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ABSTRACT

Adverse drug reactions (ADRs) rank as one of the top ten leading causes of death and illness in the
developed world. In cancer therapy, more patients are surviving cancer than ever before, but 40% of
cancer survivors suffer life-threatening or permanently disabling severe ADRs and are left with long-term
sequelae. ADRs are often more frequent and more severe in children, and the consequences for children
who experience a severe ADR can be catastrophic. Pharmacogenomics has the potential to improve the
safety of these drugs. This review highlights severe ADRs that can occur in cancer therapy that are more
frequent and more severe in children, and the pharmacogenomics research that aims to understand,
predict, and ultimately prevent these severe reactions.
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Severe Adverse Drug Reactions in Children
with Cancer

he paradox of modern drug development is
that clinical trials provide evidence about

efficacy and preliminary safety at standardized
doses in large populations, while physicians treat
individual patients who often differ in their
response to drug therapies. Some patients will
develop a severe adverse drug reaction (ADR), a
potentially life-threatening or permanently
disabling effect that is caused directly by a
medication, even though the medication is
administered at a normal recommended dose. The
debilitating and lethal consequences of severe
ADRs are a major problem in modern medicine.
In the USA and UK, ADRs account for an
alarming 7% of all hospital admissions.1,2 ADRs
are ranked as the 5th leading cause of death in the
USA, and cause over 2 million severe reactions
and claim 100,000-218,000 lives annually, and
cost over $100 billion dollars each year.2-5

For children with cancer, ADRs are a very
serious problem. More pediatric cancer patients
are surviving cancer than ever before, with 5 year
survival rates greater than 82%.6 However, this
has led to a striking increase in the long-term
burden of adverse reactions to cancer therapy.
Nearly three quarters of cancer survivors suffer an
ADR related to their cancer therapy.7 ADRs are
often more frequent and more severe in children.
Of all hospital admissions for pediatric cancer
patients, 22% are caused by ADRs.8 The
consequences for children who experience a
severe ADR can be catastrophic. While some
ADRs result in treatment cessation or reduced
adherence to needed medications, 40% of cancer
survivors have suffered a severe life-threatening
or permanently disabling ADR, and are left with
long-term sequelae.7 This review focuses on
severe ADRs in children being treated for cancer
and a review of the research to identify genetic
susceptibility factors to these severe reactions.

T
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Pharmacogenomics to Reduce the Occurrence
of Severe ADRs
Although many factors influence the effect of
medications (i.e. age, organ function, and drug
interactions), genetic factors often account for a
significant proportion of drug response
variability.5,9-12 In many cases, a prime
determinant of drug toxicity is an agent’s
concentration at the drug target site or in plasma.
The effective concentration of a drug depends on
its absorption, distribution, metabolism and
elimination. Genetic variations in drug-
metabolizing enzymes and drug transport systems
may lead to large differences in drug exposure
between individuals resulting in toxicity or
ineffective drug treatment in significant numbers
of patients.13,14

The goal of pharmacogenomics is to avoid
adverse drug reactions and maximize drug
efficacy for individual patients. Pharmacogenomic
studies are performed in populations of subjects
treated with a specific drug to identify genetic
variants that predict drug response or the
occurrence of adverse reactions. Once identified
and validated, a genetic variant can be
incorporated into a diagnostic test that will predict
a patient’s response to the specific drug.
Pharmacogenomics may improve the benefits and
reduce the risks of medications by determining
which patients are most likely to respond
favourably to a specific medication and by
predicting in whom there is a greater risk for an
adverse drug reaction.15

Unlike other factors influencing drug response,
inherited determinants remain stable throughout a
person’s lifetime and provide an unprecedented
means to predict and prevent serious ADRs. The
culmination of landmark scientific advances such
as sequencing the human genome, the
International HapMap project, and new
technologies for accurate and efficient high-
throughput genotyping and sequencing have
created an opportunity to make DNA-based
testing for drug safety a reality. Examples of
diagnostic tests to guide pharmacotherapy in adult
cancer patients include tests for UGT1A1 variants
for life-threatening irinotecan-induced
toxicity,16,17 TPMT variants to prevent potentially
lethal azathioprine-myelosuppression,18,19

CYP2D6 for tamoxifen efficacy,20,21 and CYP2C9

and VKORC1 variants to guide warfarin
dosing.22,23 These tests are recommended by the
FDA, and “point of care” testing for these markers
may soon be widely available once cost-effective
test methodology is established.

Thiopurine-induced Myelotoxicity
In children with acute lymphoblastic leukemia
(ALL), the thiopurines mercaptopurine (6-MP)
and thioguanine (6-TG) are frequently used for
treatment. Thiopurines are normally administered
as a daily oral dose for up to two and a half years
of maintenance therapy. However, some patients
suffer hematopoietic toxicity to thiopurines
causing severe myelosuppression. Consequently
patients are routinely monitored for blood cell
counts.

The pharmacogenetics of thiopurine
myelotoxicity are partly explained by genetic
variants in the thiopurine S-methyltransferase
(TPMT) gene. Thiopurine drugs are inactive
prodrugs that undergo a multistep activation into
thioguanine nucleotides (TGN). The TGN exert
their cytotoxicity through incorporation into DNA
and RNA and inhibition of de novo purine
synthesis.18,24-26 The cellular accumulation of
active TGN is inversely related to TPMT activity
levels, because TPMT inactivates intermediate
thiopurine metabolites, thereby reducing the levels
of active TGN. However, approximately 10% of
people have reduced TPMT activity levels, and
0.3% of people have no detectable TPMT enzyme
activity, because they inherit one or two TPMT
genetic variants that eliminate TPMT enzyme
activity.18,25-27 More than 20 variant alleles of
TPMT with decreased TPMT activity have now
been identified,28 and more than 95% of defective
TPMT activity is due to the most frequent mutant
alleles, TPMT*2 and TPMT*3A-D. TPMT-
deficient patients accumulate higher
concentrations of active TGN and suffer severe,
and in some cases lethal, myelotoxicity, and
frequently discontinue therapy unless the
thiopurine dose is reduced 10-15-fold.29-31

In 2004, the FDA revised the thiopurine drug
label to include information about the increased
risk of severe adverse events caused by TPMT
genetic variants.32 This label change also applies
to children because the pharmacogenetics of
thiopurine myelotoxicity is one of the few severe
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ADRs in oncology that has been directly studied
in children.33-35

It is clear that TPMT variants alone do not
account for all thiopurine toxicity. In fact, TPMT
deficiency explains only a portion of
myelotoxicity ADRs,36 and is not predictive of
other thiopurine ADRs including hepatotoxicity,
pancreatitis, flu-like symptoms, nausea, vomiting,
and rash.37 Multiple enzymes are involved in the
metabolism of thiopurine drugs to active or
inactive forms, and functional genetic variants in
this pathway could also contribute to thiopurine
toxicity. Inosine triphosphate pyrophosphatase
(ITPA) is one gene that has been investigated in
the thiopurine pathway. However, in a meta-
analysis of patients with inflammatory bowel
disease, a variant in ITPA (Pro32Thr, rs1127354)
that abolishes ITPA enzymatic activity was found
not to be associated with thiopurine toxicity.38 In a
more recent study of children with ALL where
TPMT genotype was also taken into account and
used to adjust patient thiopurine doses, the ITPA
variant was significantly associated with severe
neutropenia (odds ratio (OR) 2.98, P-value
0.018).36 As the genetic factors influencing
thiopurine toxicity are further elucidated, new
diagnostic tests will likely be developed that
evaluate the cumulative effect of multiple genetic
variants on thiopurine use on a child-by-child
basis.37

Vincristine-induced Peripheral Neuropathy
Vincristine is considered the backbone
chemotherapeutic agent for many blood and solid
malignancies. Vincristine is a natural alkaloid
isolated that interferes with the assembly of
microtubule structures to effectively kill rapidly
dividing cells. However, peripheral neuropathy is
a frequently dose-limiting serious ADR to
vincristine which occurs in 4% to 28% of
children.39

The symptoms of neuropathy include
paresthesias, burning and “shock-like” sensations,
stabbing pain, ataxia, muscle weakness,
orthostatic hypotension, bowel dysmotility, and
vocal cord paralysis.40 In some cases, neuropathy
is responsible for altering dose regimens or
stopping vincristine anti-tumor therapy.
Vincristine neuropathy frequently causes a
significant impairment in day-to-day activities,

and may also lead to anxiety and depression, and
in severe cases can be lethal.41-43 Severe acute
reactions such as vocal cord paralysis can require
emergency intubation and the need for long term
tracheostomy with prolonged mechanical
ventilation.44 There are currently no effective
strategies to prevent vincristine-induced peripheral
neuropathy other than the treatment of symptomatic
pain with high dose opioids.45-47

The mechanism of vincristine peripheral
neuropathy has not been fully elucidated.
Vincristine peripheral neuropathy appears to be a
dose-dependent reaction with peak plasma
vincristine concentrations correlating with
peripheral neuropathy.47-50 However, some
patients are susceptible at any dose, and there is a
dramatic 19-fold variability in peak plasma
vincristine levels in children as well as large inter-
racial differences in vincristine toxicity and
response rates. This suggests that genetic factors
may play an important role in individual
susceptibility to vincristine-induced peripheral
neuropathy.51-55

The biotransformation of vincristine is
primarily catalyzed by CYP3A5, and to a lesser
extent by CYP3A4.56 CYP3A5 is highly
polymorphic and is not expressed in 20% of
Africans and 80% of Caucasians.57 Single
nucleotide polymorphisms (SNPs) in CYP3A5
(CYP3A5*3 and CYP3A5*6) cause alternative
splicing and protein truncation, resulting in the
absence of CYP3A5 activity.58 CYP3A5 non-
expressers have a 5-fold reduced clearance of
vincristine which could significantly increase the
risk of vincristine toxicity.57 In line with this, a
study investigating the effect of race on
vincristine neurotoxicity found that African-
Americans have a more than 7-fold lower rate of
neurotoxicity compared to Caucasians.59

Furthermore, a recent study looking at drug
toxicity in pediatric ALL patients receiving
vincristine found that variants in CYP3A5 (*3)
and the vitamin D receptor (VDR), which
regulates CYP3A4, CYP3A5, and ABCB1, are
associated with peripheral neuropathy.60

Vincristine is exported from cells by the
ABCC1 transporter.56 Expression of ABCC1 in
cancer cells has been associated with reduced
accumulation and in vitro resistance to vincristine.
Additionally, P-glycoprotein (ABCB1) may also
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be involved in the vincristine export from cells.61

Vincristine neuropathy may be caused by
demyelination, which occurs in cell lines and
animals exposed to vincristine.62 There is a
significantly greater risk of severe vincristine
toxicity in patients with pre-existing peripheral
neuropathy or with the demyelinating form of
Charcot Marie Tooth disease (type 1A), an
autosomal dominant disease caused by a
duplication of the peripheral myelin protein 22
(PMP22).63 On the other hand, some genetic
variants in the gene encoding gap junction protein
beta 1 (GJB1) may improve the tolerance of
vincristine without adverse effects.39,64

Thus far, no genetic variants have been
conclusively validated to be involved in
vincristine-induced neuropathy and no diagnostic
tests have been developed.65 In the future, a
pharmacogenetic test to identify those patients at
highest risk could significantly improve treatment
outcomes for children who receive vincristine.

Cisplatin-induced Ototoxicity, Neurotoxicity,
and Nephrotoxicity
Cisplatin is a highly effective chemotherapeutic
that binds and alkylates DNA.66 Cisplatin is
widely used throughout the world; however, the
use of cisplatin is significantly restricted by the
high incidence of severe toxicities, including
irreversible hearing loss (ototoxicity), peripheral
neurotoxicity, and nephrotoxicity.67-70

Nephrotoxicity affects up to 20% of patients
receiving cisplatin, culminating in the loss of renal
function and triggering acute renal failure.69 Acute
and chronic neurotoxicity affects 15-60% of
patients, causing paresthesias, areflexia, loss of
proprioception and vibratory sensation, and loss
of motor function.68,70 Cisplatin has also been
described as one of the most ototoxic drugs in
clinical use, causing severe, permanent, bilateral
hearing loss in 41-61% of children.71-76 and 10-
25% of adults.75,77-79 Even mild losses of high-
frequency hearing considerably increase a child’s
risk of learning difficulties and social-emotional
problems.74,80 Adverse reactions to cisplatin in
children frequently lead to dose reduction and
premature termination of cisplatin treatment,
which may affect overall patient survival.81

The significant inter-individual variation in
cisplatin toxicity is suggestive of genetic variation

in drug metabolizing enzymes that render them
especially susceptible to cisplatin adverse
reactions.82 Oxidative stress has been implicated
in cisplatin ototoxicity83 and the glutathione S-
transferase (GST) gene family encodes
isoenzymes that appear to be critical in protection
against oxidative stress. Certain GST genes have
null alleles (GSTM1 and GSTT1), encode low-
activity variants (GSTP1), or are associated with
variable inducibility (GSTM3). One study
identified a variant GSTM3*B, that protects
against cisplatin-ototoxicity (allelic OR 8.8, P =
0.02), although authors noted that the frequency
of the GSTM3*B polymorphism was too low to be
a major factor regarding the susceptibility to
cisplatin-induced hearing loss.84 The authors did
not find associations for variants in GSTM1,
GSTP1, GSTT1, and GSTZ1.84 More recently, in a
larger study of 173 patients, specific genotypes of
GSTP1 and GSTM1 were associated with
cisplatin-ototoxicity.85 The GSTP1 “G/G”,
(Val/Val) form of the Ile105Val polymorphism
(rs1695) was protective against hearing loss (OR
4.2, P < 0.001), while the presence of the GSTM1
gene was associated with more severe hearing loss
(OR 2.3, P = 0.02). The protective effects of
GSTP1 were unexpected, because the 105Val-
GSTP1 variant is normally less effective in
detoxifying cytotoxic drugs, however, the 105Val-
GSTP1 variant was found to specifically protect
against cisplatin cytotoxicity in E.Coli compared
to the 105Ile-GSTP1 variant.86

Aminoglycosides exhibit similar
nephrotoxicity and ototoxicity as cisplatin, and
since deficiency of megalin was found to protect
from renal aminoglycoside accumulation,87

variants in the megalin gene were examined for
association with cisplatin ototoxicity. In a study of
50 patients, the megalin Glu4094Lys variant
(rs2075252) was associated with hearing
impairment after cisplatin therapy (allelic OR
3.45, P = 0.02). The authors noted, however, that
this finding requires further validation.

The impact of deafness-related genes in cisplatin-
ototoxicity was recently explored in a pilot study of
11 survivors of childhood cancer who developed
severe ototoxicity after cumulative cisplatin doses of
less than 400 mg/m2. However, no associations were
found with the three mitochondrial DNA mutations
known to be associated with aminoglycoside-
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ototoxicity and high-frequency sensorineural hearing
loss (A1555C, A3243G and A7445G), nor in the
SLC26A4 or GJB2 (connexin 26) genes, which
together are responsible for more than 30% of
childhood congenital deafness.88,89

Variations in the ERCC2 gene, which is
involved in DNA damage repair, have been
reported to be associated with tumour response to
cisplatin. Eighty percent of the patients with the
ERCC2 Lys751Gln “TT” genotype (Lys/Lys)
variant exhibited a greater response to cisplatin
(characterized as more than 90% tumour
necrosis), compared to a 45% response rate in
patients that carried at least one “G” (Gln) allele
(OR = 4.9, multiple test corrected P-
value=0.047).90 Similarly, patients with the “TT”
genotype had a longer event free survival (240
months) compared to patients that carried at least
one “G” (Gln) allele (184 months) (hazard
ratio=5.8, P-value=0.021).90

As an alternative to using patients with
cisplatin-ototoxicity, Dolan et al. used EBV-
transformed B-lymphoblastoid cell lines from
Centre d’Etude du Polymorphisme Humain
(CEPH) pedigrees to show that sensitivity to
cisplatin cytotoxicity is under significant genetic
influence, and identified the strongest genetic
signal near the ephrin receptor A2 (EPHA2) gene
on chromosome 1.91 The function of EPHA2 is not
well understood, but likely has a role in
developmental events in the nervous system.
Subsequent analyses of HapMap sample trios and
27 extended CEPH pedigrees that looked at
cisplatin-induced inhibition of cell growth and
incorporated RNA expression data to refine the
analysis to functional variants, revealed new
associations, including 10 SNPs located in five
genes (CDH13, ZNF659, LRRC3B, PITX2, and
LARP2), and 10 intergenic SNPs.92,93 The authors
acknowledged that this in vitro system has clear
limitations, such as the single lymphoblast cell-
type, the changes induced by EBV transformation,
and limited in vivo applicability in humans, but
this approach does provide a hypothesis
generating system to identify potential targets to
validate in larger association studies of patients
that receive cisplatin.

We recently completed a Canada-wide study
which identified genetic variants that cause
cisplatin deafness in children.94 In a B.C.

Children’s Hospital cohort of patients, we
identified functional genetic variants in thiopurine
S-methyltransferase (TPMT) and catechol O-
methyltransferase (COMT). In a second Canada-
wide replication study of 12 pediatric tertiary care
hospitals, we confirmed the association of these
variants with cisplatin-induced hearing loss (OR =
17.0, P-value 0.00022 and OR = 5.5, P-value =
0.00018 for TPMT and COMT respectively).
Carrying these TPMT and/or COMT alleles
significantly increases the risk of developing
cisplatin-induced hearing loss.

Cisplatin ototoxicity is particularly severe and
frequent in children, and although a definitive
pharmacogenetic test is not currently available,
these studies suggest that a test could be
developed to assess a patient’s genetic risk of
cisplatin-induced toxicities in the future. The
availability of a test to assess a patient’s risk
profile would open up opportunities for increased
surveillance, alternate chemotherapies, or the use
of currently experimental chemo-protectants and
other preventative strategies in those patients at
high risk.

Anthracycline Cardiotoxicity
Anthracyclines, such as doxorubicin and
daunorubicin, are commonly used to treat
childhood haematological malignancies such as
ALL and lymphomas, as well as various solid
tumors, such as osteosarcoma, Wilms’ tumour,
and hepatoblastoma. Nearly 60% of all childhood
cancer patients receive anthracyclines95 and their
high effectiveness has contributed significantly to
increases in childhood cancer survival rates.
However, even though some patients can safely
tolerate very high doses of anthracyclines (>1000
mg/m2), up to 16% of patients will develop severe
cardiotoxicity leading to congestive heart failure,
some even at low doses (<300 mg/m2).96,97

Lipshultz et al. found that close to 60% of patients
that received anthracyclines had some form of left
ventricular structure or function abnormalities
measured by echocardiogram.98 At normal
anthracycline doses nearly 6% of patients will
eventually develop congestive heart failure, and
almost 10% when treated with doses of 300
mg/m2 or more.95 This may lead to the
requirement of heart transplantation or life-long
treatment for chronic cardiac failure, with
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mortality rates greater than 50%.99 In addition,
there is an increased risk in children less than 15
years, and an even higher risk in children less than
4 years of age.97,100 These devastating effects can
develop shortly after drug treatment, and may also
occur many years after the completion of
chemotherapy.95

The observed heterogeneity in anthracycline
cardiotoxicity (ACT) may be explained by genetic
susceptibility and gene-environment interactions.
Elucidation of these factors could lead to more
informed and patient-specific dosage
individualization in the future. A uniform
lowering of dose would reduce the risk of
cardiotoxicity, but would be more than offset by
increased cancer-related morbidity.

Even though anthracyclines have been
extensively studied, controversy about the exact
mechanisms of cardiac toxicity and the anti-
cancer mechanisms remain. It is generally thought
that anthracycline toxicity is caused by a
combination of the generation of reactive oxygen
species and the direct toxic effects of certain
metabolites.101 Many enzymes are involved in the
metabolism and transportation of anthracyclines.
Variations in enzyme efficiency or increased
susceptibility to toxic metabolites due to genetic
factors can be expected to increase the risk of
cardiotoxicity. Apart from the wide variation in
human sensitivity to the drug, there are also
several in vitro and in vivo studies supporting this
hypothesis. For example, overexpression of the
multiple drug resistance gene (Mdr1/Abcb1) in
mice protects them from ACT,102 while knockout
of the gene leads to increased accumulation of
doxorubicin in the heart.103 Overexpression of
important anti-oxidant genes also protects mice
from ACT,104,105 while deficiency or
overexpression of carbonyl reductase 1, a major
doxorubicin-metabolizing enzyme, protects or
enhances cardiotoxicity, respectively,106,107 More
recently, Huang et al. applied a similar unbiased
genome-wide approach as earlier described for
cisplatin, by looking at drug cytotoxicity in
HapMap cell lines and showed a significant
association between the expression of CYP1B1
and daunorubicin cytotoxicity.108

In addition to these in vitro and in vivo models,
several studies in humans have reported the
association of genetic variants with anthracycline

cardiotoxicity.109-112 Wojnowski et al. studied a
subset of adult patients that had been treated for
NHL. A total of 87 cases (44 acute and 43 chronic
toxicity) and 363 well-matched controls were
genotyped for 206 SNPs in 82 candidate genes
with conceivable relevance to ACT. Acute
toxicity was defined as arrhythmia, myocarditis-
pericarditis, and acute heart failure during the first
3 cycles, and chronic toxicity was defined as heart
failure after the third cycle or a reduction of the
ejection fraction <50% or the fractional shortening
<25%. They found 5 significant associations with
polymorphisms in 3 subunits of the NAD(P)H
oxidase (NCF4, RAC2 and CYBA) involved in
superoxide generation and in two doxorubicin
transporters (MRP1/ABCC1 and
MRP2/ABCC2).109 Only NCF4 seemed to be
specifically associated with chronic toxicity, while
the others were associated with acute toxicity, and
all variants were significant when acute and
chronic cases were combined. To further verify
the involvement of NAD(P)H oxidase, mice
deficient for the gp91 subunit of NAD(P)H
oxidase resulting in reduced oxidase activity were
treated with doxorubicin and were shown to be
protected from ACT. The association of NCF4
(rs1883112) with cardiac toxicity was recently
replicated in another study of 106 adults who were
also treated for NHL.112 In this study, 19 SNPs in
15 genes were tested for association with event-
free survival as well as several toxicities; however
the exact definition of cardiotoxicity was not
provided. Only NCF4 rs1883112 remained
significantly associated with cardiotoxicity in a
multivariate analysis.112 Whether the association
of NCF4 and ACT is specific to adults treated for
NHL requires further study.

The first pediatric study used a nested case-
control study design within the Childhood Cancer
Survivor Study cohort.110 Using questionnaires
and interviews, study participants were
ascertained for congestive heart failure (CHF).
Thirty cases with CHF were matched with 115
controls and genotyped for the NQO1*2
(rs1800566) and CBR3 V244M polymorphism
(rs1056892). No association was found between
the NQO1*2 variant and the risk of CHF. There
was a trend toward association with the CBR3
V244M polymorphism (OR=8.16, P=0.056 for
G/G vs. A/A and OR=5.44, P=0.092 for G/A vs.
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A/A) in multivariate analyses.110 However, the
authors state that larger follow-up studies are
warranted. Another pediatric study focused on
several genes involved in ROS metabolism.111

Seventy-six patients treated for ALL during
childhood, were evaluated for late cardiotoxicity
defined by any abnormality found by
echocardiography or electrocardiogram tracing.
The study found an intronic variant (rs10836235)
in catalase (CAT) to be associated with toxicity.111

In contrast, a known functional variant in the
promoter region of CAT was not significantly
associated,111 so these findings need further
validation.

Warfarin-induced Bleeding and Thrombosis
Many pediatric patients are placed on warfarin for
treatment of thrombotic events such as deep
venous thrombosis or pulmonary emboli, or for
the prevention of clots in cardiac patients with
mechanical valves. Pediatric patients with cancer
are at increased risk of developing deep venous
thromboses at some point between diagnosis until
the end of therapy causing significant morbidity
and mortality.113-115 Treatment of these blood clots
with warfarin puts these children at an even higher
risk for adverse events.116 The stable therapeutic
dose of warfarin for a pediatric patient is initially
dosed based on the patient's weight with frequent
monitoring of the International Normalized Ratio
(INR), the blood test for warfarin, which needs to
be performed to evaluate if warfarin is within its
narrow therapeutic window. Typically, the dose is
consistently adjusted up or down over the first few
weeks based on the INR level.117 Over or under-
dosing of warfarin during this time can lead to
serious risks of excessive bleeding including
intracranial haemorrhage and the formation of
additional blood clots.

Genetic polymorphisms in the cytochrome
P450 (CYP) 2C9 gene and the vitamin K epoxide
reductase complex 1 (VKORC1) significantly
modulate adult patient responses to warfarin.
CYP2C9 normally inactivates warfarin, and up to
20% of the population are carriers of low activity
variants (*2 or *3). These patients require
significantly lower doses of warfarin and are at
higher risk for serious and life-threatening
bleeding events, especially when dosed according
to older, more traditional, algorithms.118

VKORC1 is a subunit of the enzyme that is
repressed by warfarin to block blood coagulation.
There are two conserved haplotypes of the
VKORC1 gene, defined by the -1639G/A
variant.119 “A” haplotype carriers require lower
doses of warfarin while “G” haplotype carriers
require higher doses.119 These findings have been
replicated, showing the clear effects of CYP2C9
and VKORC1.120 A recent genome-wide
association study revealed that VKORC1,
CYP2C9*2 and CYP2C9*3 account for nearly all
of the genetic variation of warfarin dose, and
identified one additional genetic variant in
CYP4F2, Val433Met, which contributed to only
1.5% of overall warfarin dose requirements.121

A warfarin dosing algorithm for adult patients
was recently validated by the International
Warfarin Consortium22 and the FDA modified the
warfarin drug label to include pharmacogenetic
information. The FDA has now approved four
genetic tests for warfarin, including rapid tests
that can provide results in less than 1 hour.23

Preliminary reports have estimated that warfarin
pharmacogenetic testing could prevent 17,000
strokes and 85,000 serious bleeding incidents and
could save $1.1 billion in U.S. health care
spending each year.122

In children, however, the coagulation system
differs significantly from adults. In fact, the
pediatric coagulation system is continually
developing and changing over time and does not
reach adult function until late adolescence.123 It is
not known if these genetic polymorphisms will
have the same effect in children and if the
warfarin pharmacogenetic dosing algorithm for
adults will be applicable to pediatric patients.124 In
fact, the first small paediatric study looking at
vitamin K agonists, including warfarin, revealed
that age was the most important factor
determining dose, accounting for 28% of variation
in warfarin dose requirements, while VKORC1
and CYP2C9 genotypes had only minor roles
(3.7% and 0.4% respectively) compared to
approximately 40% and 8% in adult patients.125

Methotrexate-induced Nausea and Vomiting
Methotrexate disrupts endogenous cellular folate
metabolism by inhibiting dihydrofolate reductase
(DHFR) and blocking the metabolism of folic
acid, thereby killing rapidly dividing cells by
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blocking purine synthesis and the synthesis of
DNA and RNA. High-dose methotrexate (dose 5-
12 g/m2) is increasingly used for the treatment of
children with ALL, osteosarcoma, non-Hodgkin
lymphoma (NHL), and brain tumours.126

Methotrexate, however, may cause severe nausea,
vomiting, leukencephalopathy, hepatitis and
mucositis.

Cellular entry of methotrexate is mediated by
SLC19A1. A common G/A non-synonymous
variant in SLC19A1 (His27Arg, rs1051266) is
associated with a worse prognosis, as measured by
event-free survival, for “A” carriers than “GG”
carrier patients, and “AA” carrier patients have
higher plasma levels of methotrexate.127 Serious
vomiting episodes, as defined by the presence of
grade 2 symptoms or worse, occurred more
frequently in individuals with an increasing
number of “G” alleles.128

Methotrexate-induced Leukoencephalopathy
Some patients that receive methotrexate also
develop severe leukoencephalopathy, defined as
diffuse white matter injury, specifically not
associated with focal necrosis. Acute and sub-
acute toxic neurological effects have been
observed after low or high doses of intrathecal or
parenteral methotrexate administrations.129 The
morbidity of methotrexate-induced
leukoencephalopathy ranges from mild to severe
disseminated necrotizing leukoencephalopathy with
severe neurological deficits.130 The prevalence of
methotrexate-induced leukoencephalopathy varies
from 0% to 9% during therapy, and 16% to 69%
after therapy.131-133 Leukoencephalopathy can
occur acutely or as a chronic toxic effect,
especially if high-doses, multiple treatments or
radiotherapy were also administered.130 There is a
greater risk of methotrexate-induced
leukoencephalopathy in children under 5 years of
age, and in patients who also receive cranial
radiation therapy.133

Thus far, there are no validated biological
predictors of methotrexate-induced
leukoencephalopathy.134 Several mechanisms have
been proposed for the development of
methotrexate-induced leukoencephalopathy
including inhibition of CNS myelin turnover;
inhibition of DHFR leading to deficiency of S-
Adenosyl Methionine (SAM) and thus causing

demyelination; inhibition of DHFR leading to
folate and carbamin deficiencies, thus to
hyperhomocystinaemia which is directly toxic to
vascular endothelium; effects on CNS single-
carbon metabolism causing demyelination;
elevation of adenosine concentration in CSF
which interferes with neurotransmitter synthesis;
and impaired methionine metabolism influence
methotrexate effects.131,135 Genetic variants that
disrupt methionine metabolism, and thus causing
disturbances in the folate status, may enhance
susceptibility to methotrexate-induced
neurotoxicity. In a study of 68 patients with
primary CNS lymphoma, the occurrence of
methotrexate-induced white matter changes was
significantly predicted by the presence of the low
activity “Val/Val” / “T/T” genotype of MTHFR
Ala222Val (677C>T, rs1801133), the “AA”
genotype of MTHFR 1298A>C variant, and the
“GG” genotype of transcobalamin 2 (TCN2)
776C>G variant, as well as male gender.135 After
analysis of a pediatric case report, Müller et al.
hypothesized that methotrexate toxicity could be
explained by the association of homozygosity of
the MTHFR Ala222Val variant and a prolonged
methotrexate exposure caused by the delayed
methotrexate clearance.136 In a case of severe,
acute methotrexate-induced encephalopathy,
homozygosity for a rare missense variant in
methionine synthase (MTR) 2756A>G (D919G)
was observed.137

ABC superfamily proteins ABCB1, ABCC1-3,
and ABCG2 are components of the cellular efflux
system for methotrexate and may contribute to
methotrexate toxicity.138,139 In children with ALL,
encephalopathy episodes were more frequent
among children who have the ABCB1 3435 “TT”
genotype than in the 3435 “CC/CT” group.129

Finally, polymorphisms in SLC19A1, the
methotrexate transporter, did not show an
association with methotrexate-induced
leukoencephalopathy.128

Methotrexate-induced Mucositis
Mucositis is a dose-limiting toxicity of
methotrexate that is more frequent in young
children.140 Methotrexate mucositis is
characterized by painful inflammation and
ulceration of the mucous membranes lining the
gastrointestinal tract that causes a significantly
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reduced quality of life in 5-40% of patients
receiving standard doses of methotrexate.141-143

Mucositis increases the risk of potentially life-
threatening systemic infection, as well as oral
bleeding, abdominal pain, vomiting, diarrhoea,
and dysphagia that limits the ability to take
nutrition, hydration or medication by mouth.142

The presence of any mucositis during a cycle of
chemotherapy has been shown to significantly
increase the frequency of infections and bleeding,
and increase the likelihood of subsequent
chemotherapy dose reductions, thereby reducing
the efficacy of the cancer therapy.141 In a study of
599 oncology patients, chemotherapy dose
reductions occurred twice as frequently after
patients developed mucositis.140

The mechanism of methotrexate-induced
mucositis is not yet fully understood. The gut is
especially sensitive to methotrexate because
methotrexate blocks DNA synthesis causing cell
cycle arrest and apoptosis in highly proliferative
cells, such as the tumour cells and also cells in the
gut.144 There are several proposed mechanisms of
methotrexate-mucositis, including alterations in
glutathione metabolism, variations in
gastrointestinal microflora,145 and variable
inflammatory responses by TNF-a, IL-2, IL-6, and
CRP.142,143 Genetic variants in these and probably
other pro-inflammatory cytokines may play a role
in methotrexate-toxicity and need further
investigation.

The role of genetic factors involved in
methotrexate metabolism and the risk of
methotrexate mucositis is not well understood. As
with methotrexate-induced leukoencephalopathy,
the MTHFR gene has also been associated with
methotrexate mucositis. Patients with a low
activity “Val” allele of the MTHFR Ala222Val
variant have a 20-36% higher “Oral Mucositis
Index”.146 However, in some patient populations
that have a higher frequency of this MTHFR
variant, such as in Mexico (80% “Val” carriers vs.
42% in Caucasians), this variant was not
associated with mucositis.147 In this study, the
authors postulated that the folate-rich diet of
Mexican patients may have been an attenuating
factor for methotrexate toxicity.

Glucocorticoid-induced Osteotoxicity
Glucocorticoids are frequently used for the

treatment of ALL and lymphomas. The improved
long-term survival pediatric cancer patients
experience today has increased the risk of serious
long-term effects on bone metabolism due to the
adverse effects of glucocorticoids.148

Glucocorticoid therapy is the most common cause
of secondary iatrogenic osteoporosis and increases
the risk of fractures, independent of age, sex and
other known risk factors of fractures.149

Glucocorticoid therapy longer than 3 months is
associated with rapid bone loss, which varies with
the dose and duration of the treatment.150

Children are more susceptible to
glucocorticoid adverse effects than adults, and
children are especially susceptible to adverse
effects of glucocorticoids in the formation of
growing bones.151 However, the precise
mechanisms of glucocorticoid osteotoxicity are
unknown. Several genes involved in
glucocorticoid metabolism could be promising
targets for the identification of genetic variants
that increase the risk of glucocorticoid-induced
osteotoxicity. The corticosteroid binding globulin
(SERPINA6) is responsible for glucocorticoid
distribution. When glucocorticoids bind this
protein, they are not available for metabolism.152

The presence of polymorphisms in the SERPINA6
gene may cause altered glucocorticoid binding
and distribution, which could influence toxicity.

The development of glucocorticoid resistance
has a significant impact for the risk of
osteotoxicity because it frequently leads to
increased glucocorticoid doses. The
overexpression and several rare mutations in the
glucocorticoid receptor gene (NR3C1) have been
associated with glucocorticoid resistance.153-157 It
has been suggested that increased glucocorticoid
receptor expression induces the expression of
drug-metabolizing enzymes such as CYP3A4 and
CYP2B6, possibly influencing toxic effects and
glucocorticoid resistance experienced by
patients.158,159 The corticotrophin releasing factor
receptor type 1 (CRHR1) is a major regulator of
glucocorticoid synthesis. Polymorphisms in
CRHR1 are responsible for glucocorticoid-
resistance in asthma patients, and increase the risk
of osteotoxicity because of the increased doses
required.160

The renal isoforms of CYP27B1 and CYP24A1
are responsible for the respective synthesis and
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catabolism of 1,25-dihydroxyvitamin D3, the
physiologically active form of vitamin D3. The
expression of CYP27B1 and CYP24A1 are
significantly altered by glucocorticoid administration
and may contribute to the pathogenesis of
glucocorticoid-induced osteoporosis by causing
vitamin D deficiency, leading to reduced calcium
absorption and reabsorption, and disrupted bone
growth and bone remodelling. In mice, the
administration of dexamethasone, a potent
glucocorticoid, caused a 10-fold decreased
expression of CYP27B1, and a 30-fold increased
expression of CYP24A1, leading to reduced levels of
active vitamin D3.161-163 This disruption of renal
vitamin D metabolism may contribute to the
pathogenesis of glucocorticoid-induced osteoporosis
but the implications of specific variants in these
genes remain to be investigated.

Despite the number of genes associated with
bone mass variation and osteoporosis, very little is
known about specific polymorphisms contributing to
glucocorticoid-induced toxicity in cancer patients.
The significant consequences of bone fragility, bone
fracture, and the risk of bone fracture in later life of
paediatric cancer survivors warrants further research.

Future Perspectives
There is clearly a pressing need for additional
research to address the significant problem of severe
ADRs to cancer drugs that account for 22% of all
pediatric oncology patient hospital admissions.8 An
obvious challenge in future case-control association
studies in pediatric oncology is how to achieve
sufficient statistical power to distinguish a real
association from stochastic noise. The success of
large-scale genome-wide screens with relatively
small numbers of cases is limited to situations in
which there is a small number of relatively common
genetic risk factors, each with a large effect.164 For
severe ADRs, however, there is a growing number
of examples where the genetic effect of the ADR is
indeed large, such as carbamazepine-induced
Stevens-Johnson syndrome,165 abacavir-induced
hypersensitivity,166,167 statin-induced myopathy,168

and gefitinib-induced diarrhoea.169 The number of
cases required to identify a highly significant
association using a genome-wide scan in these
examples is only 10 to 100 cases.164 For example, a
retrospective examination of a genome-wide scan of
abacavir-induced hypersensitivity identified the

chromosomal location of the causal HLA-B*5701
variant among the 10 most significant SNPs when as
few as 15 hypersensitivity reaction cases were
analyzed.164 Accurate and detailed clinical data are
critical factors in the discovery of ADR
susceptibility factors. Szoeke et al.170 and the GAIN
collaborative research group171 recently highlighted
the limitations of previous pharmacogenomic studies
that lacked prospective case ascertainment and were
deficient in detailed phenotypic and relevant clinical
data to determine the role of genes versus other
factors known to influence drug toxicity. Often
missing were ancestry data, co-morbid conditions,
medication doses, and concurrent medications, all of
which are known to influence ADR risk. New
pharmacogenomic studies, such as the Canadian
Pharmacogenomics Network for Drug Safety
(CPNDS) are applying these principles to identify
genetic factors of severe ADRs in children.172-174

CPNDS employs experienced ADR surveillance
clinicians that are trained to accurately recognize,
document, and collect clinical data and biological
samples from patients from more than 13 children’s
hospitals across the country, serving over 80% of the
pediatric population. CPNDS also works closely
with the C17 Research Network, which represents
all 17 pediatric oncology treatment centres across
Canada to investigate ADRs in pediatric oncology.

The safety of medications is an international
concern. The rarity of some drug-induced severe
ADRs and the absence of effective government
ADR surveillance often make it difficult for any one
research group to accrue enough patients to conduct
effective genomic studies of ADRs. It is important
that scientists, clinicians, industry, health care
providers, and governments join forces and work
together to understand the genetic basis of severe
ADRs, especially in vulnerable populations such as
pediatric oncology.

Clinical Implications
Removing medications from the market that have
been shown to cause serious ADRs is not the
solution, because this will leave seriously ill patients
without therapy. Rather, the solution lies in
identifying the mechanism for these ADRs, so that
we can continue to use medications in patients for
whom there is benefit, and better manage the risk in
patients at high risk of ADRs.
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The identification of genetic variants that
contribute to serious ADRs is the first step to
developing predictive diagnostic markers that will
reduce the incidence of severe ADRs and improve
treatment outcomes. A highly predictive diagnostic
test to identify ADR susceptibility would benefit
patients, families, and physicians by improving
counselling and treatment options. In the future,
patients at increased risk for these severe ADRs
could (1) receive more aggressive monitoring for
toxicity, or (2) be treated with alternative
chemotherapy protocols, or (3) receive modified
chemotherapy doses if there is evidence that this
does not limit the medication’s therapeutic effect
in these patients, or (4) receive supplementary
protective agents to proactively prevent the ADR.
In the future, the identification of genetic variants
that result in ADRs may also uncover a group of
children who require chemotherapy dose
intensification, which would potentially improve
cure rates as well. Additional research is needed
to address the significant problem of severe ADRs
in children who are at greater risk of many serious
adverse reactions and frequently develop more
severe reactions with long term sequelae.
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