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Abstract 
Leukemia inhibitory factor (LIF) is a multifunctional gene belonging to the interleukin-6 cytokine 

family. It plays crucial roles in various biological processes such as neuron development, wound heal-

ing, maintenance of adrenocorticotropic hormonal secretions in the pituitary glands, reproductive sys-

tem, and alveolus development. Previous studies have associated LIF polymorphisms with female 

infertility, schizophrenia (SCZ), and osteoporosis. However, comprehensive computational analyses 

examining the functional and structural impacts of damaging non-synonymous single-nucleotide pol-

ymorphisms (nsSNPs) in LIF have not been conducted. The main objective of this study was to iden-

tify and classify nsSNPs that have the most detrimental effects on the LIF gene. A total of nine dele-

terious mutations (C156F, C153G, L147P, Y111C, Q70H, Y66C, Y66H, T120N, and V164M) were 

detected, which resulted in altered protein structure. Subsequently, these deleterious mutations were 

assessed for potential post-translational modification sites using molecular docking and molecular 

dynamic simulation techniques. The results revealed that the C156F mutant displayed greater conser-

vation and structural dissimilarity compared to the other mutants. Docking analysis demonstrated that 

EC330 inhibits LIF/LIF-R signaling, thereby impeding LIF's tumor-promoting effects. This finding 

suggests that EC330 could be a potential candidate for targeted cancer therapy in cases where LIF is 

overexpressed in malignancies. 
 

Keywords: LIF, nsSNPs, Molecular docking, Molecular dynamic simulation 

 

1. INTRODUCTION 

Leukemia inhibitory factor (LIF) is a monomeric glycoprotein that is frequently subject to glycosyl-

ation (1). The glycosylated LIF protein has a molecular weight of 20 - 25 kDa bilal(1, 2). The LIF 

https://jptcp.com/index.php/jptcp/issue/view/79
mailto:dr_sibtainhmd6@uaf.edu.pk


In-Silico Analysis Of Deleterious Single Nucleotide Polymorphisms (Snps) Of Leukemia Inhibitory Factor (Lif), And 

Their Conformational Predictions 

 

Vol.31 No.1 (2024): JPTCP (2792-2811)  Page | 2793 

protein, consisting of 202 amino acids, undergoes post-translational modifications that result in the 

removal of 22 amino acids from the N-terminus, leading to its conversion into a 20kDa form(3). These 

modifications are crucial as LIF possesses multiple potential N-glycosylation sites, allowing for sig-

nificant alterations after translation (4). Studies utilizing nuclear magnetic resonance and x-ray crys-

tallography have revealed the structural characteristics of LIF, demonstrating its similarity to other 

cytokines within the IL-6 family (3). Specifically, LIF adopts a four-helix bundle conformation, with 

Helix A initiating at Leu44 (residue 22 in the mature chain) and forming covalent connections with 

the N-terminal region of helix 3 through two disulfide bonds (Cys34-156Cys and Cys40-153Cys). 

The N-terminus is crucial for binding of receptor (5).The Helix D is linked between helices A and B 

by a third disulfide bond. (6). 

LIF overexpression in tumor tissue has been linked to oral squamous cell carcinoma (7), chordomas 

(8), pancreatic adenocarcinoma (9), nasopharyngeal carcinoma (10) renal (11), cervical (11, 12), 

Breast (13) and skin cancer (14). It is also shown in body fluids (15) as well as other tissues including 

cardiac muscle (16), thymus (17), hypophysis  (18), lungs (17), kidney (19), neuronal tissue, in-

volved in inflammation (20), autoimmune diseases (21) and blastocyst implantation (22). LIF exerts 

its biological effects by activating various signaling pathways, including the Janus kinase/signal trans-

ducer and activator of transcription 3 (JAK/STAT3) pathway, Janus tyrosine kinase pathway, phos-

phoinositide 3-kinase (PI3K) signaling pathway, and p44/42 mitogen-activated protein kinase 

(ERK1/2) pathway. These pathways play critical roles in mediating the cellular responses and down-

stream effects of LIF signaling.(23). Melanomas (24), stimulated monocytes and T-lymphocytes (25), 

immune cells (24) and fibroblasts associated with cancer (26) cause production of LIF (27). 

A variant in the LIF gene has been linked to schizophrenia (SCZ), osteoporosis and infertility in 

women (28-31),. To date, computational methods have not been used to identify pathogenic non-

synonymous single-nucleotide polymorphisms (nsSNPs) in the human LIF gene. (32, 33). To com-

prehensively examine the different types of variations, a thorough analysis of single nucleotide poly-

morphisms (SNPs) linked to a specific disease-related gene, along with extensive associative investi-

gations, is essential in the present time. Unlike time-intensive molecular techniques, computational 

approaches now exist that elucidate the impacts of substituted amino acids, as well as alterations in 

protein structure and sequence information. In recent years, numerous in silico analyses have been 

developed to assess the physiological effects of deleterious nsSNPson genes (34-36). 

Although there have been many studies on LIF gene, the pathogenic nsSNPs and genetic changes, as 

well as their impact on protein phenotypes, are not being fully investigated. This study aimed to de-

termine, via molecular docking and molecular dynamic simulation of wild and variant proteins, how 

the polymorphism effect the function of LIF and causes symptoms in patients. 

 

2. MATERIALS AND METHODS 

The Human LIF gene sequence (Accession number: NC_000022.11) and LIF protein sequence 

(NP_002300.1) were obtained from NCBI. Relevant information from dbSNP and Protein ID (P15018) 

from UniProt were also retrieved. OMIM provided additional gene and protein data for LIF. Drug 

Bank databases were used for virtual screening of LIF-related compounds. These datasets were col-

lected for subsequent computational analysis. 

 

2.1. Identification of disease associated nsSNPs 

Seven computational tools, including SNPNEXUS from https://www.snp-nexus.org/, were used to 

predict the deleterious effects of nsSNPs. The input file contained LIF SNPs IDs obtained from dbSNP. 

SNPNEXUS includes two tools, SIFT and PolyPhen, to sort out intolerant nsSNPs and categorize 

variants as probably damaging or benign. CADD provides detailed analysis and a C-score to assess 

the deleterious effect of variants on the protein. PolyPhen2 predicts harmful effects based on structural 

features. Condel integrates multiple algorithms to assess deleteriousness, while PROVEAN, SNAP2, 

and PMut predict variations as deleterious or neutral. SNP&GO and PHD-SNP tools were used to 
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predict disease-associated nsSNPs based on database analysis and reliability index. MetaSNP was 

used to filter out disease-related mutations. 

 

2.2. Effect of nsSNPs on protein stability and conservation of amino acids 

To predict the impact of SNPs on protein stability, three tools were utilized for reliable results. MuPro 

uses a support vector machine (SVM) method to predict changes in protein stability (Cheng, Randall, 

& Baldi, 2006). The output provides a score ranging from 0 to 1, where a score < 0 indicates protein 

destabilization. I-Mutant 2.0 is an SVM-based server that calculates the free energy change (DDG) to 

predict protein destabilization upon mutations (E. Capriotti, Fariselli, & Casadio, 2005). The reliabil-

ity index, ranging from 0 to 10, is also provided, with a higher index indicating greater reliability. The 

I-Stable tool integrates eleven structure and sequence-based prediction methods to forecast protein 

destabilization caused by single amino acid mutations (Chen, Lin, Liao, Chang, & Chu, 2020). 

Conservation analysis of amino acid residues in human LIF was performed using Consurf (Ashkenazy 

et al., 2010). Enzymatic sites in proteins tend to have conserved and deleterious amino acids compared 

to variable regions (Williamson et al., 2013). Consurf calculates a score of 7-9 for highly conservative 

amino acids using a Bayesian method, while lower scores indicate less conserved residues (Ashke-

nazy et al., 2010). 

 

2.3. Identification of post translational modification (PTM) site & Molecular network interac-

tions 

Post-translational modifications (PTMs) play a crucial role in expanding proteomic diversity, regu-

lating protein function, and contributing to disease processes. These modifications involve adding 

functional groups to specific amino acid residues within a protein. 

In this study, the Musitedeep server was used to predict potential PTM sites in the Human LIF protein. 

Musitedeep utilizes a deep-learning framework and provides visualization tools for better understand-

ing of the results. The amino acid sequence of LIF protein was used as input for the prediction analysis. 

For visualizing protein-protein interactions involving LIF, Cytoscape, a Java-based program, was em-

ployed. The input for Cytoscape can be the protein name, data in GML format, or simple interaction 

format (SIF). 

 

2.4. 3D Modeling of LIF protein 

Comparative homology modeling was done using Modeller 10.1 (37) which runs on Python scripts. 

The protein sequence was used for the selection of template using Blast, the model was built based 

on the alignment of protein sequence with the template structure and selection of final template. In 

case of mutant, the built model was individually mutated to their respective position through Pymol. 

 

2.5. Refinement and structural validation of native and mutant LIF protein 

The wild-type and mutant protein structures were refined using ModRefiner, which improves struc-

ture quality through a minimization process. The quality of the refined structures was assessed using 

ERRAT and RAMPAGE. RAMPAGE utilizes a Ramachandran plot analysis to evaluate structural 

stability and amino acid distribution. The TM-align algorithm was used to compare wild-type and 

mutant structures, providing a measure of structural similarity through TM-score and RMSD values. 

A higher RMSD value indicates greater variations between the native and mutant structures, while a 

TM-score of 1 signifies a perfect match between the superimposed structures. 

 

2.6. Molecular docking and molecular dynamic simulation of wild and mutant LIF Protein 
PyRx virtual screening tool (38) was used to docked ligands with protein in order to find ligand protein 

interactions along with their affinities. Based on binding affinities of Protein-ligand complex the se-

lected complexes were then visualized by Discovery studio (39). Molecular dynamic simulation 

(MDS) checked the atoms and molecules movement of protein over a given time. Desmond was used 

for molecular dynamic simulation of wild and mutant protein structures. 
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3. RESULTS 

3.1. Evaluation of SNPs of LIF gene 

The human LIF gene contained a total 5103 single nucleotide polymorphisms (dbSNP-NCBI) (Figure 

S1). Out of which there were 114 synonymous SNPs, 233 were non-synonymous SNPs, 1456 in 5’ 

upstream region, 1503 in 3’ downstream region, 1291 intronic, 384 exonic, 785 lay in the 3’UTR 

region, 67 in the 5’UTR region (Figure 1, 2). For further analysis, we specifically focused on non-

synonymous single nucleotide polymorphisms (nsSNPs). These nsSNPs involve changes in the co-

dons, leading to the incorporation of different amino acids. Such alterations have the potential to exert 

structural and functional impacts on the protein. By narrowing our analysis to nsSNPs, we aimed to 

prioritize variations that could have significant implications for the protein's structure and function. 

 

3.2. Identification of pathogenic and disease associated nsSNPs in LIF 

Total of 233 nsSNPs were analyzed using SNPNEXUS (Figure 2). SIFT predicted 45 nsSNPs as 

deleterious with score ≤ 0.05,105 as tolerated with a score ≥ 0.05 and the rest were not reported (Figure 

S2). Further, based on structural information and Multiple Sequence Alignment (MSA), the PolyPhen 

indexing categorized 75 nsSNPs as probably damaging with score ranges 0.912-1.00 ,23 as possibly 

damaging score 0.452-0.868 and 107 as benign with score 0.423-0.001(Figure S3). To ensure robust 

and reliable outcomes, a stringent filtering process was employed, integrating data from SIFT and 

PolyPhen algorithms. Through this approach, a total of 28 non-synonymous single nucleotide poly-

morphisms (nsSNPs) were identified and retained for further analysis. By combining the predictive 

power of these computational tools, we aimed to enhance the confidence level of our results, focusing 

on nsSNPs that exhibited a higher likelihood of functional impact on the protein (Table S1). The 

corresponding nsSNPs were further validated using CADD, Polyphen-2 and SNAP2.In them, all 

nsSNPs were damaging and were found to have an “effect” on protein function. While Condel and 

Provean predicted 26 and 23 nsSNPs as deleterious respectively (Table 1) 

Further, all 28 nsSNPs were submitted for associated disease (Table 2). The PHD-SNP and SNP&GO 

analysis calculated 22 and 27 nsSNPs as disease associated respectively. In addition, P-Mut predicted 

only one nsSNPs (G71E) was disease causing while Meta-SNP suggested 18 nsSNPs as disease re-

lated nsSNPs. 

 

3.3. Effect of nsSNPs on protein stability and conservation of amino acids  

Previous studies showed that disease associated nsSNPs change the protein stability (Aftab et al., 

2021),(Hossain, Roy, & Islam, 2020; Jia et al., 2014). Protein stability of nsSNPs was determined by 

using Mu-Pro, I-mutant and I-stable online servers. The results showed that most of nsSNPs has de-

creased protein stability in all tested servers (Table 3). Mu-Pro analysis indicated that only one G71E 

had increased stability. While I-mutant and I-stable analysis revealed 25 and 21 SNPs decrease protein 

stability.  

To identify mutations that may impact human health, it is necessary to consider evolutionary infor-

mation. By utilizing Consurf, calculations were conducted to determine the evolutionary conservation 

of amino acid residues in the LIF protein. (Figure 3). Based on Consurf results C156F, C153G, L137F, 

V164M, C153Y, P90L, Q70H, N56S were highly conserved. Among these C156F, C153G, L137F, 

V164M, C153Y were structural and buried, P90L, Q70H, N56S were exposed and functional. G71E, 

N127K, N127D, P73L, L62V were conserved. And L147P, Y111C, Y66C, Y66H, L116V, T120N 

were slightly conserved while other nsSNPs were predicted as least conserved (Table 3). 

Among the 28 identified non-synonymous single nucleotide polymorphisms (nsSNPs), a subset of 

nine nsSNPs (C156F, C153G, L147P, Y111C, Q70H, Y66C, Y66H, T120N, V164M) was determined 

to be highly significant in the context of the human LIF gene (Table S2). These findings were sup-

ported by the collective predictions of 15 different computational tools, including SIFT, PolyPhen, 

PROVEAN, PolyPhen2, SNAP2, CADD, Condel, PHD-SNP, SNP&GO, MuPro, I-Mutant, iStable, 

PMut, MetaSNP, and Consurf. The summarized results of these tools, illustrating the prediction of 
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common deleterious nsSNPs, are depicted in Figure 4.Among the 28 identified non-synonymous sin-

gle nucleotide polymorphisms (nsSNPs), a subset of nine nsSNPs (C156F, C153G, L147P, Y111C, 

Q70H, Y66C, Y66H, T120N, V164M) was determined to be highly significant in the context of the 

human LIF gene (refer to Table S2). These findings were supported by the collective predictions of 

15 different computational tools, including SIFT, PolyPhen, PROVEAN, PolyPhen2, SNAP2, CADD, 

Condel, PHD-SNP, SNP&GO, MuPro, I-Mutant, iStable, PMut, MetaSNP, and Consurf. The sum-

marized results of these tools, illustrating the prediction of common deleterious nsSNPs, are depicted 

in Figure 4. 

 

3.4. Prediction of post translational modification (PTM) sites and molecular network interac-

tions 

Post translational modification sites (PTM) plays prominent role in folding and degradation of pro-

teins as well as gene expressions regulation. An extensive study between PTMs, SNPs and diseases 

are vital as SNPs induces PTMs and predicting the harmful nsSNPs associated with PTM sites may 

be helpful in the analyzing and interpretation of diseases (Kim, Kang, Min, & Yi, 2015). Musitedeep 

predicted four mutations comprising Post-translational modification sites (Table S3). Among them, 

N56S was found to regulate Glycosylation, A32T were associated with phosphorylation and C156F, 

and C153G were associated with palmitoylation (Figure 5A). 

The interaction network of the LIF protein with other proteins was visualized using Cytoscape (Figure 

5B). LIF protein was found to be associated with various interacting partners, including Interleukin-

6 Cytokine (IL6), Vascular endothelial growth factor A (VEGFA), Signal transducer and activator of 

transcription 3 (STAT3), Interleukin-1 alpha (IL1A), Granulocyte colony stimulating factor (CSF3), 

Interleukin-1 beta (IL1B), Cardiotrophin-1 (CTF1), Interleukin-6 receptor subunit beta (IL6ST), Leu-

kemia inhibitory factor receptor (LIFR), and Fibroblast growth factor 2 (FGF2). These interactions 

suggest potential functional connections and signaling pathways involving the LIF protein and its 

associated partners. 

 

3.5. 3D Modeling of LIF protein 

The Protein Data Bank (PDB) does not contain the complete structure of LIF protein. The complete 

protein structure was necessary to further analyze the effect of above shortlisted nine nsSNPs into 

protein structure. The protein templates were generated though protein data bank protein (pdb) se-

lected as a search database in BLASTp along with the psiBlast as algorithm and protein sequence. 

The templates are selected based on E-value and % identity. The PDB ID 2Q7N, 1PVH have 100%, 

1EMR found to have 98.11%, and 1A7M have 85% identical with the query sequence (Table S4). 

These four 2Q7N, 1PVH, 1EMR, 1A7M PDB ID structures were further used as a template for com-

parative Homology modeling by Modeller10.1. Modeller 10.1 generated five similar models based on 

1A7M template (Table S5). The query sequence (NP_002300.1) was aligned against the selected tem-

plate structures to build the model. The best model was selected based on the low DOPE (Discrete 

Optimized protein energy) score and high GA341. 

Among the five model “qseq1.B99990002.pdb” had low -20176.61523 dope score and highest 

1.00000 GA341 score (Table S5). The selected model“qseq1.B99990002.pdb” (Figure 5C) undergo 

point mutations in Pymol. The native model and point mutated structures were refined by ModRefiner. 

 

3.6. Model validation by ERRAT and Ramachandran Plot 

The refined native and mutant structures was further validated by ERRAT and Ramachandran (Table 

4). The quality factor of native model was 86.2857%. In ProCheck, Ramachandran plot was used for 

further assessment of wild and mutant structure. In Ramachandran plot the generated native protein 

model was found to have 90.8% residues in the favored region, 6.9% in allowed region, 1.7% in 

generously disallowed regions and 0.6% disallowed region (Table 4; Figure 5D). For a good and 

reliable protein structures, there should be more than 90% residues in the favored region of native 

protein While among mutants C156F found to have 90.2% residues in favored region, 8.7% in allowed 
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region, 0.6% generously disallowed and 0.6% disallowed, Q70H have 91.9% in favored region, 6.4% 

in allowed,1.2% disallowed and 0.6 disallowed while remaining mutant structures showed less resi-

dues in favored region. 

 

3.7. RMSD and TM Score calculations through TM-align 

TM align were used to investigate the structural similarities between wild and mutant (Table 4). 

Among the 9 mutants, C156F found to have lowest. TM score 0.96626 and highest RMSD value 

1.17Å, followed by T120N, V164M, Q70H having 0.97184, 0.96824, 0.97257 TM score and 1.11 Å, 

1.10 Å, 1.02 Å RMSD value respectively. The remaining mutants were found to have less than 1 Å 

RMSD values. Based on Higher RMSD value and low TM score C156F have shown greater structural 

dissimilarity and selected for superimposition over the wild protein structures and further docking 

analysis (Figure 6). 

 

3.8. Molecular docking analysis 

Total 20 ligands associated with LIF protein were retrieved from PubChem Drug bank. PyRx were 

used to dock all 20 ligands with LIF protein along with the selected mutant C156F (Table S6). The 

grid box was set with axes X=6.3363, Y=-12.8628, Z=-1.0061. Eight ligands Lonaparisan(-8), 

EC330(-7.8), Coumestrol(-7.5), Estradiol(-7.3), desmethylmifepristone (-7.1), GH1(-7.1), Toripris-

tone(-7.1), Mifepristone(-7) showed stronger binding affinities while in case of mutant C156F these 

eight ligands showed -7.5, -7.1, -6.4, -7.2, -6.8, -6.6, -7, -6.9 binding affinities and were selected for 

further analysis (Table 5). Less the value stronger the binding affinity of ligand and protein. The 

docked compound was visualized by Discovery studio (Figure 7A, B).  

Using the discovery studio, the effect of mutations on hydrogen bond and other interactions were 

observed. When Lonaparisan interact with LIF protein, it showed C-H bond at GLY83, Alkyl and Pi-

alkyl association at LYS175 and halogens interactions at GLY83 residues. Whereas when Lona-

parisan interact with the C156F mutant showed H-bond at three different points (VAL110, THR114 

and ARG145), C-H bond at HIS163, alkyl and Pi-alkyl association at ARG145 and halogens at 

GLY113. EC330 interact with LIF showed H-bond at GLN186, C-H bond at THR172, alkyl and Pi-

alkyl interactions at LYS175 and LYS182 and halogens at ASP88. Whereas when interact with C156F 

mutant it showed H-bonding at ARG154 and CYS153, C-H bond at ARG154, alkyl and Pi-alkyl 

association at ARG154. Coumestrol interact with LIF protein, it only showed alkyl and Pi-alkyl in-

teractions at LYS182 and LYS175. When interact with C156F mutant, it showed H-bonding at 

ASN150, CYS40 and GLU98, Pi-sigma at ARG154, Pi-Pi shaped at TYR159, alkyl and Pi-alkyl at 

ARG154 and Pi-sulphur at CYS40. Estradiol interacts with LIF it formed alkyl and Pi-alkyl associa-

tion at LYS80 and LYS175. Whereas, when interact with mutant C156F, it showed H-bond at LEU44 

and alkyl, pi-alkyl interactions at ARG154, PHE156, ALA35, PRO29 and ILE27. Desmethylmifepris-

tone interact with LIF it showed C-H bond at LYS182, GLN186, alkyl and pi-alkyl interactions at 

LYS175. Whereas when interact with mutant C156F, it showed H-bond at SER149, Pi charged at 

ARG37, alkyl and pi-alkyl interactions at ARG145, VAL110, TYR168 and unfavorable donor-donor 

interactions at ARG37.GHI interact with LIF, it showed H-bond at different sites like GLY174, 

SER173 and LEU81, C-H bond at GLN186, LYS182, Pi-sigma at LYS175, alkyl and pi-alkyl inter-

actions at LYS182 and unfavorable donor-donor interactions at SER173. Whereas when it interacts 

with mutant C156F it showed H- bonding at VAL166, C-H bond at THR114, Pi-charged at ARG145, 

Pi-sigma at VAL110 and unfavorable donor-donor interactions at ARG145. Toripristone interact with 

LIF protein, it showed C-H bond at ASP171 and when it interacts with C156F mutant it also showed 

C-H bond at ASP171. Mifepristone interacts with LIF protein it showed H-bond at LEU81 and alkyl 

and pi-alkyl interactions at LYS182. When it combines with C156F mutant, it showed H-bond at 

LEU81 and alkyl and pi-alkyl interactions at LYS175 and LYS182. 

RMSD (roof mean square deviation and RMSF (root mean square fluctuations) were analyzed be-

tween native and mutant C156F complex in Desmond. Simulation was carried out at 100ns for each 

complex independently. RMSD value of protein and mutants were analyzed. In wild LIF protein, the 
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position of the backbone atoms of protein doesn’t change much during simulation. RMSD is higher 

than standard value that means, after simulation time deviation was occurred. The protein is not stable 

and would result in abnormal function while mutant C156F has different spikes than the wild type as 

mutational protein has more hyper action than wild type. The RMSF value of wild and mutant is 

different that showed that mutation alter the protein flexibility (Figure 8). 

 

4. DISCUSSION 

Computational biology has firmly established its position in the field of genomic research. (40) It is 

also a common practice to employ computational biology techniques for the identification of delete-

rious mutations in target genes, which contribute to the underlying causes of diverse diseases. (41-

43). The human SNP database (dbSNP) has documented over 4 million human SNPs, with approxi-

mately 2% of these SNPs found within coding regions. These coding region SNPs have been associ-

ated with various genetic diseases. Presently, conducting a comprehensive investigation regarding the 

effects of non-synonymous single nucleotide polymorphisms (nsSNPs) poses a significant challenge. 

However, computational tools offer a valuable means to gather information concerning the impact of 

nsSNPs on protein structure and function. (44, 45). 

The LIF gene has accumulated over 5000 reported SNPs in the dbSNP-NCBI database. These SNPs 

can be found in coding, non-coding, or regulatory regions. Another valuable resource for human gene 

mutation data is the Human Gene Mutation Database (HGMD) (46). R. Giess et al. (1999) reported 

three mutations in the LIF gene. Among these mutations, two are missense mutations, the third mu-

tation is located at the start codon of exon 1, which is part of the regulatory region of the gene (29), 

The other two mutations were found in the third exon of the LIF gene. These regions are crucial for 

the interaction between LIF and its receptor. Polymorphisms in these regions can lead to a decrease 

in the biological activity of the LIF protein, which in turn may contribute to female infertility (29), In 

a separate investigation, a gene mutation involving the substitution of valine with methionine at codon 

64 (V64M) was examined (47),  in addition to the V64M mutation, two polymorphisms were iden-

tified in the upstream region of the LIF gene and are associated with infertility, (32). In the Japanese 

population, the LIF gene was found to harbor four single-nucleotide polymorphisms (SNPs) located 

within the third exons at positions 3951 C/T, 4442 A/C, 4376 C/G, and 5961 G/A(48). However, it is 

worth noting that these specific SNPs, namely rs929271 in the 3' untranslated region (UTR) of LIF, 

as well as rs929273 and rs737812, have been linked to schizophrenia (SCZ), neural memory degra-

dation, and pregnancy loss (30).  

Currently, there is a lack of reported studies specifically focusing on the utilization of computational 

tools for predicting deleterious single nucleotide polymorphisms (SNPs). In our study, we employed 

a range of computational tools such as SNPnexus, CADD, Condel, Polyphen2, Provean, SNP&GO, 

PHD-SNP, P-Mut, I-Mutant 2.0, Istable, and MuPro to filter and analyze nsSNPs. These tools were 

utilized to assess the potential impact of these nsSNPs on protein structure and function. These tools 

were employed to identify and prioritize nsSNPs that are likely to have the greatest impact and asso-

ciation with diseases. By employing these computational approaches, we aimed to enhance the effi-

ciency and accuracy of identifying deleterious nsSNPs with potential disease relevance. It is important 

to distinguish between deleterious and neutral nsSNPs, as the former has the potential to impact en-

zymatic activity (49). The computational tools employed in the study predicted nine highly deleterious 

nsSNPs (C156F, C153G, L147P, Y111C, Q70H, Y66C, Y66H, T120N, and V164M). These nsSNPs 

were found to be located within the binding regions of proteins, which are critical for protein-protein 

interactions. These binding regions are typically conserved, comprising charged residues and hydro-

phobic residues that form a hydrophobic core involved in the binding process. The presence of harm-

ful genetic variability, as indicated by these deleterious nsSNPs, can have adverse effects on the pro-

tein structure and function. Such effects include protein destabilization, alteration in protein confor-

mation and dynamics, and modifications in the selectivity and affinity of binding partners. These 

detrimental consequences may disrupt proper protein-protein interactions, leading to impaired cellular 

processes and potential disease manifestations. (50). Understanding the correlation between SNPs and 
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their phenotypic consequences is crucial for elucidating the etiology of various diseases or disorders. 

By comprehending the impact of SNPs on gene function, protein structure, and biological processes, 

we can gain valuable insights into the underlying mechanisms of these conditions (51, 52). Such 

knowledge is essential for identifying disease-associated SNPs, predicting disease risk, and develop-

ing personalized therapeutic approaches. (53). Protein stability is a fundamental factor that influences 

the physiology of biological molecules. Deleterious (nsSNPs) may destabilize and misfold the protein, 

contributing to significant functional consequences.(54-57). Among the nine non-synonymous single 

nucleotide polymorphisms (nsSNPs) examined, C156F, C153G, Q70H, and V164M were identified 

as highly conserved, with a conservation score of 9. Notably, C156F and C153G were found to impact 

the post-translational modification of the LIF protein. 

Further analysis focused on the structural consequences of these deleterious nsSNPs in the three-

dimensional (3D) structure of LIF. The Modeller10.1 software was utilized to obtain the 3D structure, 

followed by refinement and structure validation using Modrefiner, ERRAT, and ProCheck. To assess 

the structural deviations of the wild-type and mutant proteins, the Tm Align tool was employed to 

predict the root mean square deviation (RMSD) and TM score. Higher RMSD and lower TM score 

values indicated a greater deviation of the mutant protein structure from the native counterpart. Based 

on these evaluation criteria, the C156F nsSNP was selected as the most deleterious, as the remaining 

eight nsSNPs exhibited lower RMSD and higher TM scores, indicating a lesser deviation of the mu-

tant protein structures from the wild-type structure. Both the wild-type and mutant C156F proteins 

were found to interact with eight significant ligands. LIF, being a pleiotropic cytokine, has posed 

challenges in delineating its precise functions, given its multifaceted nature. 

In our study, we conducted molecular dynamics simulations (MDS) to investigate the structural im-

pact of nsSNPs on the protein and their potential to alter its biological function. To the best of our 

knowledge, no previous research has utilized molecular dynamics simulations to explore the effect of 

nsSNPs on the structural integrity of this gene. 

By employing MDS analysis, we aimed to generate comprehensive data on the structural changes 

induced by pathogenic mutations, including residue variations and conformational alterations in the 

protein. This approach allows for a deeper understanding of the structural consequences associated 

with deleterious mutations, complementing experimental techniques. 

Interestingly, emerging evidence and substantial scientific investigations have increasingly recog-

nized LIF as a compelling candidate for cancer therapy, particularly in cases where LIF is overex-

pressed. In line with this, we have investigated a group of small molecule compounds, specifically 

EC330, as potential LIF inhibitors. The design of EC330 was guided by structure-activity relationship 

(SAR) studies conducted on human breast cancer MCF7 cells with LIF overexpression. Our research 

endeavors to provide significant contributions by elucidating the structural consequences of non-syn-

onymous single nucleotide polymorphisms (nsSNPs) on the protein. Furthermore, we aim to provide 

insight on the potential therapeutic strategies targeting Leukemia inhibitory factor (LIF), especially 

in cancer cases characterized by LIF overexpression. By understanding the impact of nsSNPs on the 

protein's structure and function, we can identify potential targets for therapeutic intervention and con-

tribute to the development of effective treatment approaches.(58). To assess the influence of the mu-

tant and wild-type proteins, we generated graphical representations of the root mean square deviation 

(RMSD) and root mean square fluctuation (RMSF). These parameters offer valuable information re-

garding the structural alterations and dynamic characteristics of the proteins. 

In our computational analysis, we predicted deleterious mutations; however, among all nine it is im-

portant to note that V64M was not identified as highly deleterious in our study. As far as our under-

standing, there is no existing evidence linking the mutations C156F, C153G, L147P, Y111C, Q70H, 

Y66C, Y66H, T120N, and V164M to any recognized diseases. 

It is worth mentioning that one of the limitations of computational tools is that the results obtained 

from these analyses require further validation through wet lab experiments. While bioinformatics ap-

proaches are time-saving and cost-effective, the predictions regarding the deleterious effects of SNPs 
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on protein physiology necessitate wet lab studies for confirmation. This integration of computational 

and experimental approaches represents a crucial step forward in drug design and development. 

 

Supplementary Data 

Figure S1: SNPNEXUS showed that LIF gene contains 223 non-synonymous SNPs, 114 synonymous 

SNPs, 785 in the 3’UTR regions, and 67 in the5’UTR. 1456 in the 5’Upstream, 1503 in the 3’Down-

stream; Figure S2: The SIFT analysis, indicated 44 non synonymous SNPs (nsSNPs) as deleterious 

and 106 were found to be tolerated; Figure S3: PolyPhen classified 107 nsSNPs to be ‘Benign, prob-

ably damaging (75) and possibly damaging (23) respectively; Table S1: nsSNPs filtered out by com-

bining the information from SIFT and PolyPhen; Table S2: Significant SNPs in human LIF gene; 

Table S3: Identification of Post-Translational Modification (PTMs) sites through MusiteDeep; Table 

S4: Blastp results; Table S5:Five best models predicted by Modeller 10.1; Table S6: Docking of 20 

ligands with native and mutant protein along with their binding affinities. 
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Figure 1. Flow chart of LIF protein analysis. 
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Figure 2. Evaluation of SNPs. 

 

 
Figure 3. Prediction of evolutionary conservation of amino acids. 
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Figure 4. Significant nsSNPs verified by 15 tools. The dark purple lines showing significant SNPs. 

 

 
 

Figure 5. Identification of Post translational modification sites through Musitedeep (A), Protein-

Protein interactions by Cytoscape (B), 3-D structure of LIF protein (C) and Ramachandran plot of 

LIF protein (D). 
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Figure 6. Superimposition structure of wild LIF protein over C156F mutant. 

 

 
Figure 7. A) Showing the protein-ligand interactions for native structures. Residues were distrib-

uted based on their ten types of interactions including conventional hydrogen bonds, carbon hydro-

gen bonds, pi-charged, pi-sigma, pi-pi/pi-pi T shaped and alkyl, pi-alkyl and unfavorable donor, B) 

Showed the protein-ligand interactions for mutant structures. Residues were distributed based on 

their types of interactions including conventional hydrogen bonds, carbon hydrogen bonds, pi-

charged, pi-sigma, pi-pi/pi-pi T shaped and alkyl, pi-alkyl and unfavorable donor. 
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Figure 8. A and B showing RMSD and RMSF of wild protein, whereas, C and D depict RMSD and 

RMSF of mutant C156F protein. 
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Table 2. Identification of disease associated nsSNPs in LIF. 

  SNP&GO PHD-

SNP 

 PMut  MetaSNP  

dbSNP Muta-

tions 

Predic-

tion 

Predic-

tion 

RI Predic-

tion 

Score Predic-

tion 

Score 

rs775324532 C156F Disease Disease 7 FALSE 0.4646 Disease 0.748 

rs760902711 C153G Disease Disease 4 FALSE 0.4646 Disease 0.744 

rs1277504823 L147P Disease Disease 7 FALSE 0.4933 Disease 0.708 

rs1006881400 L137F Neutral Neutral 1 FALSE 0.4907 Neutral 0.243 

rs1424596709 Y111C Disease Disease 5 FALSE 0.2325 Disease 0.756 

rs779219330 P90L Disease Neutral 0 FALSE 0.4727 Disease 0.643 

rs1224176226 G71E Disease Disease 6 TRUE 0.5016 Disease 0.693 

rs1254570702 Q70H Disease Disease 6 FALSE 0.411 Disease 0.66 

rs1388347344 Y66C Disease Disease 6 FALSE 0.4933 Disease 0.721 

rs1014837070 Y66H Disease Disease 6 FALSE 0.4933 Disease 0.685 

rs368411105 L187F Disease Neutral 5 FALSE 0.159 Neutral 0.185 

rs758693208 L144P Disease Disease 7 FALSE 0.3125 Disease 0.708 

rs762890518 N127K Disease Disease 4 FALSE 0.4626 Neutral 0.384 

rs1437018496 T120N Disease Disease 5 FALSE 0.4014 Disease 0.67 

rs760089055 L198S Disease Disease 3 FALSE 0.3125 Neutral 0.18 

rs1327813126 V164M Disease Disease 2 FALSE 0.3183 Disease 0.691 

rs1273810480 N127D Disease Disease 3 FALSE 0.3911 Neutral 0.21 

rs148200166 R107L Disease Disease 7 FALSE 0.2662 Disease 0.724 

rs868113406 A32T Disease Neutral 3 FALSE 0.142 Neutral 0.187 

rs1442940888 L25F Disease Neutral 0 FALSE 0.255 Neutral 0.278 

rs140799590 P73L Disease Disease 5 FALSE 0.38 Disease 0.636 

rs1313642036 K175N Disease Disease 2 FALSE 0.2831 Disease 0.665 

rs533306784 R154C Disease Disease 5 FALSE 0.164 Disease 0.692 

rs750628718 C153Y Disease Disease 4 FALSE 0.3711 Disease 0.731 

rs373784036 L116V Disease Disease 5 FALSE 0.3313 Disease 0.643 

rs371771485 T97M Disease Neutral 3 FALSE 0.0978 Neutral 0.454 

rs758458009 L62V Disease Disease 2 FALSE 0.3073 Neutral 0.163 

rs780802848 N56S Disease Disease 6 FALSE 0.3945 Neutral 0.463 

 

Table 3. Prediction of effect of nsSNPs on protein stability, amino acid conservation. 

  MuPro I-Mutant I-Stable 
Con-

surf 

dbSNP Mutations Prediction Detal Delta Prediction RI Prediction score 

rs775324532 C156F Decrease stability -0.84973772 Decrease 2 Decrease 9,b,s 

rs760902711 C153G Decrease stability -1.7817825 Decrease 7 Decrease 9,b,s 

rs1277504823 L147P Decrease stability -2.1453046 Decrease 5 Decrease 7,b 

rs1006881400 L137F Decrease stability -1.0630089 Decrease 8 Decrease 9,b,s 

rs1424596709 Y111C Decrease stability -0.93664478 Decrease 6 Decrease 7,b 

rs779219330 P90L Decrease stability -0.1497019 Decrease 6 Decrease 9,e,f 

rs1224176226 G71E Increase stability 0.0751969 Decrease 3 Increase 8,e,f 

rs1254570702 Q70H Decrease stability -0.9469835 Decrease 7 Decrease 9,e,f 

rs1388347344 Y66C Decrease stability -0.8921418 Decrease 1 Decrease 7,b 

rs1014837070 Y66H Decrease stability -1.4628795 Decrease 6 Decrease 7,b 
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rs368411105 L187F Decrease stability -0.6587313 Decrease 3 Decrease 6,b 

rs758693208 L144P Decrease stability -2.3331058 Decrease 5 Decrease 3,b 

rs762890518 N127K Decrease stability -1.1608516 Decrease 3 Decrease 8,e,f 

rs1437018496 T120N Decrease stability -1.0394151 Decrease 8 Decrease 7,e 

rs760089055 L198S Decrease stability -1.0669967 Decrease 9 Decrease 6,b 

rs1327813126 V164M Decrease stability -0.8564677 Decrease 8 Decrease 9,b,s 

rs1273810480 N127D Decrease stability -0.6367277 Increase 2 Increase 8,e,f 

rs148200166 R107L Decrease stability -0.4619755 Decrease 8 Decrease 5,e 

rs868113406 A32T Decrease stability -0.84281051 Decrease 4 Decrease 5,e 

rs1442940888 L25F Decrease stability -0.5930456 Decrease 8 Decrease 4,b 

rs140799590 P73L Decrease stability -0.0013742 Decrease 8 Increase 8,e,f 

rs1313642036 K175N Decrease stability -0.8882829 Increase 5 Increase 3,e 

rs533306784 R154C Decrease stability -0.7401985 Decrease 7 Decrease 5,e 

rs750628718 C153Y Decrease stability -1.0369501 Increase 0 Increase 9,b,s 

rs373784036 L116V Decrease stability -1.063049 Decrease 9 Decrease 7,b 

rs371771485 T97M Decrease stability -0.0996769 Decrease 2 Increase 5,e 

rs758458009 L62V Decrease stability -1.684606 Decrease 8 Decrease 8,b 

rs780802848 N56S Decrease stability -0.5648586 Decrease 4 Increase 9,e,f 

 

Table 4. Wild and mutant structure validation and superimposition value. 

 

Table 5. Showed the protein-ligand interactions for both native and mutant structures. Residues 

were distributed based on their ten types of interactions including conventional hydrogen bonds, 

carbon hydrogen bonds, pi-charged, pi-sigma, pi-pi/pi-pi T shaped and alkyl, pi-alkyl and unfavora-

ble donor. 
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