After the tubes had cooled to 15 °C and the SDA had not yet solidified, 66.6 ul of crude extract was placed into it. At room temperature,

tubes were allowed to harden in a slanting orientation. A 4mm-diameter portion of the fungus was injected into the tubes. In other media, the negative control and the positive control, such as standard antifungal medicines, such as DMSO, were utilized. For 3–7 days, tubes were incubated at 27–29 °C. Fungal cultures were checked twice a week while they were incubating (Atta-ur-Rahman, 2001; Choudhary, 1995).

2.7 Anti-Inflammatory Assay

Oxidative burst assay using chemiluminescence technique

This approach uses 25ul of whole blood diluted in HBSS++ with calcium and magnesium chloride. (St. Louis, USA; Sigma) as well as the fractions and extracts of medicinal plants at a concentration of 25 uL were incubated at 37oC for 15 min 96-well plates were then used to plate this mixture (Costar, NY, USA). The unfinished wells were filled with HBSS++. Cells and HBSS++ were introduced to the control wells. 25 ul each of serum opsonized zymosan and luminol from the St. Louis-based Sigma Chemical Co., Missouri, the United States, were warmly received (Sigma Chemical Co., St. Louis, MO, USA). Relative light units were used to measure the ROS concentration in luminometers. Ibuprofen was used as a common treatment and had an IC50 of 11.2 1.9. (Helfand et al., 1982).

2.8 Brine Shrimp Lethality Assay

B-hatching techniques

B-Hatching was used to separate 50 mg of brine shrimp eggs and incubate them there for two days at 37°C on a hatching tray with filtered brine solution. 2 mL of a solvent were dissolved. Such as methanol, in 20 mg of plant extracts and fractions. The concentration was increased to 10, 100, and 1000ug/mL by dividing this solution into three vials and adding 5, 50, and 500ul to each. The solvent evaporated overnight. Each container received 30 larvae by Pasteur pipette addition. Seawater (5 ml) was added. Twenty-four hours of incubation at a temperature of 25–27oC with light. Other vials included solvent-reference cytotoxic medication along with negative and positive 43 controls. Etoposide, 7.4625ug/mL, was the standard drug utilized in this investigation. The Finney computer programmer was used to calculate the LD50 (Kivack, 2001;Carballo, 2000).

2.9 MTT Assay (PC 3, 3T3 and HeLa cell lines)

The American Type Culture Collection was used to purchase the cell lines of PC 3, 3T3, and HeLa (ATCC). A medium resembling Dulbecco's Eagle modified media was used. It contained 10% FBS, 2% drugs such as penicillin and streptomycin at 100 IU/mL and 100 ug/mL, respectively, maintained in 5% CO2 and incubated at 37 oC. in this assay to create a culture of cancer cell line. Cell lines were extracted once confluence had formed. In a 96-well flat, 5 104 cells were seeded each well. Extracts and fractions containing 50ug/ml were added after 24 hours. Cell lines and a sample were grown in a 96-well plate for 48 hours. Fractions and extracts containing 50 ug/ml were added after 24 hours. Cell lines and a sample were grown in a 96-well plate for 48 hours. The decrease of MTT led to the formation of formazan crystals. Crystals were dissolved by adding 100ul of DMSO, and then, the absorbance at 570 nm was measured in a microplate reader before the measurement (Spectra Max plus, Molecular Devices, USA, CA). Doxorubicin and cyclohexamide were utilized as the standard treatments for HeLa, PC 3, and 3T3 cell lines, respectively. To calculate the % inhibition or reduction in viable cells, the following formula was used: In order to calculate the IC50, a stock solution of the fraction or extracts at a concentration of 20 mM is diluted into a working solution at a concentration of 50 uM. The working solution is then serially diluted to produce less than 50% inhibition. By the aid of the EZ-fit5 program, The IC50 is determined (Mosmann, 1983).

2.10 Gas chromatography mass spectrometry (GC-MS) analysis triple quadrupole acquisition method MS parameters

We isolated and quantified chemicals from Iphionia grantioides. When there is, a column HP5MS. 2 uL and mass spectrometer of the fraction or extracts were directly fed into the gas chromatograph mod 5973 Network Mass Selective Detector is used. 6890N Network GC System (Agilent Technologies Palo Alto, California) Agilent Technologies, Palo Alto, California (30 m 44 length, 0.25 mm internal diameter, 0.25 um film width). The incorrect variety of helium gas. A split-splitless injector at 250 oC was injected using a 30:1 split ratio. The oven's schedule was as follows: 70°C for three minutes, followed by six minutes at 180°C, five minutes at 280°C, and finally, ten minutes at 290°C. 250 oC was the MSD transfer line's temperature; the MSD quadrupole temperature was 150 oC; The mass spectra were at 70 eV, the ionization temperature was 230 oC, and the scan was successful in the series between 35 and 300 m/z. By contrasting the mass spectra of the fractions or extracts from Iphionia grantioides with those in the NIST 02 and WILEY libraries (Eman et al., 2016).

3. Results and Discussion

In this research study, one extract for instance whole plant methanol extract of Iphionia grantioides (WMEIG) and two fractions such as whole plant n-hexane fraction of Iphionia grantioides (WHFIG), whole plant aqueous fraction of Iphionia grantioides (WAFIG) extracted and fractionated from the medicinal plant of Baluchistan, Iphionia grantioides. None of the extracts and fractions of showed Antileishmanial activities and having IC50 above 100. The standard drug used for Antileishmanial activities are amphotericin B and pentamidine with IC50 value 3.41 ± 0.02 and 4.56 ± 0.01 . The Antileishmanial activities of extracts and fractions of whole plant Iphionia grantioides are represented in table 1.

	5 411101465								
S.No	Name of extracts/fractions/Std Drugs	IC ₅₀ (ug/mL) \pm S.D.							
1	WMEIG	>100							
2	WHFIG	>100							
3	WAFIG	>100							
9	Pentamidine	4.56 ± 0.01							
10	Amphotericin B	3.41 ± 0.02							

 Table 1: Antileishmanial activities of extracts and fractions of whole plant Iphionia

 grantioides

The extract and fractions of *Iphionia grantioides* were inactive against bacterial strains. Ofloxacin was the standard drug used against bacterial strains with percent inhibition 92.54%, 92.41%, 93.05%, 92.68% and 92.37% against *Staphylococcus aureus*, *Pseudomonas aeruginosa*, *Salmonella typhi*, *Escherichia coli* and *Bacillus subtilis*. The antibacterial activities of extracts and fractions of whole plant *Iphionia grantioides* are represented in Table 2

	Table 2:	Antibacteria	l activities of	extracts and	fractions of	f whole	plant <i>l</i>	phionia	grantioides
--	----------	--------------	-----------------	--------------	--------------	---------	----------------	---------	-------------

S.No	Bacterial Name	WMEIG	WHFIG	WAFIG	Percentage
		Percentage	Percentage	Percentage	(%) Inhibition
		(%)	(%)	(%)	of Drugs
		Inhibition	Inhibition	Inhibition	(Ofloxacin)
1	Salmonella typhi	No	No	No	93.05%
	ATCC14028	Inhibition	Inhibition	Inhibition	
2	Pseudomonas aeruginosa	No	No	No	92.41%
	ATCC 10145	Inhibition	Inhibition	Inhibition	
3	Staphylococcus aureus	No	No	No	92.54%
	NCTC 6571	Inhibition	Inhibition	Inhibition	
4	Bacillus subtilis	No	No	No	92.37%
	ATCC 23857	Inhibition	Inhibition	Inhibition	

All extracts and fractions of *Iphionia grantioides* exhibited no antifungal activities. Miconazole and amphotericin B were the standard drugs used against seven strains of fungi for instance, *Microsporum canis, Candida glabarata, Aspergillus Niger, Fusarium lini, Aspergillus fumigatus, Candida albicans* and *Trichphyton rubrum*. Extracts and fractions of antifungal activities of whole plant *Iphionia grantioides* are represented in Table 3.

	0							
S.NO	Name of	Linear	Linear	Std. Drug	Mic	WMEIG	WHFIG	WAFIG
	Fungus	Growth	Growth		(ug/mol)	%	%	%
		(mm) of	(mm) of			Inhibition	Inhibition	Inhibition
		Sample	Control					
1	Aspergillus	100	100	Amphoteric	100	0%	0%	0%
	fumigatus			in B				
2	Candida glabarata	100	100	Miconazole	110.8	0%	0%	0%
3	Fusarium lini	100	100	Amphoteric	7325	0%	0%	0%
				in B				
4	Microsporu m canis	100	100	Miconazole	98.4	0%	0%	0%
5	Aspergillus niger	100	100	Miconazole	20	0%	0%	0%
6	Trichphyton rubrum	100	100	Miconazole	70	0%	0%	0%
7	Candida albicans	100	100	Miconazole	110	0%	0%	0%

Table 3: Antifungal activities of extracts and fractions of whole plant Iphionia grantioides

None of the extract and fractions of *Iphionia grantioides* showed anticancer activities against HeLa cell line. The standard drug, Doxorubicin inhibited the growth of HeLa cell line 100% with IC_{50} 0.9± 0.14. extracts and fractions of anticancer of whole plant *Iphionia grantioides* are represented in table 4.

 Table 4: Anticancer activities (HeLa cell line) of extracts and fractions of whole plant Iphionia grantioides

S.No.	Extract/Fraction/Std. Drug	Conc. (ug/mL)	% Inhibition/Stimulation	$IC_{50} \pm S.D.$
1	WMEIG	30	9.7	Inactive
2	WHFIG	30	7.1	Inactive
3	WAFIG	30	2.2	Inactive
5	Doxorubicin	30	100	0.9±0.14

None of the extract and fractions of *Iphionia grantioides* showed anticancer activities against PC3 cell line. The standard drug, Doxorubicin inhibited the growth of HeLa cell line 89.9% with IC_{50} 1.9± 0.14. extracts and fractions of anticancer whole plant *Iphionia grantioides* are represented in Table 5.

 Table 5: Anticancer activities (PC3 cell line) of extracts and fractions of whole plant Iphionia grantioides

S.No.	Extract/Fraction/Std. Drug	Conc. (ug/mL)	% Inhibition/Stimulation	$IC_{50} \pm S.D.$
1	WMEIG	30	18.9	Inactive
2	WHFIG	30	16.6	Inactive
3	WAFIG	30	7.1	Inactive
5	Doxorubicin	30	89.9	1.9 ± 0.14

None of the extract and fractions of *Iphionia grantioides* showed anticancer activities against 3T3 cell line. The standard drug Doxorubicin inhibited 96.2% the growth of the cell line with IC₅₀ value 0.1 ± 0.02 . extracts and fractions of anticancer activity of whole plant *Iphionia grantioides* are represented in table 6.

		0		
S.No.	Extract/Fraction/Std. Drug	Conc. (ug/mL)	% Inhibition/Stimulation	$IC_{50} \pm S.D.$
1	WMEIG	30	37.9	Inactive
2	WHFIG	30	35.4	Inactive
3	WAFIG	30	29.2	Inactive
5	Doxorubicin	30	96.2	0.1 ± 0.02

 Table 6: Anticancer activities (3T3 cell line) of extracts and fractions of whole plant Iphionia

 grantioides

None of the extract and fractions of *Iphionia grantioides* showed anti-inflammatory activities. The standard drug used for anti-inflammatory activity is Ibuprofen with 73.2% inhibition and IC₅₀ 11.2 \pm 1.4 ug/mL. Extracts and fractions of anti-inflammatory whole plant *Iphionia grantioides* are represented in table 7.

 Table 7: Anti-inflammatory activities of extracts and fractions of whole plant Iphionia

 grantioides

S.No	Extract/Fraction/ Drug	Std. Conc. (ug/mI	2) % Inhibition/ Stimulation	$IC_{50} \pm S.D.$
1	WMEIG	50	-20.1	-
2	WHFIG	50	12.8	-
3	WAFIG	50	-3.7	-
5	Ibuprofen	25	73.2	$11.2 \pm 1.4 \text{ ug/mL}$

None of the extract and fractions of *Iphionia grantioides* showed lethality. The standard drug used for Brine Shrimp Lethality Assay is Ibuprofen with $IC_{50}11.2\pm 1.4$ ug/mL. Extracts and fractions of whole plant of brine shrimp lethality bioassay activities of *Iphionia grantioides* are represented in table 8.

S.No	Extract and fractions	Dose (ug/m L)	No. of Shrimps	No. of Survivors	% Mortality	LD50 (ug/ml)	STD. Drug	LD50 (ug/ml)	% Mortal ity
1	WMEIG	10	30	26	13.3		Etoposide	7.5	70
		100	30	21	30				
		1000	30	21	30				
2	WHFIG	10	30	30	0		Etoposide	7.5	70
		100	30	29	3.33				
		1000	30	29	3.33				
3	WAFIG	10	30	30	0		Etoposide	7.5	70
		100	30	30	0				
		1000	30	30	0				

 Table 8: Brine shrimp lethality bioassay of extracts and fractions of whole plant Iphionia grantioides

GC-MS studies revealed that whole plant methanol extract of *Iphionia grantioides* (WMEIG) consists of 16 compounds for instance, Dodecane, 1-fluoro, 3-Methyl-2-(2-oxopropyl) furan, Heptane, 1,1-Oxybis-, Arabino-Hex-1-Enitol. 1,5-Anhydro-2-deoxy, 2-propenoic acid, Butyl ester, 2-Undpcene, 6-methyl, 2,4,4-Trimethyal-1-pentanol, 1,3-Dioxolane, 2-pentadecyl-, Sydnone, 3,3-tetramethylenedi-, 0xazole, 4,5-dihydro-2,5-dimethyl-, Isobutyl acrylate, 2Propenoic-acid,2-propenyl ester, 1-[(1-Oxo-2-propenyl) oxy}-2,5-pyrrolidinedione, 3-Hexanol, 2,2-dimethyl, Neoinositol tri-butane boronate, Phthalylsulfathiazole. Chromatogram of whole plant methanol extracts of Iphionia grantioides (WMEIG) is represented in figure 1. Molecular formula, Molecular mass, RT, area and % composition of compounds 1-16 whole plant methanol extract of *Iphionia grantioides* (WMEIG) are shown in tables 9-11. Mass spectra of compounds 1-16 of whole plant

methanol extract of *Iphionia grantioides* (WMEIG) are shown in tables 19-21. Structures and mass spectra of compounds 1-16 are represented in figures 2-17.

Whole plant n-hexane fraction of *Iphionia grantioides* (WHFIG) consists of 13 compounds for instance, Methyl(+-)-2- hydroxyl-3-butenoate, 2,4,4,6,6,8,8-Heptamethyl -1-nonene, N-Mmethyl-3-piperidinecarboxamide, Dodecane, 1-fluoro, Cis-1,2-dihydrocatechol, Octadecane, 1chloro-, Thymol, 1-Decanol, 9-[(trimethyl silyl)oxy]-trifluoroacetate, Cinnamyl acrylate, 12methyloctadec-11-enoic acid trimethyl silyl ester, (Z)-4-methyl-5-(2-oxopropylidene)-5H-Furan2-one,2-Trimethylsiloxy-6-Hexadecenoic acid, methyl ester, 1-Oxaspiro{2,5] octane, 4,4dimethyl-8-methylene. Chromatogram of whole plant n-hexane fraction of Iphionia grantioides (WMEIG) is represented in figure 18. Molecular formula, Molecular mass, RT, area and % composition of compounds 1-13 whole plant n-hexane fraction of *Iphionia grantioides* (WMEIG) are shown in tables 12-14. Mass spectra of compounds 1-13 of whole plant n-hexane fraction of *Iphionia grantioides* (WMEIG) are shown in tables 22 to 24. Structures and mass spectra of compounds 1-13 are represented in figures 19-31.

Whole plant aqueous fraction of Iphionia grantioides (WAFIG) consists of 25 compounds for instance. 1-silacyclo-2,4-hexadiene, Cyclopropane, 2-(1,1-dimethyl-2-pentenyl)-1,1-dimethyl, 3methyl-2-(2-oxopropyl) Z-6,28-Heotatriactontadien-2-one, furan. Z, 3-eicosyne, 3-n-butylthiolane, 1Nonylcycloheptane, 1 H-imidazole[1,2-b] pyrazole, 1-methyl-, 5Hydroxymethylfurfural, 1-ethyl-2-hydroxymethylimidazole, 12-methyloctadec-11-enoic acid 1,4-Dioxan-2-one, 3,3-dimethyl-5-[(trimethylsilyl)oxy) trimethylsilyl ester, methyl], Di(1methylcyclobutyl)ether, Heptacosanoic acid, 2,4-dimethoxy-methylester, Isosorbide, 2TBDMS derivative. d-mannitol, 1,1-o-1,16-hexadecanediylbis-,3,7,11,15,18-pentaoxa-2,19-, 7-bromoderivative, 4,4-Dimethyl-oct-5-enal, 1,3-dioxolane, 1heptanol. TMS 4-pentyl-5-propyl-2,2bis(trifluoromethyl)-cis-, 7-ethyl-2-undecen-6-one, 1,2,3,4-Hexadecanetetrol, 2-Butenoic acid, 4,4-dimethoxy- methyl ester, 2-hydroxyoctanoic acid, d-mannitol, 1-O-(22-Hydroxydocosyl).

Chromatogram of the whole plant aqueous fraction of Iphionia grantioides (WMEIG) is represented in Figure 32. Molecular formula, Molecular mass, RT, area and % composition of compounds 1-25 whole plant aqueous fraction of *Iphionia grantioides* (WMEIG) are shown in tables 15-18. Mass spectra of compounds 1-25 of whole plant aqueous fraction of *Iphionia grantioides* (WMEIG) are shown in tables 25-29. Structures and mass spectra of compounds 1-25 are represented in figures 33-56.

Compd	Name	Molecular	Molecula	Structure	RT
-		Formula	r Mass		
1	Dodecane, 1- fluoro	C ₁₂ H ₂₅ F	188	F	3.544
2	3-Methyl-2- (2oxopropyl) furan	C ₈ H ₁₀ O ₂	138		3.649
3	Heptane, 1,1Oxybis-	C ₁₄ H ₃₀ O	214		3.714

Table 9: Molecular formula, Molecular mass, RT, area and % composition of compounds 1-5
whole plant methanol extract of <i>Iphionia grantioides</i> (WMEIG)

4	Arabino-Hex-1- Enitol. 1,5- Anhydro-2-deoxy	C ₆ H ₁₀ O ₄	146	3.958
5	2-propenoic acid, Butyl ester	C ₇ H ₁₂ O ₂	128	4.139

Table 10: Molecular formula, Molecular mass, RT, area and % composition of compounds 6-10 whole plant methanol extract of *Iphionia grantioides* (WMEIG)

Compd	Name	Molecular	Molecular	Structure	RT
		Formula	Mass	-	
6	2-Undecene, 6methyl	C12H24	168		4.21
7	2,4,4- Trimethyal- 1pentanol	C8H18O	130	но	4.22 4
8	1,3- Dioxolane, 2pentadecyl-	C18H36O2	284		4.70 9
9	Sydnone, 3,3tetramethyl enedi-	C8H10N4 O4	226	N N N N N N N N N N N N N N N N N N N	5.93
10	0xazole, 4,5dihydro- 2,5dimethyl-	C8H10N4 O4	99		5.22 4

Compd	Name	Molecular	Molecula	Structure	RT
		Formula	r Mass		
11	Isobutyl acrylate	C ₇ H ₁₂ O ₂	128		5.504
12	2-Propenoicacid,2- propenyl ester	C ₆ H ₈ O ₂	112		5.599
13	1-[(1-Oxo- 2propenyl) oxy}- 2,5- pyrrolidinedione	C7H7NO4	169		5.825
14	3-Hexanol, 2,2dimethyl	C ₈ H ₁₈ O	130	ОН	6.945
15	Neo-inositol tributane boronate	C ₁₈ H ₃₃ B ₃ O ₆	378		8.741
16	Phthalylsulfathiaz ole	C ₁₇ H ₁₃ N ₃ O ₅ S ₂	403		9.706

Table 11: Molecular formula, Molecular mass, RT, area and % composition of compounds 11	-
16 whole plant methanol extract of <i>Iphionia grantioides</i> (WMEIG)	

	whole plant it nexute fraction of pritonia granitotics (WHILIG)							
Compd	Name	Molecular	Molecular	Structure	RT			
		Formula	Mass					
1	Methyl(+-)-2-	$C_5H_8O_3$	116	OH	3.324			
	hydroxyl-3butenoate							
2	2,4,4,6,6,8,8- Heptamethyl - Inonene	C ₁₆ H ₃₂	224	H ₂ C	3.729			
3	N-M-methyl- 3piperidinecarboxam ide	C ₇ H ₁₄ N ₂ O	142	HN NH ₂	3.784			
4	Dodecane, 1-fluoro	C ₁₂ H ₂₅ F	188	F	3.829			
5	Cis- 1,2dihydrocatechol	C ₆ H ₈ O ₂	112	H, OH H, OH	4.899			

 Table 12: Molecular formula, Molecular mass, RT, area and % composition of compounds 1-5

 whole plant n-hexane fraction of *Iphionia grantioides* (WMEIG)

Table 13: Molecular formula, Molecular mass, RT, area and % composition ofcompounds6-10 whole plant n-hexane fraction of *Iphionia grantioides* (WMEIG)

Comp	Name	Molecular	Molecular	Structure	RT
u		r or muta	11455		
6	Octadecane, 1chloro-	C ₁₈ H ₃₇ Cl	288		7.95
7	Thymol	C ₁₀ H ₁₄ O	150	OH	9.411
8	1-Decanol, 9[(trimethyl silyl)oxy]trifluoroacetate	C ₁₅ H ₂₉ F ₃ O ₃ Si	342		11.592

9	Cinnamyl acrylate	C ₁₂ H ₁₂ O ₂	188	12.477
10	12-methyloctadec11- enoic acid trimethyl silyl ester	C ₂₂ H ₄₄ O ₂ Si	368	13.788

Table 14: Molecular formula, Molecular mass, RT, area and % composition of compounds 11-13 whole plant n-hexane fraction of *Iphionia grantioides* (WMEIG)

Comnd	Nomo	Mologular	Mologular	Structure	DT
Compa	Name	Former	Molecular	Structure	N I
		Formula	IVIASS	·	
11	(Z)-4-methyl-5-	$C_8H_8O_3$	152		13.833
	(2oxopropylidene)5H-				
	Furan-2-one				
12	2-Trimethylsiloxy6-	C ₂₀ H ₁₄ O ₃ Si	356		13.873
	Hexadecenoic acid.			Si I	
	methyl ester			× 0 ×	
	methyrester				
		<i>a</i>	1.50		
13	1-Oxaspiro{2,5]	$C_{10}H_{16}O$	152	\backslash	14.448
	octane, 4,4dimethyl-				
	8methylene				
				o	

Table 15: Molecular formula, Molecular mass, RT, area and % composition of compounds 1-5	5
whole plant aqueous fraction of <i>Iphionia grantioides</i> (WMEIG)	

Compd	Name	Molecular Formula	Molecular Mass	Structure	RT
1	1- silacyclo- 2,4hexadi ene	C5H8Si	96	SiH ₂	3.344
2	Cycloprop ane, 2(1,1- dimethyl- 2pentenyl) - 1,1dimeth	C ₁₂ H ₂₂	166		3.344

	yl				
3	3-methyl- 2- (2oxoprop yl)furan	C ₈ H ₁₀ O ₂	138		3.683
4	Z, Z-6,28- Heotatriac tontadien - 2-one	C37H70O	530		3.824
5	3-eicosyne	C ₂₀ H ₃₈	278		3.989
6	1- Nonylcycl oheptane	C ₁₆ H ₃₂	224		5.379
7	3-n- butylthiola ne	C ₈ H ₁₆ S	144	s a la construction de la constr	6.19

Table 16: Molecular formula, Molecular mass, RT, area and % composition of compounds 1-5whole plant aqueous fraction of *Iphionia grantioides* (WMEIG)

Compd	Name	Molecular	Molecular	Structure	RT
		Formula	Mass		
8	1 H- imidazol[1,2 b]pyrazole, 1methyl-	C ₆ H ₇ O ₂ N ₃	121	N N N	6.305
9	5- Hydroxymet hylfurfural	C ₆ H ₆ O ₃	126		8.611
10	1-ethyl- 2hydroxyme thylimid azole	C ₆ H ₁₀ N ₂ O	126	$H_2 = N$	9.621

11	12- methyloctad ec11-enoic acid trimethylsil yl ester	C ₂₂ H ₄₄ O ₂ Si	368	Si 0	12.077
12	1,4-Dioxan- 2-one, 3,3- dimethyl- 5[(trimethyl silyl)oxy) methyl]	C ₁₀ H ₂₀ O ₄ Si	232		12.142

Table 17: Molecular formula, Molecular mass, RT, area and % composition of compounds 1-5 whole plant aqueous fraction of *Iphionia grantioides* (WMEIG)

Compd	Name	Molecular	Molecul ar Mass	Structure	RT
13	Di (1- methylcyclo butyl)ether	C ₁₀ H ₁₈ O	154		12.242
14	Heptacosano ic acid, 2,4dimethox ymethylester	C ₃₀ H ₆₀ O ₄	484		12.883
15	Isosorbide, 2TBDMS derivative	C ₁₈ H ₃₈ O ₄ Si 2	374		12.898
16	d-mannitol, 1,1-o- 1,16- hexadecaned iylbis-	C ₂₈ H ₅₈ O ₁₂	586		13.068
17	3,7,11,15,18 pentaoxa- 2,19disilaeic osane,2,2,1 9,19- tetramethyl	C ₁₇ H ₁₄ O ₅ Si 2	380		13.708

Table 18: Molecular formula	, Molecular mass,	RT, area and %	o composition of	compounds 1-5
whole plant a	queous fraction of	f Iphionia granti	oides (WMEIG)	

Compd	Name	Molecular	Molecular	Structure	RT
18	7 bromo	Formula CuoHaoBrO	Mass 266	Br	14 228
10	1heptanol. TMS derivative	Si	200		14.220
19	4,4- Dimethyl- oct- 5-enal	C10H18O	154		14.293
20	1,3- dioxolane, 4pentyl-5- propyl- 2,2- bis(trifluoro methyl) - cis-	$C_{13}H_{20}F_6O_2$	322		14.29. 3
21	7-ethyl-2- undecen- 6-one	C ₁₃ H ₂₄ O	196	H ₂ C O	14.463
22	1,2,3,4- Hexadecane tetrol	C ₁₆ H ₃₄ O ₄	290	OH HO OH OH	14.608
23	2-Butenoic acid, 4,4- dimethoxy- methyl ester	C7H12O4	160		14.688
24	2- hydroxyoct anoic acid	C ₈ H ₁₆ O ₃	160	но	14.868
25	d-mannitol, 1-O- (22- Hydroxydo cosyl)-	C ₂₈ H ₅₈ O ₇	506		14.983

Table 19: Mass spectra of compounds 1-5 of whole plant methanol extract of *Iphionia* grantioides (WMEIG)

Compd	m/z (% Relative abundance)
1	188(M ⁺), 97(103), 85(154), 84(104), 83(141), 71(382), 70(184), 69(312), 57(999),
	56(261), 55(538)
2	138(M ⁺), 109(240), 95(450), 71(450), 70(250), 69(680), 67(230), 65(210), 57(999),
	56(260), 55(770)
3	214(M ⁺), 98(103), 97(98), 70(223), 69(101), 57(999), 56(157), 55(155), 43(228),
	41(188), 29(107)
4	146(M ⁺), 74(257), 73(999), 71(152), 69(221), 57(191), 56(344), 55(320), 45(154),
	43(280), 41(158)
5	$128(M^+), 85(41), 73(425), 57(59), 56(540), 55(999), 43(32), 41(140), 29(76),$
	28(36), 27(168)

Table 20: Mass spectra of compounds 6-10 of whole plant methanol extract of *Iphionia* grantioides (WMEIG)

Compd	m/z (% Relative abundance)
6	168(M ⁺), 97(226), 71(130), 70(244), 69(407), 57(999), 56(932), 55(692), 43(526),
	41(403), 29(265)
7	130(M ⁺ ,), 87(301), 73(630), 72(348), 69(268), 57(555), 55(999), 43(381), 41(630),
	39(256), 29(225)
8	284(M ⁺), 283(18), 74(35), 73(999), 69(16), 57(28), 55(33), 45(46), 43(53), 41(39),
	29(17)
9	$226(M^+)$, $168(40)$, $142(10)$, $141(100)$, $85(70)$, $69(70)$, $68(50)$, $57(30)$, $56(330)$,
	55(999), 54(80)
10	99(M ⁺ ,125), 56(159), 55(999), 54(181), 43(190), 42(93), 29(75), 28(181), 27(148),
	26(59),

Table 21: Mass spectra of compounds 11-16 of whole plant methanol extract of *Iphionia* grantioides (WMEIG)

Compd	m/z (% Relative abundance)
11	128(M ⁺ ,), 85(90), 73(112), 57(51), 56(435), 55(999), 43(49), 41(143), 39(69),
	29(66), 27(199)
12	$112(M^+)$, 97(31), 67(50), 57(54), 56(59), 55(999), 41(146), 39(130), 29(27),
	27(136), 26(34)
13	169(M ⁺ , 7), 87(16), 70(27), 56(76), 55(999), 43(6), 42(24), 28(84), 27(168), 26(33)
14	130(M ⁺ ,), 87(301), 73(630), 72(348), 69(268), 57(555), 55(999), 43(381), 41(630),
	39(256), 29(225)
15	378(M ⁺), 252(229), 239(181), 237(241), 139(355), 126(999), 125(281), 83(348),
	70(366), 55(183), 43(177)
16	403(M ⁺), 191(616), 156(785), 108(590), 104(391), 92(999), 76(412), 65(609),
	55(219), 50(229), 45(211)

Compd	m/z (% Relative abundance)
1	116(M ⁺), 87(170), 84(387), 59(186), 57(999), 56(106), 55(163), 31(193), 29(408), 27(174), 15(98)
2	224(M ⁺), 113(228), 112(77), 97(222), 84(79), 83(117), 69(79), 57(999), 56(83), 55(314), 51(59)
3	142(M ⁺), 86(567), 84(999), 83(335), 82(276), 68(229), 58(235), 57(690), 56(482), 55(454), 42(159)
4	188(M ⁺), 97(103), 85(154), 84(104), 83(141), 71(382), 70(184), 69(312), 57(999), 56(261), 55(538),
5	112(M^+ ,), 94(724), 83(255), 68(208), 66(999), 65(405), 55 (406), 40(236), 39(655), 29(269), 27(197),

Table 22: Mass spectra of compounds 1-5 of whole plant n-hexane fraction of Iphionia grantioides (WMEIG)

Table 23: Mass spectra of compounds 6-10 of whole plant n-hexane fraction of Iphionia grantioides (WMEIG

Compd	m/z (% Relative abundance)
6	288(M ⁺), 91(334), 85(365), 83(209), 71(595), 69(303), 57(999), 55(396), 43(727), 41(352), 29(170)
7	150(M ⁺ ,248), 136(89), 135(999), 117(87), 115(91), 91(157), 77(80), 51(56), 41(55),
	39(94),
8	342(M ⁺), 117(534), 103(305), 97(498), 83(999), 75(377), 73(578), 69(550), 57(234), 55(649), 41(168),
9	188(M ^{+,} 221), 133(413), 117(233), 116(219), 115(590), 105(270), 91(113), 77(152), 55(999), 27(210),
10	368(M ⁺), 357(438), 243(329), 129(300), 117(389), 83(300), 77(609), 75(999), 73(879), 69(558), 55(820)

Table 24: Mass spectra of compounds 11-13 of whole plant n-hexane fraction of Iphionia grantioides (WMEIG)

Compd	m/z (% Relative abundance)
11	152(M ⁺ ·340), 137(999), 110(410), 109(160), 97(220), 69(960), 68(210), 57(210), 55(270), 53(270),
12	356(M ⁺), 95(403), 91(443), 89(401), 75(502), 74(335), 73(999), 69(337), 67(347), 57(337), 55(453),
13	$152(M^+,), 137(999), 109(420), 107(310), 96(320), 91(300), 81(290), 79(410), 67(300), 43(300), 41(370)$

Table 25: Mass spectra of compounds 1-5 of whole plant aqueous fraction of Iphionia grantioides (WMEIG)

Compd	m/z (% Relative abundance)
1	96(M ⁺ ,999), 95(679), 70(689), 69(330), 68(619), 67(669), 66(350), 55(639), 53(330), 43(709),
2	$166(M^{+}), 110(536), 96(71), 95(999), 81(169), 69(107), 68(79), 67(171), 55(342), 43(77), 41(233)$
3	$138(M^{+})$, 109(240), 95(450), 71(450), 70(250), 69(680), 67(230), 65(210), 56(260), 57(999), 55(770)
4	530(M ^{+,}), 97(560), 95(632), 83(791), 81(725), 71(674), 69(999), 68(559), 67(862), 57(673), 55(965)
5	278(M ⁺ ,), 110(552), 109(920), 95(768), 82(835), 81(783), 69(422), 68(557), 67(999), 55(454), 43(503)

Table 26: Mass spectra of compounds 6-10 of whole plant aqueous fraction of Iphionia grantioides (WMEIG)

Compd	m/z (% Relative abundance)
6	224(M ^{+,}), 97(389), 96(240), 83(110), 81(229), 69(248), 67(202), 57(103), 56(110), 55(999), 53(80)
7	144(M ^{+,830}), 115(340), 101(999), 95(240), 87(630), 82(240), 81(770), 67(300), 60(590), 55(990),
8	121(M ^{+,999}), 120(470), 106(220), 80(480), 79(210), 54(999), 53(450), 42(140), 40(140), 39(230),
9	126(M ^{+,779}), 125(145), 109(134), 97(999), 69(326), 53(145), 51(115), 41(732), 39(358), 29(171),
10	126(M ^{+,721}), 109(295), 97(824), 81(737), 69(999), 68(356), 54(386), 42(657), 41(567), 40(458),

Table 27: Mass spectra of compounds 11-15 of whole plant aqueous fraction of Iphionia grantioides (WMEIG)

Compd	m/z (% Relative abundance)
11	368(M ^{+,}), 353(438), 243(329), 129(300), 117(389), 83(300), 77(609), 75(999), 73(879), 77(609),
	55(820),
12	232(M ⁺), 143(236), 131(544), 129(201), 103(475), 101(249), 75(409), 73(809), 69(999), 41(491),
	39(172),
13	$154(M^{+}), 126(40), 98(100), 88(40), 86(45), 70(60), 69(999), 68(80), 67(50), 58(200), 53(20)$
14	484(M ^{+,}), 382(253), 381(821), 367(288), 366(999), 161(636), 129(869), 104(669), 71(233), 57(286),
	43(253),
15	374(M ^{+,}), 317(184), 185(152), 133(214), 129(202), 117(999), 101(180), 75(400), 73(845), 69(753),
	59(207)

Table 28: Mass spectra of compounds 16-20 of whole plant aqueous fraction of Iphionia grantioides (WMEIG)

	m/z (% Relative abundance)
Compd	
16	586(M ⁺ ,) 129(653), 111(438), 97(444), 83(615), 73(906), 69(999), 61(414), 57(512), 55(744) 43(413),
17	380(M ⁺), 131(461), 130(293), 129(178), 117(584), 116(277), 115(154), 103(350), 75(198), 73(999), 58(146)
18	266(M ⁺ ,), 167(115), 139(123), 137(115),103 (272), 97(999), 75(211), 73(364), 69(200), 55(997), 41(112),
19	154(M ^{+,}), 126(168), 97(666), 95(148), 81(168), 69(328), 67(109), 57(90), 55(999), 43(110), 41(326)
20	322(M ⁺ ,), 253(216), 139(161), 97(373), 83(999), 73(121), 69(515), 67(127), 57(237), 56(163), 55(475)

Table 29: Mass spectra of compounds 21-25 of whole plant aqueous fraction of Iphionia grantioides (WMEIG)

Compd	m/z (% Relative abundance)
21	196(M ⁺), 97(595), 73(168), 70(144), 69(999), 57(146), 55(779), 53(192), 43(208), 41(400), 39(138),
22	290(M ⁺), 97(108), 83(139), 74(999), 73(152), 69(183), 57(119), 56(264), 55(182), 43(160), 41(138),
23	160(M ⁺), 129(999), 113(110), 101(829), 75(483), 69(248), 59(124), 55(198), 45(171), 29(151), 27(149),
24	160(M ⁺), 115(511), 97(617), 76(379), 69(230), 57(212), 55(999), 45(140), 44(146), 43(579), 41(477)
25	506(M ⁺), 103(394), 97(604), 83(609), 73(999), 71(353), 69(705), 57(583), 55(834), 43(548), 41(398),

Figure 2: Mass spectra of Dodecane, 1-fluoro of Whole Plant methanol extract of Iphionia grantioides (WMEIG)

Figure 3: Mass spectra of of 3-Methyl-2-(2-oxopropyl) furan of Whole Plant methanol extract of Iphionia grantioides (WMEIG)

Figure 4: Mass spectra of Heptane, 1,1-Oxybis- of Whole Plant methanol extract of *Iphionia* grantioides (WMEIG)

Figure 5: Mass spectra of Arabino-Hex-1-Enitol. 1,5-Anhydro-2-deoxy of Whole Plant methanol extract of Iphionia grantioides (WMEIG)

Figure 6: Mass spectra of 2-propenoic acid, Butyl ester of Whole Plant methanol extract of *Iphionia grantioides* (WMEIG

Figure 7: Mass spectra of 2-Undecene, 6-methyl of Whole Plant methanol extract of *Iphionia* grantioides (WMEIG)

Figure 8: Mass spectra of 2,4,4-Trimethyal-1-pentanol of Whole Plant methanol extract of *Iphionia grantioides* (WMEIG)

Figure 9: Mass spectra of 1,3-Dioxolane, 2-pentadecyl-of Whole Plant methanol extract of *Iphionia grantioides* (WMEIG)

Figure 10: Mass spectra of Phthalylsulfathiazole of Whole Plant methanol extract of *Iphionia*

Figure 11: Mass spectra of 0xazole, 4,5-dihydro-2,5-dimethyl of Whole Plant methanol extract of *Iphionia grantioides* (WMEIG)

Figure 12: Mass spectra of Isobutyl acrylate of Whole Plant methanol extract of *Iphionia* grantioides (WMEIG)

Figure 13: Mass spectra of 2-Propenoic-acid,2-propenyl ester of Whole Plant methanol extract of *Iphionia grantioides* (WMEIG)

Figure 14: Mass spectra of 1-[(1-Oxo-2-propenyl) oxy}-2,5-pyrrolidinedione of Whole Plant methanol extract of *Iphionia grantioides* (WMEIG)

Figure 15: Mass spectra of 3-Hexanol, 2,2-dimethyl of Whole Plant methanol extract of *Iphionia grantioides* (WMEIG)

Figure 16: Mass spectra of Neo-inositol tri-butane boronate of Whole Plant methanol extract of *Iphionia grantioides* (WMEIG)

Figure 17: Mass spectra of Phthalylsulfathiazole of Whole Plant methanol extract of *Iphionia* grantioides (WMEIG)

Figure 18: Chromatogram of whole plant n-hexane fraction of Iphionia grantioides (WHFIG)

Figure 19: Mass spectra of Methyl (+-)-2- hydroxyl-3-butenoate whole plant n-hexane fraction of *Iphionia grantioides* (WHFIG)

Figure 20: Mass spectra of 2,4,4,6,6,8,8-Heptamethyl -1-nonene whole plant n-hexane fraction of *Iphionia grantioides* (WHFIG)

Figure 21: Mass spectra of N-M-methyl-3-piperidinecarboxamide whole plant n-hexane fraction of *Iphionia grantioides* (WHFIG)

Figure 22: Mass spectra of Dodecane, 1-fluoro whole plant n-hexane fraction of *Iphionia* grantioides (WHFIG)

Figure 23: Mass spectra of Cis-1,2-dihydrocatechol whole plant n-hexane fraction of *Iphionia* grantioides (WHFIG)

Figure 24: Mass spectra of Octadecane, 1-chloro- whole plant n-hexane fraction of *Iphionia* grantioides (WHFIG)

Figure 25: Mass spectra of Thymol- whole plant n-hexane fraction of *Iphionia grantioides* (WHFIG)

Figure 26: Mass spectra of Cinnamyl acrylate - whole plant n-hexane fraction of *Iphionia* grantioides (WHFIG)

Figure 27: Mass spectra of Cinnamyl acrylate - whole plant n-hexane fraction of *Iphionia* grantioides (WHFIG)

Figure 28: Mass spectra of 12-methyloctadec-11-enoic acid trimethyl silyl ester whole plant nhexane fraction of *Iphionia grantioides* (WHFIG)

Figure 29: Mass spectra of (Z)-4-methyl-5-(2-oxopropylidene)-5H-Furan-2-one- whole plant n-hexane fraction of *Iphionia grantioides* (WHFIG)

Figure 30: Mass spectra of 2-Trimethylsiloxy-6-Hexadecenoic acid, methyl ester whole plant n-hexane fraction of *Iphionia grantioides* (WHFIG)

Figure 31: Mass spectra of 1-Oxaspiro {2,5] octane, 4,4-dimethyl-8-methylenewhole whole plant n-hexane fraction of *Iphionia grantioides* (WHFIG)

Figure 32: Chromatogram of Whole plant aqueous fraction of Iphionia grantioides (WAFIG)

Figure 33: Mass spectra of 1-silacyclo-2,4-hexadiene Whole plant aqueous fraction of *Iphionia* grantioides (WAFIG)

Figure 34: Mass spectra of Cyclopropane, 2-(1,1-dimethyl-2-pentenyl)-1,1-dimethyl Whole plant aqueous fraction of *Iphionia grantioides* (WAFIG)

Figure 35: Mass spectra of Cyclopropane, 2-(1,1-dimethyl-2-pentenyl)-1,1-dimethyl Whole plant aqueous fraction of *Iphionia grantioides* (WAFIG)

Figure 36: Mass spectra of Z, Z-6,28-Heotatriactontadien-2-one Whole plant aqueous fraction of *Iphionia grantioides* (WAFIG)

Figure 37: Mass spectra of 3-eicosyne Whole plant aqueous fraction of Iphionia grantioides (WAFIG)

38: Mass spectra of 1-Nonylcycloheptane Whole plant aqueous fraction of *Iphionia grantioides* (WAFIG)

Figure 39: Mass spectra of 3-n-butylthiolane Whole plant aqueous fraction of *Iphionia* grantioides (WAFIG)

Figure 40: Mass spectra of 1 H-imidazol[1,2-b] pyrazole, 1-methyl- Whole plant aqueous fraction of *Iphionia grantioides* (WAFIG)

Figure 41: Mass spectra of 5-Hydroxymethylfurfural Whole plant aqueous fraction of *Iphionia grantioides* (WAFIG)

Figure 42: Mass spectra of 1-ethyl-2-hydroxymethylimidazole Whole plant aqueous fraction of *Iphionia grantioides* (WAFIG)

Figure 43: Mass spectra of 12-methyloctadec-11-enoic acid trimethylsilyl ester Whole plant aqueous fraction of *Iphionia grantioides* (WAFIG)

Figure 44: Mass spectra of 1,4-Dioxan-2-one, 3,3-dimethyl-5-[(trimethylsilyl)oxy) methyl] Whole plant aqueous fraction of *Iphionia grantioides* (WAFIG)

Figure 45: Mass spectra of Di(1-methylcyclobutyl) ether Whole plant aqueous fraction of *Iphionia grantioides* (WAFIG)

Figure 46: Mass spectra of Heptacosanoic acid, 2,4-dimethoxy-methylester Whole plant aqueous fraction of *Iphionia grantioides* (WAFIG)

Figure 47: Mass spectra of Isosorbide, 2TBDMS derivative Whole plant aqueous fraction of *Iphionia grantioides* (WAFIG)

Figure 48: Mass spectra of d-mannitol, 1,1-o-1,16-hexadecanediylbis-Whole plant aqueous fraction of *Iphionia grantioides* (WAFIG)

Figure 49: Mass spectra of 3,7,11,15,18-pentaoxa-2,19-disilaeicosane,2,2,19,19tetramethyl -Whole plant aqueous fraction of *Iphionia grantioides* (WAFIG)

Figure 50: Mass spectra of 7-bromo-1-heptanol. TMS derivative Whole plant aqueous fraction of *Iphionia grantioides* (WAFIG)

Figure 51: Mass spectra of 4,4-Dimethyl-oct-5-enal Whole plant aqueous fraction of *Iphionia* grantioides (WAFIG)

Figure 52: Mass spectra of 1,3-dioxolane, 4-pentyl-5-propyl-2,2-bis(trifluoromethyl)-CisWhole plant aqueous fraction of *Iphionia grantioides* (WAFIG)

Figure 53: Mass spectra of 7-ethyl-2-undecen-6-one Whole plant aqueous fraction of *Iphionia* grantioides (WAFIG)

Figure 54: Mass spectra of 1,2,3,4-Hexadecanetetrol Whole plant aqueous fraction of *Iphionia* grantioides (WAFIG)

Figure 55: Mass spectra of 2-Butenoic acid, 4,4-dimethoxy- methyl ester Whole plant aqueous fraction of *Iphionia grantioides* (WAFIG)

Figure 56: Mass spectra of 2-hydroxyoctanoic acid Whole plant aqueous fraction of *Iphionia* grantioides (WAFIG)

3- Conclusion

Plants being the main source of different medicine, plays an essential and significant role in the health of both plants as well as human. One extract, for instance, whole plant methanol extract of *Iphionia grantioides* (WMEIG), and two fractions, such as whole plant n-hexane fraction of *Iphionia grantioides* (WHFIG), whole plant aqueous fraction of *Iphionia grantioides* (WAFIG) extracted and fractionated from the medicinal plant of Baluchistan, *Iphionia grantioides*. None of the extract and fractions of *Iphionia grantioides* showed antileishmanial activities and having IC₅₀ above 100. The standard drug used for antileishmanial activities is amphoterinin B and pentamidin with IC₅₀ value 3.41 ± 0.02 and 4.56 ± 0.01 .

The extract and fractions of *Iphionia grantioides* were inactive against bacterial strains. Ofloxacin was the standard drug used against bacterial strains with percent inhibition 92.54%, 92.41%, 93.05%, 92.68% and 92.37% against *Staphylococcus aureus*, *Pseudomonas aeruginosa*, *Salmonella typhi*, *Escherichia coli* and *Bacillus subtilis*. All extracts and fractions of *Iphionia grantioides* exhibited no antifungal activities. Miconazole and amphotericin B were the standard drugs used against seven strains of fungi for instanc *Aspergillus niger*, *Microsporum canis*, *Fusarium lini*, *Candida glabarata*, *Aspergillus fumigatus*, *Candida albicans* and *Trichphyton rubrum*.

None of the extract and fractions of *Iphionia grantioides* showed anticancer activities against HeLa cell line. The standard drug, Doxorubicin inhibited the growth of HeLa cell line 100% with IC₅₀ 0.9 ± 0.14 . None of the extract and fractions of *Iphionia grantioides* showed anticancer activities against PC3 cell line. The standard drug, Doxorubicin inhibited the growth of HeLa cell line 89.9% with IC₅₀ 1.9 ± 0.14 . None of the extract and fractions of *Iphionia grantioides* showed anticancer activities against 97.3 cell line. The standard drug Doxorubicin inhibited the growth of HeLa cell line 89.9% with IC₅₀ 1.9 ± 0.14 . None of the extract and fractions of *Iphionia grantioides* showed anticancer activities against 3T3 cell line. The standard drug Doxorubicin inhibited 96.2% the growth of the cell line with IC₅₀ value 0.1 ± 0.02 .

None of the extract and fractions of *Iphionia grantioides* showed anti-inflammatory activities. The standard drug used for anti-inflammatory activity is Ibuprofen with 73.2% inhibition and IC₅₀ 11.2 \pm 1.4 ug/mL. None of the extract and fractions of *Iphionia grantioides* showed lethality. The standard drug used for Brine Shrimp Lethality Assay is Ibuprofen with IC₅₀11.2 \pm 1.4 ug/mL.

GC-MS studies revealed that whole plant methanol extract of *Iphionia grantioides* (WMEIG) consists of 16 compounds, for instance, Dodecane, 1-fluoro, 3-Methyl-2-(2-oxopropyl) furan, Heptane, 1,1-Oxybis-, Arabino-Hex-1-Enitol. 1,5-Anhydro-2-deoxy, 2-propenoic acid, Butyl ester, 2-Undpcene, 6-methyl, 2,4,4-Trimethyal-1-pentanol, 1,3-Dioxolane, 2-pentadecyl-, Sydnone, 3,3-tetramethylenedi-, 0xazole, 4,5-dihydro-2,5-dimethyl-, Isobutyl acrylate, 2Propenoic-acid,2-propenyl ester, 1-[(1-Oxo-2-propenyl) oxy}-2,5-pyrrolidinedione, 3-Hexanol, 2,2-dimethyl, Neo-inositol tri-butane boronate, Phthalylsulfathiazole.

Whole plant n-hexane fraction of *Iphionia grantioides* (WHFIG) consists of 13 compounds for instance, Methyl(+-)-2- hydroxyl-3-butenoate, 2,4,4,6,6,8,8-Heptamethyl -1-nonene, N-Mmethyl-3-piperidinecarboxamide, Dodecane, 1-fluoro, Cis-1,2-dihydrocatechol, Octadecane, 1chloro-, Thymol, 1-Decanol, 9-[(trimethyl silyl)oxy]-trifluoroacetate, Cinnamyl acrylate, 12methyloctadec-11-enoic acid trimethyl silyl ester, (Z)-4-methyl-5-(2-oxopropylidene)-5H-Furan2-one,2-Trimethylsiloxy-6-Hexadecenoic acid, methyl ester, 1-Oxaspiro{2,5] octane, 4,4dimethyl-8-methylene.

Whole plant aqueous fraction of *Iphionia grantioides* (WAFIG) consists of 25 compounds for instance, 1-silacyclo-2,4-hexadiene, Cyclopropane, 2-(1,1-dimethyl-2-pentenyl)-1,1-dimethyl, 3 methyl-2-(2-oxopropyl) furan, Z, Z-6,28-Heotatriactontadien-2-one, 3-eicosyne, 1Nonylcyclo heptane, 3-n-butylthiolane, 1 H-imidazole[1,2-b] pyrazole, 1-methyl-, 5Hydroxymethy lfurfural, 1-ethyl-2-hydroxymethylimidazole, 12-methyloctadec-11-enoic acid trimethylsilyl ester, 1,4-Dioxan-2-one, 3,3-dimethyl-5-[(trimethylsilyl)oxy) methyl], Di(1methylcyclobutyl)eter, Heptacosanoic acid, 2,4-dimethoxy-methylester, Isosorbide, 2TBDMS derivative, d-mannitol, 1,1-o-1,16-hexadecanediylbis-,3,7,11,15,18-pentaoxa-2,19-, 7-bromo-1heptanol. TMS derivative, 4,4-Dimethyl-oct-5-enal, 1,3-dioxolane, 4-pentyl-5-propyl-2,2bis(trifluoromethyl)-cis-, 7-ethyl-2-undecen-6-one, 1,2,3,4-Hexadecanetetrol, 2-Butenoic acid, 4,4-dimethoxy- methyl ester, 2-hydroxyoctanoic acid, d-mannitol, 1-O-(22-Hydroxydocosyl).

Financial support and sponsorship-Nil.

Conflicts of interest-There are no conflicts of interest

References

- 1. Achakzai, J. K., Anwar Panezai, M., Kakar, M. A., Kakar, A. M., Kakar, S., Khan, J., ... & Tareen, A. K. (2019). In vitro anticancer MCF-7, anti-inflammatory, and brine shrimp lethality assay (BSLA) and GC-MS analysis of whole plant butanol fraction of Rheum ribes (WBFRR). *BioMed research international*, 2019.
- 2. Achakzai, J. K., Anwar Panezai, M., Kakar, A. M., Akhtar, B., Akbar, A., Kakar, S., ... & Panezai, M. (2019). In vitro antileishmanial activity and GC-MS analysis of whole plant hexane fraction of Achillea wilhelmsii (WHFAW). *Journal of Chemistry*, 2019, 1-26.
- 3. Achakzai, J. K., Panezai, M. A., Akhtar, B., Kakar, S., Akbar, A., Kakar, A. M., ... & Achakzai, T. (2020). In vitro anti-inflammatory, anticancer (MCF-7, 3T3, and HeLa Cell Lines), and

Brine Shrimp Lethality Assay and FTIR analysis of the extract and fractions of the whole plant of Heliotropium europaeum. *Mediators of Inflammation*, 2020.

- 4. Ahmad, A., Syed, F., Imran, M., Khan, A. U., Tahir, K., Khan, Z. U. H., & Yuan, Q. (2016).
- 5. Phytosynthesis and Antileishmanial Activity of Gold Nanoparticles by Maytenus Royleanus. *Journal of Food Biochemistry*, 40(4), 420–427.
- 6. Arraché Gonçalves, G., Eifler-Lima, V. L., & von Poser, G. L. (2022). Revisiting nature: a review of iridoids as a potential antileishmanial class. *Phytochemistry Reviews*, 21(1), 101–126. https://doi.org/10.1007/s11101-021-09750-8
- 7. Atta-ur-Rahman, M.I. C. & J.T. William. (2001). Bioassay techniques for drug development. Harward academic Publisher, 67-68.
- 8. Carballo, L. J., Hernandez-inda, L. Z., Perez, P., & Gravalos, M. D. (**2002**). A comparison between two brine shrimp assays to detect in vitro cytotoxicity in marine natural products. *Bio Med Central Biotechnology*, 2, 1-10
- 9. Choudhary, M. I., Parveen, Z., Jabbar, A., & Ali, I. (1995). Antifungal steroidal lactones from Withania coagulance. *Phytochemistry*, 40(4), 1243-1246.
- 10. Helfand, S., Werkmeister, J., & Roader, J. (1982). Chemiluminescence response of human natural killer cells. I. The relationship between target cell binding, chemiluminescence, and cytolysis. *The Journal of Experimental Medicine*, 156, 492-505.
- 11. Naveed, S., Ibrar, M., & Khan, I. (2016). In vitro evaluation of medicinal, antioxidant activities and phytochemical screening of Iphiona grantioides and Pluchea arguta subsp. Glabra Qaiser. *Pakistan Journal of Botany*, 48(6), 2505–2511.
- 12. Naveed, S., Ibrar, M., Khattak, I., & Marwat, K. B. (2019). Phytosociological and heavy metal profile of iphiona grantioides and pluchea arguta (Boiss.) anderb. subsp. glabra qaiser. *Pakistan Journal of Botany*, *51*(6), 2153–2158. https://doi.org/10.30848/PJB2019-6(33)
- 13. Naveed, S. (n.d.). Insecticidal, Cytotoxic And Phytotoxic Potential Of Ethanolic Extracts Of Two Wild Medic ... Eman, A. E., Mortada, M. E. & Ezzat, E. A. L. (2015). GC-MS Investigation of Essential oil and antioxidant activity of Egyptian White Onion (Allium cepa L. *International journal of pharmaceutical sciences and Research*, 6(3).
- 14. Ghosh, A., Das, B. K., Roy, A., Mandal, B., & Chandra, G. (2008). Antibacterial activity of some medicinal plant extracts. *Journal of Natural Medicines*, 62(2), 259–262. https://doi.org/10.1007/s11418-007-0216-x
- 15. Ghosh, A., Das, B. K., Roy, A., Mandal, B., & Chandra, G. (2008). Antibacterial activity of some medicinal plant extracts. *Journal of Natural Medicines*, 62(2), 259–262. https://doi.org/10.1007/s11418-007-0216-x
- 16. Kivack, B., Mert, T., & Tansel, H. (2001). Antimicrobial and Cytotoxic activities of *Ceratonia siliqua* L. extracts. *Turkish Journal of Biology*, 26, 197-200
- Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J Immunol Methods 1983, 65, 55–63. Mozaffarian, V. (1966). A Dictionary of Iranian Plant Names: Latin –English- Persian. Farhang Mo'aser
- Pettit, R. K., Weber, C. A., Kean, M. J., Hoffmann, H., Pettit, G. R., Tan, R., ... & Horton, M. L. (2005). Microplate Alamar blue assay for Staphylococcus epidermidis biofilm susceptibility testing. *Antimicrobial agents and chemotherapy*, 49(7), 2612-2617.