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Summary 21 

Fibroblast Growth Factor 23 and sclerostin are indicators for COVID-19 severity. They play 22 

a crucial role in COVID-19 associated hypocalcemia through inhibition of vitamin D 23 

activation by suppressing renal 1-αhydroxylase. Better prognosis can be achieved by active 24 

vitamin D supplementation. 25 

ABSTRACT 26 

Background 27 

Hypocalcemia is highly prevalent among positive COVID-19 patients which can be explained 28 

by insufficient vitamin D levels detected among them. This study measures serum levels of 29 

fibroblast growth factor 23 and sclerostin, which cause suppression of renal 1-α hydroxylase 30 

enzyme that is responsible for vitamin D activation.  31 

Methods 32 

It is a case control study that includes 22 healthy controls (Group A), 22 mild/moderate SARS-33 

CoV-2 patients (Group B), and 22 severe/critical patients (Group C). Serum levels of ionized 34 

calcium, calcitriol, parathyroid hormone, fibroblast growth factor 23, and sclerostin were 35 

measured using ELISA.  36 

 37 

 38 
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Results 39 

The lowest levels of both calcium and calcitriol were detected in group (C) and the highest 40 

levels were detected in group (A) with a significant variation between these two groups. Levels 41 

of both fibroblast growth factor 23 and sclerostin were the highest in group (C) and the lowest 42 

in group (A). Differences between all groups showed significance except the difference in 43 

sclerostin levels between group (A) and (B). Both fibroblast growth factor 23 and sclerostin 44 

levels showed significant negative correlations with calcium and calcitriol levels. A significant 45 

positive correlation was detected between sclerostin levels and fibroblast growth factor 23 46 

levels.  47 

Conclusion 48 

Fibroblast Growth Factor 23 and sclerostin are strong indicators for COVID-19 infection 49 

severity. As they suppress renal 1-α hydroxylase enzyme, they have a crucial role in COVID-50 

19 associated hypocalcemia through inhibition of vitamin D activation. Thus, better prognosis 51 

can be achieved by active vitamin D supplementation rather than inactive forms. 52 

Keywords: Fibroblast Growth Factor 23, Sclerostin, hypocalcemia, hypovitaminosis D, 53 

Calcitriol, COVID-19. 54 

 55 

INTRODUCTION 56 

by the end of 2019, an epidemic of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-57 

CoV-2) was seen in Wuhan, and then rapidly spread to the whole world [1]. As of February 58 

15, 2023, the total cases were 756,291,327 with 6,841,640 fatalities worldwide as declared by 59 

WHO [2].  60 

Although anyone can be infected, people older than 60 years old or those who already have 61 

pre-existing chronic illnesses are more susceptible to experience severe infection [3]. COVID-62 

19 infection has symptoms ranging from minor complaints to life-threatening diseases. 63 

Possible symptoms include hyperthermia, cough, dyspnea, exhaustion, decreased taste and 64 

smell sensation, pharyngitis, vomiting, and diarrhea [4]. The respiratory system is significantly 65 

impacted by SARS-CoV-2; however, it can also affect other systems and cause gastrointestinal, 66 

hepatic, cardiovascular, and neurological manifestations [3]. A lot of patients show symptoms 67 

and signs of renal impairment [5]. 68 

Hypocalcemia is a prevalent laboratory finding detected among positive SARS-CoV-2 patients 69 

[6]. Studies showed that positive COVID-19 patients had considerably lower ionized calcium 70 

values than those who tested negative [7,8]. Another study compared the serum ionized calcium 71 

levels (Ca++) in those with acute respiratory illness caused by and not caused by Coronavirus-72 

2 infection during the same period and discovered a twofold risk of hypocalcemia in PCR-73 

positive patients in comparison to PCR-negative patients although clinical features and 74 

inflammatory markers of both groups are the same and so, they suggested that hypocalcemia 75 

is a characteristic feature of infection by Coronavirus-2 virus [9]. A systematic review and 76 

meta-analysis study included 2032 patients from 7 studies concluded that disease prognosis is 77 

inversely linked to serum calcium levels [10]. 78 

Several investigations revealed that PCR-positive patients have a significant frequency of 79 

hypovitaminosis D. Lower serum calcifediol levels were detected among positive SARS-CoV-80 
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2 patients compared to controls [11,12]. Hypovitaminosis D has also been linked with an 81 

elevated incidence of getting Coronavirus-2 infection [13]. PCR-positive patients with 82 

adequate level of vitamin D showed significant fewer affected lung segments, a shorter 83 

hospitalization period, and a better prognosis [14]. Furthermore, higher risk of mortality among 84 

PCR-positive patients is strongly linked with insufficient levels of vitamin D [15,16]. A clear 85 

link was discovered between hypocalcemia observed in positive SARS-CoV-2 patients and 86 

hypovitaminosis D in these individuals implying that hypocalcemia may be caused by vitamin 87 

D deficiency [17].  88 

Fibroblast Growth Factor 23 (FGF23) is a glycoprotein primarily synthesized by osteoblasts 89 

and osteocytes [18]. The inhibitory impact on phosphate reabsorption from the kidneys is the 90 

main function of FGF23. Regarding its action on vitamin D, FGF23 inhibits renal generation 91 

of the active vitamin D hormone, calcitriol [19,20]. This action is due to its suppressing effect 92 

on renal 1-α hydroxylase enzyme [21]. Now, it is well established that conditions marked by 93 

abnormally high levels of FGF23 cause phosphate depletion and unacceptably low levels of 94 

calcitriol in those with normal kidney function [22]. 95 

Sclerostin is a monomeric glycoprotein produced by osteocytes [23]. Sclerostin drives 96 

osteoclastogenesis, decreases osteoblastic bone production, and promotes osteoblast and 97 

osteocyte mortality [24-28]. Regarding its effect on minerals, sclerostin has been known to 98 

decrease vitamin D levels both directly and indirectly. It has a direct inhibitory impact on renal 99 

1 α-hydroxylase activity. Also, it stimulates 24-hydroxylase enzyme, which causes vitamin D 100 

catabolism. In terms of its indirect effect, sclerostin raises circulating levels of FGF 23 that in 101 

turn inhibits renal hydroxylation of vitamin D [29].  102 

This study is conducted to determine serum levels of FGF 23 and sclerostin and determine if 103 

they have a role in the pathogenesis of hypocalcemia observed in SARS-CoV-2 patients 104 

through their impact on vitamin D activation. 105 

 106 

MATERIALD AND METHODS 107 

Study design 108 

A case control study done in collaboration between Medical Physiology department and 109 

Internal Medicine department at Aswan University from March 2022 to March 2023.  110 

Participants 111 

22 healthy controls (Group A) and 44 PCR-positive COVID-19 patients were included in this 112 

study. The positive COVID-19 patients were equally divided according to National Institutes 113 

of Health (NIH) into 2 subgroups: mild/moderate patients (group B) and severe/ critical patients 114 

(group C).  Mild infection showed the following criteria: symptoms like hyperthermia, cough, 115 

nausea, vomiting, pharyngitis, headache, malaise, muscle ache, diminished taste, and smell 116 

sensation but no abnormal chest radiology or dyspnea. Moderate infection showed the 117 

following criteria: lower respiratory manifestations like dyspnea or abnormal chest radiology 118 

but SpO2 > 94% on room air. Severe infection showed the following criteria: SpO2 < 94% on 119 

room air, PaO2/FiO2 < 300 mmHg, lung infiltration >50%, and respiratory rate >30 120 

breath/min. Critical illness showed respiratory failure, septic shock, or multiorgan failure [68]. 121 

Inclusion criteria 122 
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Positive COVID-19 male patients aged 50 years or older.  123 

Exclusion criteria 124 

Those with a known diagnosis of chronic kidney disease, parathyroid disease, metabolic bone 125 

disease, renal phosphate wasting disorder, or had used phosphate binder therapy or calcium 126 

therapy within the previous 3 months, or supplemented with calcifediol, or calcitriol were 127 

excluded. 128 

Sample collection 129 

When patients were admitted, blood samples were taken. Centrifugation was used to separate 130 

the serum for 15 minutes at 3000 rpm. Separated, clear non-hemolyzed supernatant was kept 131 

at -20°C until analysis. Serum levels of ionized calcium, calcitriol, parathyroid hormone, 132 

fibroblast growth factor 23 and sclerostin have been measured using ELISA.   133 

 134 

 135 

Statistical analysis 136 

The data was analyzed using SPSS 23. The test of normality used was Shapiro-Wilk test. The 137 

distribution was normal. The data were expressed as mean ± standard deviation. One-Way 138 

ANOVA test and Pearson correlation test were used. The statistical significance threshold was 139 

(p value < 0.05) and for correlation (if r = 0 no correlation, 0 < r < 1 positive correlation, -1 < 140 

r < 0 negative correlation)141 

 142 

RESULTS 143 

Baseline Characteristics 144 

Baseline personal characteristics of 66 male participating individuals including age, 145 

comorbidities like diabetes mellitus, hypertension and heart failure are summarized in Table 146 

1. 147 

Biochemical and hematological parameters 148 

Table 2 shows that the highest levels of WBCs and CRP were detected among severe/critical 149 

patients (group C), while the lowest levels were detected among controls (group A). The 150 

differences between the studied groups in WBCs and CRP levels showed statistical 151 

significance (p value ≤ 0.001). However, the variations between group (B) and (C) regarding 152 

WBCs and CRP levels showed no significance (p value = 0.443, 0.281 respectively) (Table 2).  153 

Although all participating patients have normal serum levels of Blood Urea Nitrogen (BUN) 154 

and creatinine, it has been noted that highest serum BUN and creatinine values were detected 155 

among severe/critical patients (group C) while the lowest serum levels of both were detected 156 

among controls (group A). The variations between the three studied groups in the serum levels 157 

of BUN showed significance (p value < 0.001). Regarding serum levels of creatinine, a 158 

significance has been detected between the controls and severe/critical patients (p value < 159 

0.001), but no significant variation was detected between controls and mild/moderate patients 160 

(p value = 0.112). However, another significance has been detected regarding the variation in 161 

the creatinine levels between severe/critical group and mild/moderate group (p value = 0.01) 162 

(Table 2). 163 

No significant variations have been detected in Hb and platelet levels between the three groups  164 

(Table 2). 165 
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Serum levels of ionized calcium and calcitriol 166 

Figure 1 revealed that the lowest serum levels of Ca+2 were detected among severe/critical 167 

patients (group C) and the highest levels were detected among controls (group A) with 168 

significant variation only between these two groups (p value = 0.001), however, the differences 169 

between group (A) and (B), and between group (B) and (C) were not significant (p value = 170 

0.185, 0.096 respectively).  171 

Results showed that the serum levels of calcitriol were the lowest among severe/critical group 172 

(C) followed by mild/moderate group (B) and the highest levels were among control group (A) 173 

(Figure 2). Variations in the serum levels of calcitriol between the normal controls and the 174 

other two groups showed significance (p value < 0.001), however, significance was observed 175 

between mild/moderate patients and severe/critical patients (p value = 0.757). (Figure 2). 176 

Serum level of PTH 177 

Although the highest serum levels of PTH were detected among severe/critical patients (group 178 

C) and the lowest levels were detected among controls (group A), variations between the 179 

studied groups as regard serum levels of PTH showed no significance (p1 = 0.989, p2 = 0.564, 180 

p3 = 0.654) (Table 3).   181 

Serum levels of FGF23 and sclerostin 182 

The highest levels of FGF23 were detected in the serum of severe/critical group (C) followed 183 

by mild/moderate group (B) while the lowest levels were detected in the serum of the control 184 

group (A). All results regarding variations in the serum levels of FGF23 between the three 185 

studied groups were statistically significant (p1 = 0.003, p2 < 0.001, p3 = 0.003) (Figure 3). 186 

According to Figure 4, the highest serum levels of sclerostin have been detected among 187 

severe/critical patients (group C) followed by mild/moderate patients (group B) and finally the 188 

control group (A). Results regarding variations in the serum levels of sclerostin between the 189 

different studied groups have showed significance (p value < 0.001), except the difference 190 

between group (A) and (B) which didn’t (p value = 0.099). 191 

Correlations  192 

Figure 5 shows that the serum levels of FGF23 is negatively correlated with the serum levels 193 

of Ca++ (p value < 0.001, r = -0.39). Another statistically significant negative correlation has 194 

been also detected between the levels of FGF23 and calcitriol levels (p value < 0.001, r = -195 

0.434) (Figure 6). No significant correlation has been found between the levels of FGF23 and 196 

the levels of PTH (p value = 0.389) “results are not presented by a graph” 197 

According to Figure 7, serum levels of sclerostin is negatively correlated with the serum levels 198 

of Ca++ (p value < 0.001, r = -0.432). In addition, another statistically significant negative 199 

correlation was detected between the serum levels of sclerostin and the serum levels of 200 

calcitriol (p value < 0.001, r = -0.431) (Figure 8). No significant correlation has been detected 201 

between sclerostin levels and PTH levels (p value = 0.300) “results are not presented by a 202 

graph” 203 

A positive correlation between sclerostin levels and FGF23 levels was detected and showed 204 

significance (p value < 0.001, r = 0.563) (Figure 9). 205 

 206 
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DISCUSSION 207 

Since it was first discovered, COVID-19 pandemic has attracted a lot of interest because of its 208 

high number of confirmed cases and high death rate. This study supports previous studies’ 209 

results that leukocytosis, and increased CRP levels were linked to the clinical severity in 210 

positive SARS-CoV-2 patients [30]. Although we excluded all positive SARS-CoV-2 patients 211 

with high BUN and creatinine values, it has been noted that even if all participating patients 212 

had normal serum levels of BUN and creatinine, the highest values were detected among 213 

severe/critical patients and the lowest levels were detected among normal controls. This 214 

observation come in agreement with previous studies’ results which reported that acute kidney 215 

injury (AKI) is a prevalent complication of COVID-19 infection and is linked to greater disease 216 

severity and poor prognosis [31]. 217 

This study observed that, the lower the serum Ca+2 levels among positive SARS-CoV-2 218 

patients, the more the severity of the disease. These results are supported by previous studies’ 219 

findings that revealed a high prevalence of hypocalcemia among PCR-positive patients at 220 

admission [12,15]. Hypocalcemia was detected in about 2/3 of positive patients with severe 221 

clinical symptoms [32] and in about 67% of those with mild to moderate symptoms suggesting 222 

that even in non-severe individuals, hypocalcemia is a frequent finding of SARS-CoV-2 223 

infection and is considered a feature of that illness. [33]. 224 

Hypocalcemia was determined as an important sign of clinical severity of SARS-CoV-2 225 

infection [34]. It is considered a risk factor of higher oxygen requirement [35], ICU admission, 226 

mechanical ventilation [36], prolonged hospitalization [37,38], poor prognosis, multi-organ 227 

failure, septic shock [12], and high mortality rate [12,36].  228 

A high viral load among COVID-19 patients can explain the disruption of the calcium 229 

homeostasis as every stage of the viral life cycle requires calcium [6]. Other important risk 230 

factors include hypovitaminosis D which was found to be highly prevalent among those 231 

patients [6,17]. Malnutrition, weight loss and cachexia can also explain hypocalcemia, 232 

particularly during hospitalization [6,39-42]. 233 

This study is among the first studies that determine serum levels of active form of vitamin D, 234 

calcitriol, among SARs-CoV-2 infected patients. The levels of calcitriol were the lowest in the 235 

serum of severe/critical patients while the serum of normal controls showed the highest levels 236 

with significant variations between the control group and the other two groups. These results 237 

can be explained by low serum levels of calcifediol observed in positive SARS-CoV-2 patients 238 

[11,15,43]. This deficiency may be due to either malnourishment or lack of sun exposure that 239 

may lead to chronic hypovitaminosis D [44]. Another explanation of diminished calcitriol 240 

levels with progression of COVID-19 infection is inhibition of the renal 1-α hydroxylation of 241 

provitamin D either due to SARS-CoV-2-associated kidney impairment [31] or due to elevated 242 

serum levels of FGF23 and sclerostin. 243 

According to previous studies, a lack of vitamin D increases one's vulnerability to SARS-CoV-244 

2 infection [6,45,46] and linked with greater risk of respiratory failure, mechanical ventilation, 245 

and high mortality rate [16,47].  246 
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Regarding the efficacy of cholecalciferol, calcifediol and calcitriol supplementation in 247 

decreasing the incidence of Coronavirus-2 infection and improving outcomes, a randomized 248 

clinical trial study reported that a single large dosage of cholecalciferol had no beneficial effect 249 

on reduction of the duration of hospitalization [48]. This may be due to decreasing levels of 250 

vitamin D binding protein (VDBP) in the serum during acute diseases, which could reduce the 251 

therapeutic efficacy of cholecalciferol [49] or may be due to elevated serum levels of both 252 

FGF23 and sclerostin leading finally to diminished activation of provitamin D forms either 253 

stored in the body or supplemented during hospitalization.  254 

A randomized pilot study revealed increased oxygenation and decreased need for ICU 255 

admission, risk of readmission, and rate of mortality among COVID-19 patients receiving 256 

calcitriol compared to those not receiving it [50]. Another Spanish cohort study found that 257 

supplementing with calcifediol did not lower the risk of SARS-CoV2 infection or its associated 258 

death rate in the entire cohort, whereas supplementing with cholecalciferol was only slightly 259 

associated with protection against COVID-19 infection [51]. A population-based study 260 

indicated that calcitriol administration may be beneficial for those with advanced chronic 261 

kidney disease (CKD) during the COVID-19 infection [52]. Although calcifediol 262 

supplementation in CKD individuals during COVID-19 pandemic has also decreased the risk 263 

of COVID-19 infection and mortality, the outcomes were less dramatic than what was seen in 264 

calcitriol-treated individuals [51,52]. In those with genetic VDBP deficiency, calcitriol rather 265 

than cholecalciferol can restore calcium balance [53], this can explain why calcitriol is more 266 

effective than cholecalciferol in improving COVID-19 clinical outcomes [48].  267 

Although some studies revealed that cholecalciferol and calcifediol supplementation is 268 

substantially linked to decreased disease severity, ICU admission, and death rate, their results 269 

were not compared with the results of calcitriol supplementation [54-57]. 270 

Although serum levels of PTH were the highest in severe/critical cases and the lowest among 271 

controls, the differences were statistically insignificant. An earlier study also reported 272 

insignificant higher serum PTH levels in COVID-19 patients with hypovitaminosis D [58]. 273 

Another study also observed no significant variations in the serum levels of PTH between PCR- 274 

positive individuals with vitamin D insufficiency and those with sufficient levels, or between 275 

those with hypocalcemia and those with normocalcemia [17]. In contrast, low serum PTH 276 

levels has been detected in patients with moderate/severe hypocalcemia [59]. Decreased PTH 277 

secretion and hypoalbuminemia were reported to play important roles in the development of 278 

hypocalcemia while receiving inpatient treatment for COVID-19 infection [60]. 279 

This study detected that the highest serum levels of both FGF23 and sclerostin were detected 280 

among severe/critical cases and the lowest levels were detected among normal controls. The 281 

variations in the serum levels of FGF23 between the three studied groups were considered 282 

statistically significant. Regarding the serum levels of sclerostin, differences between groups 283 

were considered statistically significant except the difference between the control group and 284 

the mild/moderate group which was not. Serum levels of FGF23 and sclerostin showed 285 

significant inverse relationship with both serum Ca++ level and serum calcitriol level. Sclerostin 286 

serum level showed significant direct relationship with the serum level of FGF23. 287 
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These findings may be a result of an inflammatory response that has a crucial role in FGF23 288 

and sclerostin regulation causing an increase in their production. In a human study, positive 289 

correlations were detected between inflammatory markers and serum levels of FGF23 [61]. 290 

Another experimental study demonstrated that inflammation increased FGF23 values in both 291 

normal and uremic rats [62]. Other studies have reported that almost all inflammatory 292 

conditions have stimulatory effects on osteocytes leading to increased generation of both 293 

FGF23 and sclerostin [63,64]. Serum levels of FGF23 also increases due to elimination of 294 

kidney function which is proved by a previous experimental study [65]. This is another 295 

explanation why the more the severity of SARS-CoV-2 infection, the higher the serum levels 296 

of FGF23. 297 

FGF23 inhibits 1-α hydroxylase whose function is to convert calcifediol to active calcitriol 298 

[21]. It has also a role in exaggerating vitamin D catabolism by stimulating 24-hydroxylase 299 

enzyme whose function is to break down calcitriol [66]. Therefore, high levels of FGF23 300 

detected in positive SARS-CoV-2 patients may be the cause of further lowering of serum levels 301 

of active calcitriol and responsible for significant hypocalcemia observed in these patients. It 302 

may be also the cause of reduced efficacy of cholecalciferol and calcifediol supplementation 303 

compared to calcitriol.   304 

Sclerostin was found to have a negative impact on 1,25 dihydroxycholecalciferol production 305 

by directly inhibiting renal 1- α-hydroxylase enzyme, thus decreasing the circulating levels of 306 

calcitriol and subsequently leading to hypocalcemia. In addition, its effect on FGF23 is another 307 

factor determining calcitriol levels. This can be explained by its inhibitory effect on PHEX, an 308 

enzyme whose action is to inhibit FGF23 catabolism, so sclerostin indirectly increases 309 

circulating levels of FGF23 [67]. This can also explain the observed high FGF23 serum levels 310 

among SARS-CoV-2 patients. This explanation has been proved by an experimental study 311 

which detected elevated serum calcitriol level, decreased 24,25-dihydroxyvitamin D level, and 312 

decreased FGF23 level in SOST knockout mice [29].  313 

CONCLUSION 314 

In conclusion, serum levels of FGF23 and sclerostin are considered strong indicators of 315 

COVID-19 severity, progression, and outcomes. As they suppress renal 1-α hydroxylase 316 

enzyme, they have a crucial role in hypocalcemia observed in these patients through inhibition 317 

of vitamin D activation. Our findings agree with the theory that hypovitaminosis D and 318 

hypocalcemia are potential risk factors for disease severity and progression in COVID-19 319 

patients.  320 

PERSPECTIVES AND SIGNIFICANCE 321 

This study suggests that supplementation of an active form of vitamin D for COVID-19 patients 322 

may show better prognosis compared to inactive forms of vitamin D due to suppression of 1- 323 

α-hydroxylase enzyme. However, further clinical trial studies should be conducted to support 324 

our findings.  325 

 326 



 

 

Vol 31 No.02 (2024):JPTCP(860-883)                                                                                      Page | 868 
 

LIMITATIONS 327 

There are several limitations on the current investigation. First off, the study is a single-center 328 

investigation with a modest sample size, which might have an impact on our findings. 329 

Furthermore, we did not assess serum levels of calcifediol or VDBP. Therefore, we think that 330 

bigger multicenter studies should be conducted to further explore the results of our research. 331 

 332 
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Figure (1): Serum levels of ionized calcium between the studied groups 677 
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Legend : Data is expressed as mean ± standard deviation, Group (A): controls, Group (B): 679 

mild/moderate patients, Group (C): severe/critical patients, p1: probability value for 680 

difference between Groups (A & B), p2: probability value for difference between Groups (A 681 

& C), p3: probability value for difference between Groups (B & C), *: statistically significant 682 

at p ≤ 0.05, One-Way ANOVA test was used. 683 

 684 

 685 

 686 

 687 

 688 

Figure (2): Serum levels of Active vit. D (Calcitriol) between the studied groups 689 

 690 

Legend: Data is expressed as mean ± standard deviation, Group (A): controls, Group (B): 691 

mild/moderate patients, Group (C): severe/critical patients, p1: probability value for 692 

difference between Groups (A & B), p2: probability value for difference between Groups (A 693 

& C), p3: probability value for difference between Groups (B & C), *: statistically significant 694 

at p ≤ 0.05, One-Way ANOVA test was used. 695 

 696 

 697 

 698 

 699 

 700 
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Figure (3): Serum levels of FGF 23 between the studied groups 701 

 702 

Legend: Data is expressed as mean ± standard deviation, FGF23: fibroblast growth factor 703 

23, Group (A): controls, Group (B): mild/moderate patients, Group (C): severe/critical 704 

patients, p1: probability value for difference between Groups (A & B), p2: probability value 705 

for difference between Groups (A & C), p3: probability value for difference between Groups 706 

(B & C), *: statistically significant at p ≤ 0.05, One-Way ANOVA test was used. 707 

Figure (4): Serum levels of sclerostin between the studied groups 708 

 709 

Legend: Data is expressed as mean ± standard deviation, Group (A): controls, Group (B): 710 

mild/moderate patients, Group (C): severe/critical patients, p1: probability value for 711 
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difference between Groups (A & B), p2: probability value for difference between Groups (A 712 

& C), p3: probability value for difference between Groups (B & C), *: statistically significant 713 

at p ≤ 0.05, One-Way ANOVA test was used. 714 

Figure (5). Correlation between serum levels of FGF 23 and serum ionized calcium 715 

levels 716 

 717 

Legend: FGF23: fibroblast growth factor 23, *: statistically significant at p ≤ 0.05, r = Pearson 718 

correlation coefficient, Pearson correlation test was used. 719 

Figure (6). Correlation between serum levels of FGF23 and serum levels of Active Vit. D 720 

(Calcitriol) 721 

 722 
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Legend: FGF23: fibroblast growth factor 23, *: statistically significant at p ≤ 0.05, r = Pearson 723 

correlation coefficient, Pearson correlation test was used 724 

Figure (7). Correlation between serum levels of sclerostin and serum ionized calcium 725 

levels 726 

 727 

Legend: *: Statistically significant at p ≤ 0.05, r = Pearson correlation coefficient, Pearson 728 

correlation test was used. 729 

Figure (8). Correlation between serum levels of sclerostin and serum levels of Active 730 

Vit. D (Calcitriol) 731 

 732 
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Legend: *: statistically significant at p ≤ 0.05, r = Pearson correlation coefficient, Pearson 733 

correlation test was used. 734 

 735 

Figure (9). Correlation between serum levels of sclerostin and serum levels of FGF23 736 

 737 

Legend: FGF23: fibroblast growth factor 23, *: statistically significant at p ≤ 0.05, r = Pearson 738 

correlation coefficient, Pearson correlation test was used. 739 

Tables 740 

Table 1: Baseline Characteristics of the studied groups 741 

                                               Group A                    Group B                    Group C 

                                                (n = 22)                     (n = 22)                      (n = 22) 

 

Age 

Mean ± SD                           57.77 ± 4.14              58.55 ± 5.5                59.41 ± 4.36 

Significance                                       p1 = 0.850, p2 = 0.486, p3 = 0.816 

 

Comorbidities 

Diabetes (n, %)                        8 (36.36)                 12 (54.54)                  14 (63.64) 

Hypertension (n, %)                 7 (31.82)                 10 (45.45)                  13 (59.09) 

Heart failure (n, %)                   2 (9.09)                    3 (13.64)                    4 (18.18) 

Tobacco smoking (n, %)         16 (72.73)                19 (86.36)                  17 (77.27) 

Age is expressed as mean ± standard deviation, n: number of persons, Group (A): controls, 742 

Group (B): mild/moderate patients, Group (C): severe/critical patients, p1: probability value 743 

for difference between Groups (A & B), p2: probability value for difference between Groups 744 



 

 

Vol 31 No.02 (2024):JPTCP(860-883)                                                                                      Page | 882 
 

(A & C), p3: probability value for difference between Groups (B & C), P is significant if it is 745 

≤ 0.05, One-Way ANOVA test was used. 746 

 747 

Table (2): Serum levels of Hb, WBCs, Platelets, CRP, BUN and creatinine in the studied 748 

groups  749 

                                          Group A                    Group B                       

Group C 

                                           (n = 22)                      (n = 22)                        

(n = 22) 

Hb (g/dL) 

Mean ± SD                        11.4 ± 1.01               11.44 ± 1.28                

11.15 ± 1.12 

Significance                                  p1 = 0.991, p2 = 0.766, p3 = 0.687 

WBCs (x 109/L)   

Mean ± SD                        3.88 ± 1.79                  6.67 ± 1.63                   

7.32 ± 1.88 

Significance                                 p1 < 0.001*, p2 < 0.001*, p3 = 0.443  

PLTs (x 109/L) 

Mean ± SD                      173.59 ± 33.65           184.05 ± 36.84           

180.27 ± 28.77 

Significance                                   p1 = 0.553, p2 = 0.784, p3 = 0.925 

CRP (mg/L) 

Mean ± SD                       3.0045 ± 1.64             31.53 ± 24.60              

43.35 ± 36.68 

Significance                                  p1 = 0.001*, p2 < 0.001* , p3 = 0.281  

BUN (mg/dL) 

Mean ± SD                        11.55 ± 2.11                 15 ± 2.18                   

19.64 ± 1.65 

Significance                                   p1 < 0.001* , p2 < 0.001* , p3 < 

0.001* 

Creatinine (mg/dL) 

Mean ± SD                         0.94 ± 0.16                 1.03 ± 0.16                  

1.17 ± 0.15 

Significance                                     p1 = 0.112 , p2 < 0.001* , p3 = 

0.01* 

All data is expressed as mean ± standard deviation, n: number of persons, HB: Hemoglobin, 750 

WBCs: white blood cells, PLTs: platelets, CRP: C-reactive protein, BUN: blood urea 751 

nitrogen, Group (A): controls, Group (B): mild/moderate patients, Group (C): severe/critical 752 

patients. , p1: probability value for difference between Groups (A & B), p2: probability value 753 
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for difference between Groups (A & C), p3: probability value for difference between Groups 754 

(B & C), *: statistically significant at p ≤ 0.05, One-Way ANOVA test was used. 755 

Table (3): Serum levels of PTH in the studied groups 756 

                                          Group A                        Group B                       Group C 

                                           (n = 22)                          (n = 22)                        (n = 22) 

PTH (pg/mL) 

Mean ± SD                       38.95 ± 11.53               39.79 ± 21.48              44.95 ± 23.18 

Significance                                      p1 = 0.989, p2 = 0.564, p3= 0.654 

Data is expressed as mean ± standard deviation, n: number of persons, PTH: parathyroid 757 

hormone, Group (A): controls, Group (B): mild/moderate patients, Group (C): severe/critical 758 

patients, p1: probability value for difference between Groups (A & B), p2: probability value 759 

for difference between Groups (A & C), p3: probability value for difference between Groups 760 

(B & C), P is significant if it is ≤ 0.05, One-Way ANOVA test was used. 761 

 762 

 763 




