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ABSTRACT

Fetal alcohol spectrum disorder (FASD) is the most common preventable cause of mental retardation
in the USA. Ethanol impairs neuronal survival and function by two major mechanisms: 1) it inhibits
insulin signaling required for viability, metabolism, synapse formation, and acetylcholine production;
and 2) it functions as a neurotoxicant, causing oxidative stress, DNA damage and mitochondrial
dysfunction. Ethanol inhibition of insulin signaling is mediated at the insulin receptor (IR) level and
caused by both impaired receptor binding and increased activation of phosphatases that reverse IR
tyrosine kinase activity. As a result, insulin activation of PI3K-Akt, which mediates neuronal
survival, motility, energy metabolism, and plasticity, is impaired. The neurotoxicant effects of ethanol
promote DNA damage, which could contribute to mitochondrial dysfunction and oxidative stress.
Therefore, chronic in utero ethanol exposure produces a dual state of CNS insulin resistance and
oxidative stress, which we postulate plays a major role in ethanol neurobehavioral teratogenesis. We
propose that many of the prominent adverse effects of chronic prenatal exposure to ethanol on CNS
development and function may be prevented or reduced by treatment with peroxisome-proliferated
activated receptor (PPAR) agonists which enhance insulin sensitivity by increasing expression and
function of insulin-responsive genes, and reducing cellular oxidative stress.

Key Words: Insulin signaling; mitochondria, oxidative stress, energy metabolism, insulin sensitizer,
insulin resistance, central nervous system

The Public Health Problem
Gestational exposure to alcohol is the leading
preventable cause of mental retardation in North
America. As many as 7 per 1000 women, binge
drink during pregnancy, and even higher
percentages consume alcohol at various times
during pregnancy. Binge drinking has not declined
among women of child-bearing age in the USA.1

The syndrome caused by maternal consumption of
alcohol during pregnancy is termed, “Fetal
Alcohol Spectrum Disorders” (FASD).2 FASD is
not one entity, but rather a collection of
heterogeneous disorders that range broadly in
terms of severity and outcomes.3 Fetal alcohol
syndrome (FAS) is the most severe form of FASD,
and associated with intrauterine growth restriction,
central nervous system (CNS) malformations,
mental retardation, and craniofacial and skeletal
defects, whereas less severe effects of prenatal
alcohol exposure have been classified as alcohol-

related birth defects and alcohol-related
neurodevelopental disorders.4 The economic
burden of FASD/FAS is high5, and despite public
health efforts, the incidence rates have not
declined in the past decade.6 Epidemiologic data
indicate that in the US, FAS rates range from 0.2-
1.5 per 1,000 live births, whereas alcohol-related
birth defects and alcohol-related neuro-
developmental disorders occur in approximately
0.9% of live births.7

The tendency to abuse alcohol during
pregnancy could be consequential to heavy
chronic or binge alcohol abuse during
adolescence. In this regard, attendant sustained
structural and functional abnormalities in the brain
8-11, including deficits in performing executive,
visual-spatial12-14, and working memory tasks15,
might contribute to poor judgment concerning
alcohol and drug misuse during pregnancy.
Increased tendency to abuse alcohol during child-
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bearing years, including its inadvertent misuse
during pregnancy, could account for the high
prevalence rates of attention deficit hyperactivity
disorder (ADHD) in the United States.16-18

Children with ADHD and deficits in visual-spatial,
fine motor, and cerebellar learning are more
challenged8,19-21, and if their problems go
unrecognized or ignored, the risk for engaging in
aberrant, socially unacceptable behaviors,
including drug and alcohol dependence and abuse
as adolescents or young adults, also increases.22-26

Experimentally, it has been demonstrated that
alcohol misuse during adolescence does increase
the propensity to consume alcohol as adults.27 In
essence, alcohol abuse in adolescents and young
adults establishes a vicious cycle whereby
impaired judgment and cognition increase the risk
of causing pre-natal alcohol exposure. Long-term
consequences of prenatal alcohol exposure range
from behavioral abnormalities to learning
disabilities and ADHD, to mental retardation.19,20,28-31

Presumably, structural and functional CNS
abnormalities mediate the increased tendency of
adolescents and young people to participate in high-
risk behaviors, including alcohol abuse during
pregnancy.

Prenatal Ethanol Exposure Impairs CNS
Growth and Development
Heavy gestational exposure to alcohol can be
teratogenic, resulting in gross abnormalities in the
developing CNS2,17,32-35 including microencephaly,
white matter hypomyelination, hydrocephalus,
cerebellar hypoplasia, neuronal migration
disorders, and neuroglial heterotopias.5,32,36-43

Moderate levels of prenatal alcohol exposure tend
to be less harmful, although they still lead to
structural and functional abnormalities, including
altered gene expression in the brain40,44-46 and
impairments in cognitive, behavioral, and motor
functions.47 Ethanol mediates its neurotoxic effects
on proliferating and immature neuronal cells by
causing permanent structural and functional
abnormalities that promote cell death41,48-50 and
impair neurotransmission and plasticity.27,51-55

Correspondingly, prenatal ethanol exposure causes
sustained cognitive-motor deficits in children,
adolescents, and young adults.20,28 29

Although the mechanisms are not entirely
understood, based on the known targets of alcohol
neurotoxicity and structure-function relationships,

long-term cognitive deficits are likely due to
impaired function of the hippocampus and anterior
cingulate region of the frontal lobe. Sustained
motor deficits could be caused by structural and
functional impairments in the cerebellum.
Behavioral abnormalities are probably caused by
loss of neurons within hypothalamic-limbic brain
structures. Our research has focused on the role of
impaired insulin and insulin-like growth factor
(IGF) signaling as mediators of neuro-
developmental abnormalities caused by chronic
gestational exposure to alcohol.40,42,50,56 Others
have examined the contributions of impaired IGF
actions in relation to sustained deficits in neuro-
cognitive function caused by prenatal alcohol
exposure.57-62 Herein, we review the importance of
insulin and IGF signaling in relation to CNS
neuronal function, and the mechanisms and
potential consequences of ethanol-impaired
insulin/IGF signaling in brain. While emerging
data suggest alcohol-mediated epigenetic
modifications in gene expression may serve as
underlying mechanisms of the brain structural
abnormalities and associated aberrant
behaviors27,63-67, it is noteworthy that at least some
of these effects are linked to perturbations in IGF,
in particular IGF-2 expression and function in the
CNS.67,68

Insulin Regulates Growth, Viability and
Function in CNS Neurons by Signaling through
Insulin Receptor Substrate Molecules
In the CNS, neuronal survival, energy metabolism,
and plasticity are critical for maintaining cognitive
and motor functions, and regulated through the
actions of insulin and IGF types I and II. Insulin,
IGF-1 and IGF-2, and their corresponding
receptors are abundantly expressed in various cell
types throughout the brain, including neurons.69-71

The highest brain levels of insulin and IGF
polypeptide and receptor expression are
distributed in the hypothalamus, temporal lobe,
and cerebellum, which notably represent major
targets of ethanol neurotoxicity. Insulin promotes
neurite outgrowth, protein synthesis, neuronal
cytoskeletal protein expression, and nascent
synapse formation.72 The stimulatory effects of
insulin are mediated through complex intracellular
signaling pathways, beginning with ligand binding
and activation of the intrinsic receptor tyrosine
kinase (RTK).69,72-78 Insulin RTK phosphorylates
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specific cytosolic molecules, including one of its
major substrates, insulin receptor substrate, type 1
(IRS-1). Tyrosyl phosphorylated IRS-1 (PY-IRS-
1) transmits intracellular signals that mediate
growth, metabolic function, and viability by
interacting with downstream src-homology 2
(SH2)-containing molecules through specific
motifs located in the C-terminal region of IRS-1.
Phosphorylation of tyrosine residue 897 within the
YVNI motif of IRS-1 (897YVNI) enables binding
to the growth-factor receptor-bound protein 2
(Grb2) adapter molecule, whereas phosphorylation
of tyrosine 1180 (1180YIDL motif) enables IRS-1
interaction with Syp protein tyrosine phosphatase,
and phosphorylation of tyrosine residues 613 and
942 (613YMPM and 942YMKM motifs) leads to
IRS-1 binding to the p85 subunit of
phosphatidylinositol-3 kinase (PI3K). Grb2 binds
to PY-IRS-1 via its SH2 domain, and to a proline-
rich region of son-of-sevenless (SOS) through its
SH3 domain. Sos complexed with PY-IRS-1 and
Grb2, interacts with Ras-GDP, catalyzes a
GDP/GTP exchange on Ras, which promotes
sequential activation of p21ras, mitogen-activated
protein kinase kinase (MAPKK), and MAPK. Erk
MAPK activation directly contributes to growth
factor-stimulated mitogenesis, neuritic sprouting,
and gene expression. Tyrosyl phosphorylated Syp
acts as an adapter protein between the Grb2-SOS
complex and the epidermal growth factor (EGF) or
platelet-derived growth factor (PDGF) receptor,
whereas catalytically inactive (non-
phosphorylated) Syp inhibits MAPK activity.
Therefore, the catalytic substrates of Syp may help
regulate mitogenic signals and cell cycle
progression. The binding of PY-IRS-1 to p85
stimulates glucose uptake and inhibits apoptosis
by signaling through Akt/Protein kinase B. In
addition, insulin signaling through PI3K
phosphorylates and thereby inactivates glycogen
synthase kinase 3β (GSK-3β). GSK-3β has roles in 
energy metabolism, cell survival, and
phosphorylation of neuronal cytoskeletal proteins.
A very similar signaling cascade exists for IGF-1.

Ethanol Inhibits Neuronal Responses to Growth
Factors
Ethanol-induced developmental arrest in the CNS
may be due to impaired responses to various
growth factors.56,58,61,79,80 For example, ethanol
inhibits bFGF-, PDGF-AA-, PDGF-BB-, NGF,

and IGF-1-stimulated proliferation and cell cycle
progression in neural cells.61,81-83 Ethanol
inhibition of neuronal proliferation can be
mediated by reduced levels of growth factor
receptor expression, growth factor stimulated
receptor autophosphorylation, abolishment of the
association between growth factor receptor and
Ras GTPase-activating protein (Ras-GAP), and
inhibition of Erk MAPK activation.82 Major
consequences of ethanol-impaired neuronal
responses to growth factor stimulation include
reduced viability (increased cell death), motility,
adhesion, mitochondrial function, and acetylcholine
homeostasis.40,54,83-88 Importantly, many of these
adverse effects of ethanol are mediated by reduced
phosphorylation and consequently increased
activation of GSK-3β.42,50, 89-93

Ethanol Inhibits Insulin and IGF1 Signaling
Through IRS-1 in Immature Neuronal Cells
Since insulin and IGFs have significant roles in
regulating many functions in the immature brain,
understanding how ethanol inhibits the
corresponding signaling pathways will likely
provide important mechanistic clues regarding the
pathogenesis of FASD and its associated CNS
developmental abnormalities. Previous studies
demonstrated that ethanol inhibits phosphorylation
and activation of insulin and IGF RTKs, as well as
down-stream signaling through IRS-I.94-98 In
addition, ethanol inhibits G-protein expression 99,
cyclic AMP-dependent signaling100, IRS-1-
associated PI3 kinase94,98,101,102, and second
messenger cascades such as calcium phospholipid-
dependent protein kinases (PKC).103 PI3 kinase is
important for signaling cell survival through
Akt/protein kinase B (PKB).104 Therefore,
inhibition of insulin signaling through PI3 kinase
could account for the increased apoptosis observed
in ethanol-exposed CNS cells. Apart from it’s
inhibitory effects on PI3K-Akt signaling, ethanol
promotes neuronal apoptosis by increasing
intracellular Ca++ release105, activating pro-death
signaling through Bax, Bad, GSK-3, and
caspases, or by inhibiting survival signaling
through Bcl-2.46,50,93,98,101,106,107 Since the signaling
networks corresponding to a number of trophic
factor receptors expressed in brain converge
downstream to modulate MAPK, PI3K-Akt, Bax,
Bad, Bcl-2, GSK-3, and caspases, ethanol’s
adverse effects on neuronal growth, survival,
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energy metabolism, and plasticity could be
mediated by inhibition of one or more different
receptors, including insulin and IGF-1. Studies
utilizing immature brains (mainly cerebella) and
cultured neuronal cells demonstrated that ethanol
inhibits insulin and IGF signaling at multiple
points within the cascade, beginning at the
receptor level and extending downstream through
pathways that regulate growth, survival, energy
metabolism, neuronal migration, and plasticity
(Figure 1).88,101,108-111 Ethanol’s inhibitory effects
on insulin/IGF stimulated neuronal survival
through blockage of downstream signaling
through PI3 kinase-Akt50,88,108,112 promote both
apoptosis88,106,108 and mitochondrial

dysfunction.50,84,85,108,112 At proximal points,
ethanol inhibition of insulin and IGF stimulated
survival signaling in brain is mediated at the
receptor level by two distinct mechanisms: 1)
reduced receptor binding and attendant activation
of receptor tyrosine kinases (RTK) and
corresponding downstream signaling through PI3
kinase-Akt40, and 2) increased activation of
phosphatases that negatively regulate RTK (PTP-
1b) and PI3 kinase (PTEN) and increase GSK-3
activity.56,98,102 Therefore, chronic ethanol
exposure causes insulin/IGF resistance in the
developing brain.

FIG. 1

Schematic of ethanol’s adverse effects on insulin/IGF signaling in the brain. Ethanol inhibits phosphorylation and activation of
insulin/IGF-1 receptor tyrosine kinases, as well as downstream mediators of neuronal growth, survival, plasticity, energy
metabolism, migration, and neurotransmitter function. In addition, ethanol stimulates GSK-3 activity through inhibition of PI3K
and activation of PTEN phosphatase.
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Ethanol Impairs Mitochondrial (Mt) Function
Ethanol toxicity perturbs the structural and
functional integrity of mitochondria in brain.50,112-118

Experimental chronic ethanol feeding results in
oxidative modification of MtDNA, manifested by
increased 8-hydroxydeoxyguanosine (8-OHdG)
incorporation, reduced MtDNA content, and
increased MtDNA single-strand breaks.84,112,119-122

Ethanol-induced MtDNA damage and impaired
Mt function increase cellular sensitivity to toxins,
and promote Mt permeability transition resulting
in necrosis or apoptosis.84,112,121,122 These adverse
effects of ethanol are likely mediated by increased
oxygen free radical production, lipid peroxidation,
and inhibition of Mt glutathione.116,123-126 Ethanol
metabolism by the microsomal monoxygenase
system, involving the alcohol-inducible cytochrome
P450 2E1 could contribute to oxidative cellular
injury through hydroxylethyl radical formation.127,128

Therefore, with regard to the CNS, we hypothesize
that ethanol-induced MtDNA damage and impaired
Mt function cause defects in energy metabolism and
oxidative phosphorylation, leading to reduced
neuronal viability, as well as compromised activities
required for synaptic plasticity and cognitive/motor
functions. In this regard, experimental results
demonstrated that chronic ethanol exposure during
development results in significantly reduced
expression of mitochondria-encoded cytochrome c
oxidase and ATP synthase, and increased expression
of NADPH oxidase.50,84,112 These effects lead to
reduced ATP production, and increased indices of
oxidative stress, including DNA damage and lipid
peroxidation in the developing brain.84,115,118 In
addition to impairing mitochondrial function,
chronic ethanol exposure increases cellular stress
by promoting free radical generation, endoplasmic
reticulum stress, and pro-apoptosis signaling, and
inhibiting survival pathways.50,54,92,112,115-117,125,129-132

The extent to which these mechanisms
mediate the teratogenic effects of prenatal alcohol
exposure has been demonstrated through the use
of anti-oxidants to minimize the adverse effects of
ethanol on brain development and
function.116,117,120,126,130,133

Downstream Consequences of Ethanol-Impaired
Insulin/IGF Signaling in the CNS
Neuronal integrity and function in the CNS are
highly influenced by insulin and IGF signaling.
For example, CNS neuronal survival, energy

metabolism, and plasticity, which are critical for
maintaining cognitive and motor functions, are
regulated through the actions of insulin and IGF
types 1 and 2.72 In this regard, insulin promotes
neurite outgrowth, protein synthesis, neuronal
cytoskeletal protein expression, and nascent
synapse formation.134,135 Insulin and IGF-1 regulate
the expression and phosphorylation of tau 136,137, an
important neuronal cytoskeletal protein, while
ethanol-impaired signaling through insulin or IGF-1
increases GSK-3β phosphorylation of tau, which is
pathologic and contributes to
neurodegeneration.138,139 Insulin and IGF-1 signaling
also regulates choline acetyltransferase
(ChAT)40,140,141, which is required for acetylcholine
biosynthesis.

Acetylcholine is a major neurotransmitter that
mediates cognitive-motor functions in the brain and
is deficient in brains of chronic ethanol-exposed
animal models.40,129,142-145 Although ethanol has
demonstrated inhibitory effects on many
neurotransmitter systems that modulate neuronal
activity and plasticity51-53,129,146-150, herein we
emphasize the adverse effects of ethanol on
cholinergic systems because of their widespread
distribution in the brain and their regulation by
insulin/IGF signaling.40,72,151

In aggregate, the data suggest that an
important mechanism by which ethanol impairs
neuronal survival, growth, neurotransmitter
function and plasticity is to inhibit the actions of
insulin and IGFs in the developing brain. On a
cellular basis, compromise of insulin/IGF signal
transduction networks leads to increased neuronal
apoptosis, mitochondrial dysfunction with deficits
in energy metabolism, oxidative stress, activation
of pro-death and pro-stress signaling, and deficits
in cholinergic function, all of which are features of
FASD.40,56,84 Therefore, it is likely that ethanol
inhibition of insulin and IGF signaling in the brain
significantly contributes to the cognitive and
motor impairments associated with FASD.
Together, these observations led us to the
hypothesis that insulin sensitizer agents such as
peroxisome-proliferator activated receptor
agonists that both enhance expression and function
of downstream targets of insulin/IGF signaling and
reduce cellular stress may have therapeutic
application in the context of FASD.
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Peroxisome-proliferator Activated Receptors
(PPAR)
PPAR-, , and , are nuclear hormone receptors
that bind to DNA and regulate gene transcription
in a broad range of cells and tissues.152-155 PPARs
are regulated by ligand binding and mediate their
effects by heterodimerizing with the retinoid x
receptor.152-155 PPARs have important roles in
regulating adipocyte growth and differentiation,
insulin responsiveness, and cardiovascular
function.152-155 For example, the enhanced insulin
sensitivity imparted by PPAR- agonists led to
their current use in the treatment of type 2 diabetes
mellitus.156 In addition, PPAR agonists can
modulate vascular function, resulting in
vasorelaxation and lowered blood pressure
through increased release of nitric oxide.157,158

Correspondingly, dominant-negative mutations in
the PPAR- gene result in early onset hypertension
and insulin resistance in humans.159 In addition to
their actions on endocrine signaling, PPARs help
protect cells from the adverse effects of lipid
peroxidation.154,155,160 Lipid peroxidation is a
recognized consequence of oxidative stress in the
brain, and increased levels of lipid peroxidation
products have been detected in brains with
neurodegeneration161-164, as well as in disease
states that cause mitochondrial dysfunction and
oxidative stress.84,165

Potential Therapeutic Role for PPAR Agonists
in FASD
To begin examining potential therapeutic effects
of PPAR agonists in relation to ethanol-induced
neuro-cognitive deficits, we generated an in vivo
model in which Long Evans rat pups were treated
with ethanol (3 mg/g) or vehicle by intraperitoneal
injection.166,167 (50 l) on postnatal days (P) 4, P6,
and P8. Rats in both groups were also treated with
vehicle or a PPAR-delta ( agonist (L-165,041; 2 
g/Kg) by i.p. injection on P5, P7, and P9. We
previously showed that L-165,041 treatment could
prevent insulin resistance-mediated
neurodegeneration141 and alcohol-induced liver
disease168 in vivo. On P16 the rats were evaluated
by rotarod tests of latency to fall using an
incremental fixed speed protocol (10 trials, 1-5
rpm)169, and data from Trials 7-10 (speed= 5 rpm)
were grouped and analyzed by two-way ANOVA
with the Bonferroni post-hoc test. From P27 to

P30, rats were evaluated by Morris Water Maze
testing as previously described.141 In brief, rats
were subjected to 3 daily trials in which the
latencies (seconds) required to locate and land on
the platform were recorded. On Day 1, the
platform was visible, but on Days 2-4, the
platform was submerged. On Days 3 and 4, the
water entry quadrants were randomized for each
trial. Morris water maze data were grouped and
analyzed by repeated measures mixed models
ANOVA (diet x treatment x trial day) using area-
under-the-curve (AUC) calculations corresponding
to performance over the 3 trials each day.141 For
both studies, 8 male rats were included in each
sub-group.

Rotarod performance differed significantly
among the groups as demonstrated by two-way
ANOVA (F=4.98, P=0.028 for interaction of
group by treatment; F=4.754, P=0.031 for
treatment effect; F=3.04, P=0.084 for group
effect). The Bonferroni post-hoc test demonstrated
that vehicle-treated ethanol exposed rats had a
significantly shorter mean latency to fall compared
with all other groups (P<0.05; Figure 2A). In
essence, L-165,041 treatment of ethanol-exposed
rats increased the mean latency to fall, resulting in
an overall performance that was similar to controls
treated with either vehicle or the PPAR- agonist.
With regard to the Morris water maze tests, all
groups exhibited gradual improvements in latency
required to locate the platform. The repeated
measures mixed model ANOVA test demonstrated
highly significant inter-group performance
differences due to treatment effects (F=20.83,
P<0.0001) and trial day/time (F=95.72, P<0.0001).
Furthermore, Bonferroni post-hoc tests revealed
significant differences in mean latency for locating
the platform between the Control+Vehicle and
Ethanol+Vehicle groups on Trial Days 1 (P<0.05)
and 4 (P<0.01), between the Control+PPAR- and
Ethanol+Vehicle groups on Trial Days 1
(P<0.001), 2 (P<0.001), 3 (P<0.05), and 4
(P<0.01), and between the Control+PPAR- and
Ethanol+PPAR- groups on Trial Days 1
(P<0.001), 2 (P<0.01), and 4 (P<0.01). In essence,
ethanol treatment significantly impaired
performance on the Morris water maze tests
relative to controls that were treated with either
vehicle or the PPAR- agonist. Importantly,
PPAR- agonist treatment improved Morris water
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maze performance in ethanol exposed rats such
that, on Trial Days 3 and 4 when the platform was
hidden and the entry points were randomized, their
mean latencies needed to locate the platform were
similar to controls, and significantly shorter than
in the ethanol+vehicle group (Figure 2B).

These findings suggest that early treatment
with a PPAR- agonist can reduce the severity or
prevent ethanol-mediated cognitive-motor deficits.
Moreover, these results support our main
hypothesis.

FIG. 2A & 2B

Therapeutic benefit of PPAR-delta ( treatment in an ethanol exposure model. Long Evans rat pups were treated with ethanol (3 
mg/g) or vehicle (Veh) by i.p. injection (50 l) on postnatal days (P) 4, 6, and 8. Rats were also treated with vehicle or L-165,041
(2 g/Kg), a PPAR- agonist by i.p. injection on P5, P7, and P9. Eight male rats were included in each sub-group. (A) On P16,
the rats were evaluated by rotarod testing of latency to fall using an incremental (1-5 rpm) fixed speed protocol. Rotarod data
from trials 7-10 (speed= 5 rpm) were grouped and analyzed by two-way ANOVA (F=4.98, P=0.028 for interaction of group by
treatment; F=4.754, P=0.031 for treatment effect; F=3.04, P=0.084 for group effect). The Bonferroni post-hoc test revealed that
the mean latency to fall was significantly shorter for the Ethanol (EtOH) +Veh group compared with all other groups (P<0.05).
(B) From P27 to P30, rats were evaluated by Morris Water Maze testing with 3 trials per day. On Day 1, the platform was visible,
but on Days 2-4, the platform was submerged. On Days 3 and 4, the water entry quadrant was randomized. The latency for
locating and landing on the platform was recorded. Data were analyzed using area-under-the-curve (AUC) calculations
corresponding to performance over the 3 trials each day. The graph depicts the mean ± S.E.M. of AUC latencies for each group
on each day of testing. Inter-group comparisons were made using repeated measured mixed model ANOVA (F=20.83, P<0.0001
for treatment; and F=95.72, P<0.0001 for Trial Day). Post-hoc Bonferroni tests demonstrated significant differences between
Control+Vehicle and Ethanol+Vehicle on Trial Days 1 (P<0.05) and 4 (P<0.01), between Control+ PPAR- and Ethanol+Vehicle
on Trial Days 1 (P<0.001), 2 (P<0.001), 3 (P<0.05), and 4 (P<0.01), and Control+PPAR- and Ethanol+PPAR- on Trial Days 1
(P<0.001), 2 (P<0.01), and 4 (P<0.01). (*P<0.05; **P<0.01; ***P<0.001)
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FIG. 3

Dual mechanisms hypothesis of alcohol-mediated CNS teratogenesis. Chronic gestational exposure to ethanol causes oxidative
stress and insulin/IGF resistance in the brain. The oxidative stress is caused by mitochondrial dysfunction, which promotes DNA
damage, lipid peroxidation, pro-inflammatory cytokine activation, and apoptosis. Insulin/IGF resistance in brain impairs gene
expression required for neuronal genesis, myelin maintenance, cell migration, neurotransmitter function, and energy metabolism.
Oxidative stress and pro-inflammatory cytokine activation exacerbate the adverse effects of insulin/IGF resistance. Together,
these abnormalities lead to deficits in neuronal plasticity, learning and memory.

HYPOTHESIS

The experimental evidence to date suggests a dual
mechanism underlies ethanol-mediated CNS
neuronal death during development, namely: 1)
impaired survival signaling through brain insulin
(IRβ) and probably also IGF-1 receptors, as 
evidenced by reduced levels of tyrosine
phosphorylated (PY) IRβ, IRβ tyrosine kinase 
(TK) activity, PY-insulin receptor substrate-1
(IRS-1), and PI3 kinase-Akt; and 2) increased
oxidative stress that is principally mediated by the
combined effects of mitochondrial dysfunction
(Figure 3), increased generation of reactive

oxygen species (ROS), lipid peroxidation, and DNA
damage. Our working hypothesis is that chronic
gestational exposure to ethanol produces long-lasting
and progressive abnormalities in CNS structure and
function due to persistent impairments in insulin
signaling caused by CNS insulin resistance. We
propose that by circumventing upstream problems in
the insulin signaling cascade, i.e. bypassing receptor
functions, activating downstream pathways, and
altering gene expression, we will be able to
therapeutically rescue CNS neuronal cells from
ethanol-mediated injury/degeneration.
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