

RESEARCH ARTICLE DOI: 10.53555/jptcp.v31i2.4329

IMPACT OF THE NUTRITIONAL APPROACH IN PATIENTS WITH PARKINSON'S NEURODEGENERATIVE DISEASE; LITERATURE REVIEW

Sudhair Abbas Bangash¹*, Dr. Syed Sikandar Shah², Sidra Hassan³, Md Moktadirul Alam⁴, Muhammad Umar⁵, Dr. Rebecca Caruana⁶, Dr. Abdalrahim A.M Bsharat⁷, Dr. Saja Khalid Ahmed Al-Abbasi⁸, Tariq Rafique⁹

¹*Faculty of Life Science, Department of Pharmacy, Sarhad University of Science and Information Technology, Peshawar, Pakistan, Email: sudhair.fls@suit.edu.pk ²Assistant Professor, Department of Clinical Pharmacy and Pharmacology, RAK College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, UAE, Email: syed.sikandar@rakmhsu.ac.ae ³Teacher, Chemistry, Fatima Educator, Talagang, Pakistan, Email: syedaraza072@gmail.com ⁴College of Food Science & Technology, Shanghai Ocean University, China, Email: moktadirul.alam@gmail.com ⁵Medical Graduate, Windsor University School of Medicine (Saint Kitts), Email: Mohammedumer@gmail.com ⁶Department of Medicine, Mater Dei Hospital, Imsida, Malta, Email: rebeccacaruana1234@gmail.com ⁷I.k. Akhunbaev Kyrgyz State Medical Academy, Internal Medicine, Palestinian, Email: Abd-bsharat@hotmail.com ⁸Medical Trainee, UAE, UMF Carol Davila University Graduate, Romania, Email: Saja.khaled3034@yahoo.com ⁹Assistant Professor Dadabhoy Institute of Higher Education, Karachi, Pakistan Email: dr.tariq1106@gmail.com

*Corresponding author: Sudhair Abbas Bangash

*Faculty of Life Science, Department of Pharmacy, Sarhad University of Science and Information Technology, Peshawar, Pakistan, Email: sudhair.fls@suit.edu.pk

Abstract:

Introduction: Malnutrition in the context of Parkinson's disease involves both excess and deficiency, with deficiency recognized as a prominent global cause of immunodeficiency. Various risk factors, including weight loss, levodopa treatment duration, anxiety, and symptoms related to dysautonomia, contribute to malnutrition in Parkinson's patients.

Objective: This study aims to delineate the impact of nutritional interventions on individuals with neurodegenerative Parkinson's disease.

Methodology: Conducted as a retrospective descriptive bibliographic review, the study involves a comprehensive search and analysis of original scientific articles in Spanish and English. Medical information databases such as PubMed, Web of Science, BVS, Scholar, Medline, SciELO, etc., were utilized for article selection.

Results: Out of 37 screened scientific articles, nine high-level evidence surveys were included, following predefined inclusion and exclusion criteria. The nutritional approach to Parkinson's involves guided diets tailored to the patient's nutritional status and disease progression. The Mediterranean diet emerges as a well-supported option for nutritional support in Parkinson's, along with recommendations for diet modification in the consistency of both liquids and solids.

Conclusion: This review underscores the importance of addressing malnutrition in Parkinson's disease through a targeted nutritional approach. Guided diets, especially those aligned with the principles of the Mediterranean diet, are recognized as valuable strategies. Modification of diet consistency, considering the progression of the disease, further adds to the nuanced nutritional management of Parkinson's patients.

Keywords: Parkinson's, Nutritional approach, Dysphagia, Food supplements.

INTRODUCTION:

When we talk about the nutritional approach, the World Health Organization (WHO), from a multidisciplinary point of view, defines it as a set of activities responsible for improving unwanted eating behaviors whose sole objective is to improve the patient's nutritional status. Nutrition education requires the intervention of multiple professionals to encourage the exchange of knowledge with the user and family to acquire responsibility in promoting health through the in-depth and individualized analysis of the nutritional problem, identifying the risk factors to be addressed and defining the objectives. Furthermore, it requires an adequate emotional relationship between the professional and the patient so that the latter, through the information provided and the nutritional behaviors in which they seek help, can achieve health and do everything possible to maintain it (Tosin, Goetz, & Stebbins, 2024).

Similarly, the term "malnutrition" encompasses two situations of nutritional imbalance: on the one hand, obesity is generated by an excess, and on the other, malnutrition is generated by a deficiency. It is recognized as the leading global cause of immunodeficiency; although the humoral response is preserved, an impairment of the response occurs (Hiu et al., 2024).

Local in the mucous membranes where depletion of IgA-producing plasma cells and lymphocytes occurs, which would explain the high prevalence of respiratory and enteric diseases acquired in these patients. Furthermore, an essential alteration of cellular immunity is observed since a decrease in T lymphocytes is observed without global lymphopenia and a cellular depletion in the lymph nodes and spleen, which translates into energy in delayed hypersensitivity reactions; the bactericidal capacity of neutrophils is also reduced. For this reason, we see the importance of correct nutritional orientation in patients with risk factors for malnutrition, and it becomes a fundamental objective of the professional to achieve the subjective well-being of the patient and his family environment or to guide him in improving his diet. Parameters for a better quality of life (Cheng, Quan, & Thompson, 2024). On the other hand, neurodegenerative Parkinson's disease (PD) is a chronic multifactorial disease in which several risk factors determine its generation or progression, such as ageing, male sex and even the specific characteristics of each individual. Higher incidence is observed between 70 and 74 years of age and in women around 85. As regards mortality rates, differences are found: the levels are higher for males, for white people and at older ages (Ciocca & Pizzamiglio, 2024).

Parkinson's disease was described in 1817 by James Parkinson, who described it as characterized by changes at the extrapyramidal level, mainly tremors at rest, bradykinesia, rigidity, and postural instability. Other changes related to autonomic nervous system dysfunction include sweating, sialorrhea, and subsequent cognitive changes that can lead to dementia in the final stages of the disease (Mazzucca, Cappellano, & Chiocchetti, 2024).

Patients with Parkinson's disease are particularly nutritionally vulnerable, with an incidence of malnutrition as high as 24% in some series. Risk factors that have been primarily associated with malnutrition in Parkinson's disease are weight loss, anxiety, duration of levodopa treatment, weight at the start of treatment, the presence of symptoms related to dysautonomia (dysphagia, salivation, constipation), severity of the disease and dose in treatment with levodopa (Leonard et al., 2024).

During the disease, the majority of patients present a significant weight loss, with therapeutic and prognostic implications: lower weight, greater incidence of motor complications of dopaminergic treatment (dyskinesia) and greater risk of general worsening and consequent complications. Chronic diseases and weight loss are due to an imbalance between energy consumption and intake; however, some circumstances are critical in Parkinson's disease (Duvdevani et al., 2024).

The goal of nutritional support in PE is to cover the patient's nutritional and energy deficiencies safely, as well as treat and prevent them, malnutrition and its complications, taking into account personal and clinical circumstances to accommodate the patient's situation at every moment of its evolution. This is to optimize quality of life and reduce morbidity and mortality. The peculiarity of nutritional support depends on the patient's symptoms and the safety and effectiveness of the swallowing function. When carrying out the nutritional diagnosis, two fundamental aspects must be considered: the patient's degree of dysphagia and the nutritional status. We can opt for oral and integrative therapy in cases of even mild dysphagia and malnutrition (Shafiee et al., 2024).

In these cases, the literature recommends taking into account that the drugs must be administered in the ON phase, i.e. 60 minutes before the meal and that nutritional therapy in these cases depends on the person's condition and his basic needs, as already mentioned; however, when initiating treatment with L-DOPA (0.8/kg protein weight) a protein redistribution diet is recommended (Bartolomeu Pires, Kunkel, Kipps, Goodwin, & Portillo, 2024).

When the person is evaluated and found at level 4.0 according to the Hoehn and Yarhr scale, it can be determined that he has severe dysphagia, which means that he has a high risk of complications arising from the ingestion of this food and a subsequent deterioration in quality of life. At this time, the option of an enteral artificial feeding method should be considered, which in the short term involves the placement of a nasogastric tube (NGT) or, in the long term, a gastric tube (PEG percutaneous endoscopic stoma), which would determine more care and modification of the consistency of the diet in the patient suffering from PD. The importance of the affective and symbolic meaning that the patient gives to his family and his food environment is also fundamental since these psychological aspects allow greater adherence to nutritional treatment (Karande & Kulkarni, 2024).

They mentioned some essential aspects to be considered during the professional interview with the family and the patient in a state of vulnerability. For example, the comprehensive approach and multidisciplinary nutrition training comment on the psychological impact on the patient's nutrition at different stages of disease progression and formulate a situational diagnosis (Mohamed, 2024).

The great need to address nutritional aspects in Parkinson's patients is evident, as several studies mention that between 50 and 70% of patients in the advanced stages of the disease suffer from malnutrition; furthermore, they report that one of the most reliable indicators of survival is the nutritional status of the patient and therefore constitutes a challenge for the nutrition professional who constantly evaluates the clinical evolution of the pathology (comorbidities, side effects of drugs, family environment, economy, etc.) for better adaptability of nutritional treatment; as well as formulate fixed goals for family behavior in the face of daily changes in the patient's diet (Cabanillas et al.).

Considering the above, the nutrition professional must develop skills and competencies for family accompaniment and support to avoid claudication crises due to emotional overload in the home environment. Therefore, their assessments should be multidimensional, with a symptom-based nutritional approach and advanced decision-making (Banou, Vrahatis, Krokidis, & Vlamos, 2024). As mentioned previously, people with Parkinson's, as the disease progresses, may have a reduction in intestinal function; therefore, constipation and slowing of gastric emptying, resulting in Porstariazón, serious need for the study of this disease, which has a higher incidence of nutritional problems than others. Having said this, it is of fundamental importance that the study of dietary tactics is enriched according to the progression of Parkinson's patients; in this way, professionals will have various tools at their disposal with which they can intervene with their patients and their family environment in an individualized and specialized way (Delafontaine et al., 2024).

OBJECTIVES:

General Objective:

To describe the influence of nutritional management in patients with neurogenerative Parkinson's disease.

Specific Objectives:

- Conduct a literature search on neurogenerative Parkinson's disease and its impact on nutrition.
- Identify nutritional problems in patients with Parkinson's disease.
- Discuss the latest research with high-level evidence with content to investigate the literature regarding the impact of nutrition on Parkinson's disease.

MATERIALS AND METHODS:

The following article is a retrospective descriptive literature review study. The study is carried out through a detailed search and analysis of original scientific articles, review articles, case reports, literature reviews, meta-analyses, systematic studies, cohort studies, randomized controlled studies in languages such as Spanish and English and with Boolean operators present or not indexed in medical information databases such as Pub-med, Web of Science, Bvs, Scholar, Medline, SciELO, Springer and Redalyc. This study will allow us to detail, in an orderly and reproducible way, the results of the last 5 years and the tremendous scientific evidence on the nutritional approach in patients with neurodegenerative Parkinson's disease, using keywords such as nutrition, nutritional approach, Parkinson, dysphagia and swallowing problems (Arunachalam, Saranya, & Karuppannan, 2024; Wang, Liu, Ren, Guo, & Wang, 2024).

Inclusion Criteria:

Articles with a high level of scientific evidence using keywords from the thesaurus for their search, research with conclusive results and a sufficient sample, both in animal testing and systematic reviews.

Exclusion Criteria:

Articles published more than 5 years ago, articles with low scientific evidence, a high level of bias in the research or results, and articles without clearly defined objectives or an adequately established research methodology.

Statistical Analysis:

For the analysis of the results obtained, a screening of the bibliographic studies was carried out using a scheme highlighting the main scientific results of the research and comparing them with studies of different levels of evidence present on virtual platforms, discussing these results according to the author's appreciation (Golpour-Hamedani et al., 2024).

RESULTS:

Below, Table 1 shows the articles of most significant scientific relevance collected for the development of our study (Chen & Small, 2024).

Qualification	Year	Author	Country	Study	Methods	Results	Conclusions	Recommendation
				Sample				Level
Diet quality and	2020	Liu YH,	United	3653	Diet quality	After a mean	In conclusion,	IA
risk of		Jensen	States	participants	was assessed	of 6.94 years	it is suggested	
Parkinson's		GL, Na			using a	of follow-up,	that having a	
disease: a		М,			validated	47 incident	high-quality	
prospective		Mitchell			dietary	cases of	diet or	
study and meta-		DC,			screening tool,	Parkinson's	following a	
analysis		Wood			Dietary	were	healthy dietary	
		GC, Still			Screening	documented.	pattern is	
		CD and			Tool (DST),	Participants	associated with	
		Gao X			containing 25	with better	a lower risk of	
		(16).			specific food	diet quality	PD. More	
					and behavior	were likelier	observational	
					questions in	to be female,	studies with a	
					2009.	never smoke,	larger sample	
					Potential	have a higher	size and longer	
					Parkinson's	educational	follow-ups are	
					cases were	level, and live	needed to	
					identified	with relatives.	understand	
					using ICD9-	A high-quality	better the	
					based	diet was	temporal	
					electronic	associated	relationship	
					health records	with a lower	between dietary	

Table 1. Scientific evidence articles on the approach

					(332) ICD10	risk of	patterns and	
					(C20) and	in aidant DE	Poultingon's	
					(G20) and	Incluent PE	Parkinsons	
					Parkinson's	over a mean	development.	
					related	of 6.94 years		
					treatments.	of follow-up		
					After	(adjusted HR		
					- direction - form			
					adjusting for	= 0.39		
					potential	comparing		
					confounders,	two extreme		
					the 95%	tertiles: 95%		
					aonfidanca	CI: 0 17 0 80:		
						CI. 0.17, 0.89,		
					interval (CI)	trend p =		
					and hazard	0.02).		
					ratios (HR) at	Sensitivity		
					diet quality	analyzes		
					norequilies	analyzes		
					percentiles	excluded		
					were	patients who		
					calculated	had self-		
					using Cox	reported oral		
					proportional	health		
					proportional	neartí		
					hazards	problems		
					models.	generating		
					Furthermore,	similar results		
					we performed	(adjusted HR		
					a mote	- 0 20: 050/		
					a meta-	- 0.39, 93%		
					analysis by	CI: 0.17, 0.90;		
					combining our	p trend =		
					study with	0.02). Similar		
					four published	trends		
					articles on this	between diet		
					topic.	quality and		
						PD risk were		
						also observed		
						in sensitivity		
						analyses that		
						excluded		
						excluded		
						participants		
						diagnosed		
						within two		
						vears of		
						follow-up plus		
						with self		
						with sen-		
						reported oral		
						health		
						problems (p =		
						0.05). A		
						higher		
						froquency of		
						frequency of		
						intake of		
						fruits, whole		
						grain cereals,		
						pastries or		
						nies hot or		
						and breakfast		
						concentrast		
						cereals, and		
					1	juices at		
						breakfast was		
					1	associated		
					1	with a lower		
					1	rick of		
						Dout-to-		
						Parkinson's		
						disease (p <		
						0.05 for all).		
Dietary	2022	Talebi S.,	Iran	448 737	А	A total of 7	In conclusion,	IA
Antioxidants		Ghoreishv		participants	systematized	prospective	the present	
and Parkinson's		SM		(4654 cases	search was	cohort studies	dose-response	
Disease Rick. A		Iavedi A		with PD)	conducted in	(total n -	meta_analycic	
Cristan A		Tracitor		with i D)	alaat	210 704)1	more analysis	
Systematic		Travica			electronic	510,/84) and	revealed that a	
Keview and		IN, and			databases	5 case-control	nigner dietary	
Dose-Response		Mohamm			(PubMed,	studies were	intake of	
Meta-Analysis		adi H.			Scopus, Web	included for	antioxidants,	
of					of Science and	analysis of	specifically	
Observational					Google	dietarv	vitamin E.	
Studies					Scholar) until	vitamin C	vitamin C and	
Stadios					March 2021	The DE rick	nolynhenole	
•	1	1	1	1	march 2021.	THE LE HSK	poryprienois	
					No. 1.14	active - t -	ar -1	

					restrictions	similar for the	anthocyanins, is	
					regarding	lowest	associated with	
					publication	compared to	a lower risk of	
					time or	the highest	Parkinson's	
					1	the highest	The meter	
					language were	category of	The meta-	
					applied.	vitamin C	evidence	
					Keywords	intake (RR:	quality rating	
					related to	0.95; 95% CI:	indicated little	
					dietary intake	0.77, 1.18; I2	confidence in	
					of various	= 75.9 %;	the effect size	
					antioxidants.	95% CI: 49.	estimates	
					PD and study	$89 \cdot n < 0.001$	generated	
					design were	On the other	across various	
					ucsign were	hand two	distory	
					used. Articles	nand, two	dietary	
					that met the	prospective	antioxidants	
					following	cohort studies,	examined.	
					criteria were	consisting of	Future well-	
					individually	805 PD cases	designed	
					selected: 1)	among	prospective	
					observational	129 617	cohort studies	
					studies with a	narticipants	may be needed	
					studies with a	participants,	to determine	
					prospective	were included	to determine	
					cohort, nested	in the pooled	reliably	
					case-control,	analysis of	whether dietary	
					or case-	dietary intake	consumption of	
					control	of total	antioxidants is	
					design: 2)	flavonoids and	a plausible	
					performed in	their	option for PD	
					adulte (>18	subclasses	nrevention	
					adults $(\geq 10$	The DD	prevention.	
					years); 5)	The PD		
					reported the	summary RR		
					consumption	for the highest		
					of the dietary	flavonoid		
					antioxidants	intake was		
					vitamin C,	lower than the		
					vitamin E	lowest (RR:		
					vitamin Δ	0.77.95% CI		
					vitanin A,	0.77, 5570 C1.		
					scientum,	77 10/ -		
					zinc, α-	= //.1%, p=		
					carotene, β-	0.03).		
					carotene,	Similarly, two		
					Lycopene, β-	case-control		
					cryptoxanthin,	studies		
					lutein.	analyzed the		
					flavonoids	association		
					and	between		
					antiovident	diatomy ging		
					antioxidant	dietary zinc		
					capacity; 4)	intake and the		
					reported PD	risk of PD.		
					risk estimation	The relative		
					as an outcome	risk of PD was		
					variable; and	lower for the		
					5) OR. RR. or	highest group		
					HR reported	than the		
					along with	lowest dietary		
					05% CIa	zina inteka		
					95% CIS.	ZINC IIItake		
					They were	group (OR:		
					omitted.	0.64, 95% CI:		
						0.31, 1.31; I2		
						= 68.8%, p=		
						0.07). A 1		
						mg/d increase		
						in dietary zinc		
						intake was		
						make was		
						associated		
						with a		
						significantly		
						lower risk of		
						PD (OR: 0.65;		
						95% CI: 0.49,		
						0.86; n = 1).		
Prevalence of	2022	Kacnrzyk	Poland	5613 study	A systematic	Mini	In conclusion	IA
malnutrition in	2022	KW	i olullu	subjects	search was	Nutritional	this study	
nationts with		Milawaka		subjects	conducted	Assessment is	demonstrated a	
Parleins with		winewska			Conducted:	Assessment 1S	limite 1	
Parkinson's		M,			Cocnrane,	used to	innited number	
disease: a	1	Zarnowsk		1	PubMed.	evaluate the	of articles	1

Impact Of The Nutritional Approach In Patients With Parkinson's Neurodegenerative Disease; Literature Review

systematic		a A,			Embase and	nutritional	dedicated to	
review		Panczyk			Web of	status of	evaluating	
		М,			Science.	patients.	nutritional	
		Rokicka			Articles	Twenty-two	status in	
		G			published	studies in	patients with	
		andSzosta			between 2000	which MNA	Parkinson's	
		k-			and 2020,	assessments	disease. The	
		Wegierek			from October	were	studies varied	
		D (18).			2021 to June	performed	widely due to	
					2022, were	were included.	the use of	
					included. The	There were	several	
					included	2,713	different	
					studies had to	participants,	questionnaires	
					use a method	of which	to assess the	
					of assessing	39.2% were	nutritional	
					nutritional	women and	status or	
					status: a	60.8% were	patients. It was	
					specific	men. The	not Parkinson s.	
					questionnaire	youngest	These factors	
					Of	patient was 20		
					of PML The	years old,	information and	
					inclusion	oldest was 02	halo	
					criteria wara	The highest	differentiate	
					natients over	reported	more aspects	
					18 years of	number of	determining a	
					age diagnosed	malnourished	natient's risk	
					with PD and	natiente wae	level	
					with	39.2% the	Additionally it	
					nutritional	risk of	is essential to	
					evaluation:	malnutrition	note that many	
					Research with	was 59% [32]	note that many	
					animals:	and the lowest	be overweight	
					incorrect	were 0% and	or obese, which	
					publication of	14%	should not be	
					the study.	respectively.	ignored when	
					studies on in	A significant	assessing	
					vitro cells:	number of	nutritional	
					patients	studies (6 of	status	
					diagnosed	22) did not	Increased body	
					with other	report the	weight can be	
					Parkinsonian	prevalence or	seen as a	
					syndromes:	risk of	marker of good	
					and	malnutrition.	nutritional	
					unavailability		status.	
					of the abstract		However, the	
					and full text		opposite can be	
					were		accurate and is	
					excluded.		quite common	
							in patients with	
							Parkinson's	
							disease.	
							According to	
							available data,	
							the prevalence	
							of malnutrition	
							in patients with	
							Parkinson's	
							disease is	
							significant,	
							even though	
							many patients	
							have excessive	
							body mass.	
Nutritional	2019	Robert	USA	18 patients	It was	Compared to	In conclusion,	IA
ketosis for mild		Krikorian,			conducted by	the high-	it has been	
cognitive		Marcelle			recruiting	carbohydrate	shown that	
impairment in		D.			patients from	group, the	short-term	
Parkinson's		Snidler,			the Gardner	IOW-	nutritional	
uisease: a		Suzanne			Center for	carbonydrate	Ketosis is	
controlled pilot		5. Summer			Parkinson's	group	capable of	
uriai		Summer,			Disease and	exhibited	improving	
		Sulliver			Disorders at	performances	cognitive	
		Andrew			the Academic	on the lavical	periormance m	
		P Duker			Health Center		PD-MCI The	
1	1	1. Dukci,			meanin Center.	access		

		Richard S.			Participants	compound	findings expand	
		Isaacson			diagnosed	(F(1,11)) -	previous	
					ulagiloseu	$(\Gamma(1,11) = 0.02)$		
		Alberto J.			with PD	6.55, p = 0.02,	observations of	
		Espay.			according to	Cohen's f	neurocognitive	
					UK Brain	effect size =	benefits in	
					Bank criteria	0.76) and the	individuals at	
					and with	composite	rick and those	
						composite		
					cognitive	memory	with early	
					signs and	(F(1,11)=8.42,	neurodegenerati	
					symptoms	p=0.01,	on. However,	
					corresponding	f=0.87). The	more research	
					to MCI	low	with larger	
					to MC1	10 w	with larger	
					according to	carbonydrate	samples is	
					the Movement	group also	needed to	
					Disorder	tended to	demonstrate the	
					Society	reduce	reproducibility	
					Working	memory	of the findings	
					Group	interference	In addition it	
					1 1 C	$(\Gamma(1,11), 1,02)$	'11 1	
					guidelines for	(F(1,11)=4.03,	will be	
					Level I PD-	p=0.06,	necessary to	
					MCI were	f=0.60).	investigate	
					included.	Change in	whether a more	
					Inclusion	body weight	extended	
	1				criteria wara a	was strongly	duration	
	1				cincina were a	was subligly	Guration	
					total score	associated	intervention	
	1				between 20	with memory	could provide	
	1				and 25 on the	performance	similar or	
	1				Montreal	(standardized	greater benefit	
	1				Cognitive	beta (β std) = -	and whether the	
					Assessment	0.50 m <	honofit is	
					Assessment	0.39, p <	benefit is	
					(MoCA).	(0.001) and	maintained	
					Additionally,	marginally	after treatment	
					patients had to	predicted	termination.	
					have been	lexical access	Future studies	
					treated with a	(Betd = -0.34)	of nutritional	
					treated with a	(psid = -0.34, 0.06)		
					stable regimen	p = 0.06).	ketosis will	
					of	However, for	also be of	
					antiparkinsoni	the low	interest to	
					an	carbohydrate	evaluate the	
					medications	group daily	effects of	
						group, daily		
					for at least six	energy intake	genetic and	
					weeks.	decreased	epigenetic	
						significantly	factors and PD	
						(2205 (624)	endophenotype	
						kcal to 1667	endoprienotype	
						(404) 11	5.	
						(404) Kcal,		
						p=0.004), as		
						did		
						carbohydrate		
						intake (from		
						11 0% to 8%)		
						44.970 10 870		
	1					or total kcal,		
	1					p=0.001).		
	1					Protein (14%		
						to 29%,		
						p=0.009) and		
	1					fat (38% to		
	1					61% -0.04		
	1					0170, p=0.04)		
	1					intake		
						increased		
						relative to pre-		
	1					intervention		
	1					levels and		
	1					there was a		
	1					roduction in		
	1					films is the		
						fibre intake (
						20.2 (7.1) g to		
	1					6.8 (4.1) g,		
	1					p=0.007).		
Clinical and	2019	Sławomir	Poland	40 patients	40 patients	In 10 (25%)	The duration of	2B
nutritional	2017	Budrowie	1 Junu	10 putients	diagnosed	PD nationts	Parkinson's	20
nutitional		Duulewie			with DD	the NDG 2002	i aikiiisoii s,	
correlates in		z, Anna			with PD were	the INKS 2002	motor and non-	
Parkinson's		Zmarzły,			analyzed	result was ≥ 3	motor	
disease:	1	Dominik			according to	points. NRS	symptoms, and	
preliminary		Rączka,			clinical	2002 results	frequency of 1-	
- ·	1	Alakaandr			criteria: all	Wara	DOPA intaka	

Impact Of The Nutritional Approach In Patients With Parkinson's Neurodegenerative Disease; Literature Review

				r				
		а			were analyzed	positively	are closely	
		Szczepańs			in an	correlated	correlated with	
		, Ewa			outpatient	with PD	nutritional	
		Koziorow			clinic. An	duration,	status.	
		ska-			ordered	while taste	Understanding	
		Gawron			anamnesis	disturbances	multifactorial	
		Kraveztof			was taken in	woro	interdenendene	
		KIZySZIOI				were		
		Słotwinsk			all patients:	negatively	e could help	
		1			age, sex,	correlated	estimate an	
		Magdalen			duration of the	with BMI. A	algorithm to	
		а			disease,	positive	monitor the	
		Koszewic			pharmacologic	correlation	nutritional	
		z.			al treatment of	was also	status of PD	
					PD, alterations	observed	patients and	
					of smell_taste	between the	early nutritional	
					and	NRS 2002	intervention	
					gastrointastina	rogult and the	intervention.	
						fesuit and the		
					I tract, other	frequency of I-		
					alterations and	DOPA intake,		
					their	while there		
					treatment, and	was no such		
					addiction to	correlation		
					stimulants.	between BMI		
					The risk of	and 1-DOPA		
					malnutrition	intake A		
					manufition	magativa		
					was	negative		
					established	correlation		
					based on the	was revealed		
					Nutrition Risk	between the		
					Screening	thickness of		
					(NRS 2002)	the		
					and body mass	subscapular		
					index (BMI)	fold and the		
					In NRS 2002	duration of PD		
					111111052002,	and between		
					scores ≥ 5			
					indicate the	the thickness		
					threat of	of the		
					malnutrition	abdominal and		
					and the need	subscapular		
					for nutritional	folds and the		
					intervention.	results of H-		
					The thickness	YSS		
					of 3 skin folds	SEADIS		
					was measured:	SCAPES Wara		
					was measured.	scores were		
					deltoid,	positively		
					abdominal and	correlated		
					subscapular.	only with		
						abdominal		
						fold thickness.		
Nutritional	2019	Michela	Italv	327	We conducted	Nutritional	Consumption	IA
support aimed		Barichella		patients	a pragmatic	support	of a nutritional	
at muscles for		Durienenu		putients	two_center	resulted in a	formula based	
at muscles for		, Emenuele			two-center,	resulted in a	on where	
renabilitation in		Emanuele				inore	on whey	
patients with		Cereda,			(1:1), blinded	significant	protein	
Parkinson's		Giovanna			estimator	increase in	enriched with	
syndrome.		Pinelli,			controlled trial	distance	leucine and	
		Laura			(Protein,	walked during	vitamin D with	
		Iorio,			Leucine and	the 6MWT	MIRT	
		Diana			Vitamin D	(mean 69.6	improved lower	
		Caroli,			Enhancing	meters [95%	extremity	
		Irene			Rehabilitation	confidence	function. It	
		Masiero			[PRO-	interval (CD)	preserved	
		Valentina			I FADEDI	60.7-78.61	muscle mass in	
		v alciulla			April 2017 to	then n -	nuscie mass m	
		remi,			April 2017 to	ulan no	patients with	
		Erica			January 2018)	support (51.8	PD or	
		Cassani.			in cognitively	meters [95%	parkinsonism.	
					intact patients	CI 37.0-		
					with PD or	66.7]): center-		
					parkinsonism	adjusted mean		
					and subjected	difference.		
					to MIRT of 30	18.1 meters		
					days Patients	(95% CI 0 9-		
					(n - 150)	353)(n -		
					(1 - 130)	0.020		
					received a	0.039). Enert		
					standard	Further		
	1	1			hospital diet	adjustment for		

					with or without a nutritional supplement based on whey protein enriched with leucine and vitamin D twice daily. The primary efficacy endpoint was increased distance walking during a 6- minute walk test (6MWT).	changes in dopaminergic therapy and SMM yielded consistent results: mean difference, 18.0 meters (95% CI, 0.7 to 35.2) (p = 0.043). A significant effect was also found for the following secondary endpoints: 4- meter walking speed (p = 0.032), TUG (p = 0.046), SMM, and SMM index (p = 0.029). Six patients discontinued nutritional therapy due to mild side		
The effect of the Mediterranean diet on cognitive function in patients with Parkinson's disease: a randomized controlled clinical trial Dietary lycopene supplementatio n improves cognitive performance in tau transgenic mice expressing the P301L mutation by inhibiting oxidative stress and hyperphosphor ylation of tau.	2017	Lixia Yu, Weiguang Wang, Wei Pang, Zhonghai Xiao, Yugang Jiang, Yan Hong.	China	46 P301L transgenic mice.	P301L transgenic mice were assigned to three groups: P301L group (P301L), P301L+lycope ne (Lyc), and P301L+lycope ne/vitamin E group (Lyc+VE). The present study used age-matched C57BL/6J mice as wild- type (Con) controls. Spatial memory was assessed using the radial arm, while passive memory was assessed using step-down and step-by-step tests. Tau phosphorylati on levels were detected by Western blotting. Biomarkers of oxidative stress were measured in serum using biochemical assay kits.	Compared with the control group, P301L mice showed significant spatial and passive memory impairments, elevated malondialdehy de (MDA) levels, and decreased glutathione peroxidase (GSH-Px) activity in serum. Increased tau phosphorylati on on Thr231/Ser23 5, Ser262 and Ser396 in the brain Lycopene or lycopene/vita min E supplements could significantly improve memory deficits, observably decrease MDA concentrations and increase GSH-Px activities, and markedly attenuate hyperphospho	The present study was carried out to examine whether Lycopene or lycopene/vitami n E could exert protective effects on memory deficit and oxidative stress in tau transgenic mice expressing the P301L mutation. It was concluded that the antioxidant combination of Lycopene and vitamin E synergistically generated significant effects against oxidative stress in tauopathies.	ΙΑ

						rylation of tau		
						at multiple		
						AD-related		
						sites (n <		
						(p < 0.001)		
T 007 0	2015	5 1/1	<i>a</i> .			0.001).		.
Efficacy of	2017	Dong-Mei	China	//items	The current	Results reveal	In summary,	IA
vitamin B		Zhang,			meta-analysis	that the	the current	
supplementatio		Jian-Xin			evaluated the	intervention	analysis	
n on cognition		Ye, Jun-			efficacy of	group	indicates that	
in elderly		Shan Mu,			folic acid and	achieved a	for patients	
patients with		Xiao-Ping			vitamins B12	statistically	with cognitive	
cognition-		Cui			and B6 in	significant	impairment	
related		cuii			reducing	greater	secondary to	
disaasas					homogysteine	raduction in	Alzhoimor's	
uiseases.					the surface			
					thereby	nomocysteine	and dementia,	
					attenuating	levels than the	adjunctive	
					cognitive	control	therapy with	
					decline in	(pooled mean	vitamin B and	
					elderly	difference = -	folic acid	
					subjects with	3.625, 95%	supplements	
					neurodegenera	confidence	reduced plasma	
					tive disease or	interval [CI] =	homocysteine	
					dementia	-5.642 to -	levels	
					Randomized	1.608 P <	However it did	
					controlled	0.001)	not provide	
					trials (PCTs)	However no	significant	
					acomparing the	statistically	advantagas	
						statistically	auvainages	
					effectiveness	significant	over placebo in	
					of folate and	difference was	preventing	
					vitamin B	found in the	further	
					supplements	MMSE	cognitive	
					in patients	(pooled mean	decline. The	
					with cognitive	difference =	current results	
					impairment	0.027, 95% CI	suggest that the	
					secondary to	= -0.518 to	evidence on	
					neurodegenera	0.573, P =	reducing	
					tive disease or	0.921)	cognitive	
					dementia were	between the	impairment	
					identified	groups	induced by	
					using the	Broupsi	vitamin B	
					keywords		supplementatio	
					"homocystein		n by decreasing	
					noniocystem		homooyataina	
					c,		ranges is	
					toinomio		discordant	
					tememia,		uiscordant.	
					vitamin B,		Further	
					vitamin B6,		validation of	
					B12, acid		the current	
					tolic,		findings with	
					cognitive,		trials of larger	
					disease and		sample sizes	
					dementia".		and longer	
					The outcome		durations is	
					measures		recommended.	
					analyzed were			
					the Mini-			
					Mental State			
					Examination			
					(MMSE)			
					score and			
					serum			
					homocysteine			

As mentioned previously, patients suffering from Parkinson's disease, from a nutritional point of view, are more vulnerable to suffering from malnutrition; therefore, the quality of life of these patients is significantly reduced. A meta-analysis conducted in China involved 2,707 patients with PD and 150,661 healthy controls, aiming to observe the impact of the disease on their quality of life (QoL). The professionals involved in this study used several questionnaires that observed a statistically significantly worse quality of life in Parkinson's patients, which varied depending on their association with the disease, the most significant of which is the Parkinson's Disease Questionnaire-39 (PDQ-39).) which had the largest effect size (standard mean difference, SMD=-1.384, 95% CI: -1.607, -1.162,

Z=12.189, P<0.001) followed by questions. European Quality of Life Questionnaire-Visual Analogue Scale (EQ-VAS)(DME= -1.081, 95% CI: -1.578, -0.584, Z=-4.265, P<0.001) (Helgudóttir et al., 2024).

Similarly, in another systematic review in which QOL was observed to be influenced by motor and non-motor symptoms of Parkinson's disease, 1149 patients with this pathology were included, who used for qualitative evaluation a Rainbow model of integrated care integration to determine the integration of professional with the patient and a better quality of life. Meta-analysis of randomized controlled trials revealed significant heterogeneity (I2=90 %, P < 0.0001). Subgroup analysis including only ambulatory care models indicated homogeneity of effects and improved health-related quality of life in favor of integrated care (standardized mean difference [SMD], -0.17; 95% CI, from -0.31 to -0.03; P = 0.02) (Chiang, Cheong, Cordato, & Smerdely, 2024).

In the same way that we observe that Parkinson's has a directly proportional relationship with the quality of life, malnutrition has a clear relationship with the sick person's QoL, depending on the disease's stage. In 2020, in Germany, Gruber MT et al. conducted a study to determine the relationship between quality of life, clinical parameters and malnutrition in Parkinson's disease. It involved 92 people without dementia who used the Mini Nutritional Assessment (MNA) to assess nutritional status; for motor disability and level of non-motor symptoms, they used the Unified Disease Rating Scale.

For Parkinson's [MDSUPDRS], Nonmotor Symptoms and Staging Questionnaire, for depression (Becks Depression Scale-II) and for QoL (PDQ-39). It was found that one in two patients were malnourished or at risk of malnutrition; furthermore, there is a significant relationship between neuropsychological symptoms, duration of the disease and decreased food intake, which led to malnutrition. Since malnutrition affects quality of life, we analyzed the relationship between nutritional status and domains of the PDQ-39. The MANOVA revealed a significant multivariate main effect for the total MNA score across all eight PDQ-39 subdomains (p = 0.016; Wilk's Λ = 0.799, partial η 2 = 0.20). However, significant univariate main effects for MNA were only found for emotional well-being (p<0.001, η 2partial=0.15).), mobility (p = 0.004, partial η 2 = 0.09), stigmatization (p = 0.003, partial η 2 = 0.1) and social support (p=0.043, η 2partial=0.05). As indicated by η 2partial, the strongest association was found between malnutrition and emotional well-being (Kluger et al., 2024).

That is, the QoL of the patient suffering from Parkinson's has a proportional relationship with his nutritional status. Going into the topic of our study, several studies indicate that diet quality also has a direct relationship with the onset of Parkinson's of their diet via the Dietary Screening Tool (DST) in 2009 and their potential risk of Parkinson's. After 6.94 years of follow-up, 47 non-accidental cases of Parkinson's disease were reported. High diet quality was related to not being a smoker, having a higher level of education, and living with relatives. A direct association was found between a high-quality diet and a lower risk of suffering from Parkinson's disease (p=0.02), just as high consumption of fruit, whole grains, cakes and juices at breakfast was associated with a lower risk of Parkinson's disease (p=0.02), p<0.05) (Katiyar et al., 2024).

Similarly, TalebiS et al. so relate the intake of antioxidants and the risk of suffering from Parkinson's in their study, which involved 448,737 participants (4,654 cases of PD) in which they relate this risk to various antioxidants and determined that there is a relationship between high consumption of flavonoids and their derivatives with a lower risk of suffering from PD (RR: 0.77; CIdel95%:0.46,1.29; I2=77.1%,p=0.03). Furthermore, they observed that a 1 mg/day increase in dietary zinc intake was associated with a significantly lower risk of PD (OR: 0.65, 95% CI: 0.49, 0.86, n = 1). No significant differences were found in the intake of vitamin C (Caminiti et al., 2024; Pandit, Kulkarni, & Singhvi, 2024).

Similar results were also found in another meta-analysis carried out in Sweden, where the aim was to analyze a relationship between plasma levels of thiamine (P-THIAM), thiamine monophosphate (P-TMP) and phosphate (PePHOS) and PD. Seventy-five patients with mild and average cognitive impairment participated and showed bivariate correlations between PePHOS and P-TMP for the total PD population and controls, as well as for men with mild cognitive impairment (r=0.533; n=22; p=0.011) but not for men with normal cognition (r=0.314; n =19; p=0.204)(X. Liu et al., 2024).

Considering the poor quality of life of Parkinson's patients and its relationship with diet, a systematic review was carried out in Poland on the prevalence of malnutrition in Parkinson's disease involving 5,613 subjects over the age of 18 between 2000 and 2020. The assessment method was MNA, with 60.8% of men in 22 studies, where the youngest was 20 years old and the oldest was 92 years old. They determined that 39.2% of patients were malnourished and 59% were at risk of malnutrition. These results correlate with those. The prevalence of malnutrition in this group was 39.2%, and 30.3% were at risk of malnutrition, with no significant differences by sex or age (p<0.05). Similarly, these two groups had a longer course of the disease, severe motor and non-motor symptoms, lower cognitive scores, and higher levels of depression and anxiety (p < 0.05) (Farombi et al., 2024).

The literature supports that the risk of malnutrition is more significant in people who have advanced stages of the disease, and its symptoms are a possible predisposing factor; furthermore, it produces a lower cognitive level, therefore, a greater risk of mental problems and a worsening of the quality of life.

Another study, published in 2019, conducted a study on malnutrition in 75 patients with Parkinson's disease and its gastrointestinal clinical correlation using MNA as a nutritional assessment method, where 12% presented malnutrition and 41.3% were at risk of malnutrition. Similarly, a clinical correlation was found between gastrointestinal manifestations and abnormal nutrition, sialorrhea (p=0.041), dysphagia (p=0.00081) and constipation (p=0.0042) with malnutrition. No statistically significant differences were found between groups for age, sex and disease duration. These results correlate with those in Budrewicz's research (Dagar et al., 2024).

A study was also carried out in 2019, where it was demonstrated that in 40 patients suffering from PD, 25% had a high risk of malnutrition positively associated with the duration of the disease through the use of Nutrition Risk Screening (NRS 2002). The difference between these two studies was marked in the positive relationship that the 2002 NRS result had with the intake of L-DOPA, which results in a directly proportional relationship between these two variables. (Federico et al., 2024)

Taking into account that dysphagia has a crucial clinical correlation with the patient's nutrition, Parkinson Umemoto G. and Furuya H. mention that symptoms such as bradykinesia and muscle rigidity are recognized causes of swallowing disorders related to abnormal movements that include hesitant chewing, loss of the labial bolus, tongue tremor, prolonged tongue elevation, pumping, limited and slower mandibular excursion in the oral phase; Therefore, a modification of the consistency of solids and liquids is recommended to avoid aspiration pneumonia (Liang et al., 2024). Furthermore, there is an Italian consensus on the treatment of dysphagia in Parkinson's disease published in 2021, which cites compensatory swallowing therapies in patients suffering from this pathology. Standard swallowing therapy addresses the pathophysiological and mechanical mechanisms of the disease in which the patient is guided in swallowing manoeuvres, muscle strengthening exercises and tactile thermal stimulation, as well as neurostimulation therapies to treat this gastrointestinal manifestation; however, there is insufficient long-term evidence to prevent complications such as bronchial aspiration, other than the use of this drug (Tasleem, Kaushik, Kaushik, Tabassum, & Parvez, 2024). For cynics, it is necessary for a patient with sufficient cognitive abilities to follow the doctor's instructions. For this reason, the idea of suggesting postural therapies and using food thickeners considers the person's hydration, which slows down the flow of liquids, allowing more time for the respiratory tract to close (Pigott et al., 2024).

Krikorian R. et al. carried out a controlled study in 2019 with 18 patients with Parkinson's disease and mild cognitive impairment to observe whether nutritional ketosis helps stop cognitive deterioration. They observed that the low-carbohydrate group improved short-term performance in lexical access (F(1,11) = 6.55, p = 0.02, effect size Cohen's f = 0.76) and in composite memory (F(1,11) = 8.42, p=0.01, f=0.87), therefore, demonstrated a strong relationship between the ketogenic diet and cognitive impairment; However, a larger sample is needed to be fully used in the nutritional treatment of Parkinson's, but it is an option in this type of patients (J. Liu et al., 2024).

Likewise, it supports the theory of nutritional ketosis to avoid neuroinflammation and oxidative stress typical of Parkinson's disease, in this case, with the administration of polyunsaturated acids, especially Omega 3 (PUFAn-3). They defend that n-3 PUFAs are essential components that preserve cell membrane structure, inhibit the production of proinflammatory cytokines, and protect astrocyte function by promoting the production of neurotrophins, normalizing neurotra Barichella M.etal. Also, encouraging results were obtained by studying a nutritional formula based on whey proteins enriched with leucine and vitamin D in 327 patients with Parkinson's disease without cognitive impairment, subjected to a test of walking 6 minutes for 30 days. They observed a significant increase in mean center-corrected distance difference, 18.1 meters (95% CI 0.9-35.3) (p=0.039). Therefore, we could say that nutritional support for muscle rehabilitation could also be effective in avoiding dysphagia and the consequent risk of malnutrition, knowing that this is caused by bradykinesia and muscle rigidity (Hanff et al., 2040).

On the other hand, dietary supplements have also been studied to improve cognitive performance, as in the study where the combination of Lycopene and vitamin E antioxidants in transgenic mice had synergistic reactions against oxidative stress, thus arresting cognitive impairment (p < 0.001), and Zang DM's research. et al. observed that folic acid and vitamin B supplements reduced plasma homocysteine levels (p<0.001); however, no significant differences in improvement of cognitive impairment were found (Rafe, 2024).

However, the study published in 2020 measured motor capacity and cytokine levels in serum and brain tissues in laboratory models by administering lactic acid (LAB) and vitamin B-producing bacteria. They demonstrated that animals administered the 3 strains had higher brain cell counts by tyrosine hydrolysis, decreased inflammatory cytokines and TNF- α in serum, and increased anti-inflammatory delacytokine interleukin 10 in serum and brain tissues compared to animals that did not receive supplementation. For this reason, Boulos C.etal claims in his systematic review that high consumption of vitamin B can be considered neuroprotective against Parkinson's disease since there are lower levels of homocysteine, which is neurotoxic (Wei, Zhao, Cheng, Huang, & Zhang, 2024).

One of the most exciting tests was presented by PaknahadZ.etal, in which the effect of the Mediterranean diet on the cognitive function of 80 patients in Iran was demonstrated for 10 weeks. This longitudinal study was conducted with a Persian version of the Montreal Cognitive Assessment (MoCA). They determined that, compared to the control group, there was a statistically significant difference of a higher mean score for executive function, language, attention, active memory and concentration (p < 0.05, for all); however, visual-spatial ability learning memory, and time-place navigation did not differ significantly. This leads us to think about the high impact of using this type of diet against the cognitive deterioration of people with Parkinson's and the improvement of quality of life. Similar results were also observed in the study conducted by Bianchi et al., where significant effects and high drug adherence (Suryawanshi, Gujarathi, Mulla, & Bagban, 2024)

Mediterranean diet as prevention of cognitive deterioration linked to the quality and quantity of food and the consequent reduction of insulin. The characteristics of this diet are the abundance of fruit and vegetables, unrefined carbohydrates, olive oil and red wine. However, they observed better clinical outcomes in studies with controlled calorie intake in this diet; for example, they found symptomatic improvement following a low-energy, low-carbohydrate, high-fat regimen of this diet, with a caloric intake of approximately 1700 to 1800 Kcal (CHO 39%, protein 14% and fat 47%) (Kezele & Ćurko-Cofek, 2024).

Finally, it is worth mentioning what was studied by Lange KW et al., where they observed the protective effects of the Mediterranean diet in neurodegenerative diseases since it associates high adherence to this dietary regime with an older age of onset of the disease with a lower risk of developing Parkinson's disease. Furthermore, it is mentioned that adopting a Mediterranean diet was associated with a reduced likelihood of prodromal PE in older adults in Greece; this is very interesting since preventive approaches are more effective at this stage. However, it is important to remember that in Mediterranean culture, exercise and muscle strengthening are an essential part of lifestyle, which was not taken as a variable in this study (Levi, Ripamonti, Moro, & Cozzi, 2024; Parihar, Gaur, & Khan, 2024).

Furthermore, as already mentioned, vitamin and antioxidant supplements have a significant effect in preventing or delaying the onset of Parkinson's disease since they intervene in the pathophysiological mechanisms involved in the disease, such as oxidative stress, the formation of free radicals and neuroinflammation. For this reason, it becomes a challenge for the nutritionist to find an adequate and individualized diet for the Parkinson's patient depending on the stage he is in, following the established guidelines regarding the dietary treatment of Parkinson's disease examined in this study (Al-Hakeem, Zhang, DeMarco, Bitter, & Hinyard, 2024; Shukla et al., 2024).

CONCLUSION:

Parkinson's disease is one of the neurodegenerative pathologies with the highest incidence in men aged between 70 and 74 years, characterized by extrapyramidal alterations such as tremor at rest, postural instability, bradykinesia and rigidity, the latter two considered the leading causes of symptoms gastrointestinal disorders such as dysphagia, which impacts a high risk of malnutrition in Parkinson's disease depending on the severity of the disease stage and pharmacological doses. Furthermore, malnutrition and the symptoms that accompany it predispose the patient to have a deteriorated lifestyle on both a personal and interpersonal level.

Malnutrition and low quality of life are two of the leading nutritional problems observed in these patients; in extreme cases where the level of dysphagia is severe, pneumonia due to aspiration of the product is observed of an inadequate diet. It has been observed that there is a proportional relationship between malnutrition and lifestyle since adequate nutritional therapy predisposes the person to emotional well-being at both a personal and family level. Furthermore, the quality and quantity of the diet predisposes to the rapid progression of Parkinson's; furthermore, a high consumption of fruit, whole grains, polyunsaturated fatty acids, vitamins and antioxidants predisposes to a slow progression of the disease and less cognitive deterioration.

The research mentions the use of guided diets depending on the nutritional status of the person suffering from Parkinson's and the progress of the disease. There is evidence of muscle-strengthening diets based on whey protein supplements enriched with leucine and vitamin D, but also with Lycopene and vitamins E and B, which can inhibit oxidative stress and the consequent decrease in homocysteine, which would delay the neurodegenerative process, therefore, reducing symptoms. The Mediterranean diet is considered a feasible option for nutritional support for Parkinson's since it features a guided calorie intake with a low CHO content and is rich in fat. Furthermore, guidelines for the treatment of dysphagia recommend a diet that can be modified in the consistency of liquids and solids throughout the disease.

REFERENCES:

- 1. Al-Hakeem, H., Zhang, Z., DeMarco, E. C., Bitter, C. C., & Hinyard, L. (2024). Emergency department visits in Parkinson's disease: The impact of comorbid conditions. The American Journal of Emergency Medicine, 75, 7-13.
- 2. Arunachalam, K. D., Saranya, S., & Karuppannan, S. K. (2024). Role of dietary fibres in the management of hypertension and its association with neurodegeneration Nutraceutical Fruits and Foods for Neurodegenerative Disorders (pp. 261-275): Elsevier.
- 3. Banou, E., Vrahatis, A. G., Krokidis, M. G., & Vlamos, P. (2024). Machine Learning Analysis of Genomic Factors Influencing Hyperbaric Oxygen Therapy in Parkinson's Disease. BioMedInformatics, 4(1), 127-138.
- 4. Bartolomeu Pires, S., Kunkel, D., Kipps, C., Goodwin, N., & Portillo, M. C. (2024). Personcentred integrated care for people living with Parkinson's, Huntington's and Multiple Sclerosis: A systematic review. Health Expectations, 27(1), e13948.
- 5. Cabanillas, J., Risco, R., Munive-Degregori, A., Guerrero, M. E., Mauricio, F., & Mayta-Tovalino, F. Periodontitis and neuropathic diseases: A literature review. Journal of International Society of Preventive and Community Dentistry, 10.4103.
- 6. Caminiti, S. P., Gallo, S., Menegon, F., Naldi, A., Comi, C., & Tondo, G. (2024). Lifestyle Modulators of Neuroplasticity in Parkinson's Disease: Evidence in Human Neuroimaging Studies. CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders).
- 7. Chen, S. T., & Small, G. W. (2024). Precision Nutrition in Aging and Brain Health Precision Nutrition (pp. 241-276): Elsevier.
- 8. Cheng, W.-H., Quan, Y., & Thompson, W. F. (2024). The Effect of Dance on Mental Health and Quality of Life of People with Parkinson's Disease: A Systematic Review and Three-level Meta-Analysis. Archives of Gerontology and Geriatrics, 105326.
- 9. Chiang, L., Cheong, D., Cordato, N. J., & Smerdely, P. (2024). A systematic review of visual art therapy and its effects in older people with mild cognitive impairment. International Journal of Geriatric Psychiatry, 39(1), e6053.
- Ciocca, M., & Pizzamiglio, C. (2024). Clinical Benefits of Therapeutic Interventions Targeting Mitochondria in Parkinson's Disease Patients. CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders).
- Dagar, K., Asati, V., Bharti, S. K., Suryavanshi, A., Shukla, D., Mahapatra, D. K., & Kumar, V. (2024). Functional food for mitochondrial dysfunction and autophagy in neurodegenerative diseases Nutraceutical Fruits and Foods for Neurodegenerative Disorders (pp. 31-61): Elsevier.
- Delafontaine, A., Vialleron, T., Barbier, G., Lardon, A., Barrière, M., García-Escudero, M., ... Descarreaux, M. (2024). Effects of Manual Therapy on Parkinson's Gait: A Systematic Review. Sensors, 24(2), 354.
- Duvdevani, M., Yogev-Seligmann, G., Schlesinger, I., Nassar, M., Erich, I., Hadad, R., & Kafri, M. (2024). Association of health behaviors with function and health-related quality of life among patients with Parkinson's disease. Israel Journal of Health Policy Research, 13(1), 1-10.
- Farombi, E. O., Ajeigbe, O. F., Anamelechi, J., Adeyemo, O., Ojo, M. O., Atarase, O., & Ikeji, C. N. (2024). Neuroprotection by ginger and its components in neurodegenerative diseases Natural Molecules in Neuroprotection and Neurotoxicity (pp. 1525-1543): Elsevier.
- 15. Federico, S., Cacciante, L., Cieślik, B., Turolla, A., Agostini, M., Kiper, P., & Picelli, A. (2024). Telerehabilitation for Neurological Motor Impairment: A Systematic Review and Meta-Analysis on Quality of Life, Satisfaction, and Acceptance in Stroke, Multiple Sclerosis, and Parkinson's Disease. Journal of Clinical Medicine, 13(1), 299.
- Golpour-Hamedani, S., Pourmasoumi, M., Zarifi, S. H., Askari, G., Jamialahmadi, T., Bagherniya, M., & Sahebkar, A. (2024). Therapeutic effects of saffron and its components on neurodegenerative diseases. Heliyon.

- 17. Hanff, A.-M., McCrum, C., Dessenne, C., Pauly, C., Pauly, L., Leist, A. K., . . . Zeegers, M. (2040). DETERMINANTS OF PATIENT-REPORTED FUNCTIONAL MOBILITY IN PEOPLE WITH PARKINSON'S DISEASE: PROTOCOL FOR A SYSTEMATIC REVIEW OF AETIOLOGY AND RISK. development, 7.
- Helgudóttir, S. S., Mørkholt, A. S., Lichota, J., Bruun-Nyzell, P., Andersen, M. C., Kristensen, N. M. J., . . . Nieland, J. D. V. (2024). Rethinking neurodegenerative diseases: neurometabolic concept linking lipid oxidation to diseases in the central nervous system. Neural Regeneration Research, 19(7), 1437-1445.
- 19. Hiu, S., Yong, T., Hasoon, J., Teare, M. D., Taylor, J. P., & Lin, N. (2024). Instrumental variables in real-world clinical studies of dementia and neurodegenerative disease: Systematic review of the subject-matter argumentation, falsification test, and study design strategies to justify a valid instrument. Brain and Behavior, 14(1), e3371.
- Karande, S., & Kulkarni, V. (2024). Advancing Neurodegenerative Disorder Diagnosis: A Machine Learning-Driven Evaluation of Assessment Modalities. International Journal of Intelligent Systems and Applications in Engineering, 12(5s), 309-323.
- 21. Katiyar, S., Kumari, S., Dev, A., Tripathi, R. S., Srivastava, P. K., & Mishra, A. (2024). Herbal Nanoparticles Drug-Loaded for the Treatment of Neurodegenerative Diseases. Nanoarchitectonics for Brain Drug Delivery, 266.
- 22. Kezele, T. G., & Ćurko-Cofek, B. (2024). Neuroprotection induced by olive oil components Natural Molecules in Neuroprotection and Neurotoxicity (pp. 1679-1702): Elsevier.
- Kluger, B. M., Katz, M., Galifianakis, N. B., Pantilat, S. Z., Hauser, J. M., Khan, R., . . . Long, S. J. (2024). Patient and Family Outcomes of Community Neurologist Palliative Education and Telehealth Support in Parkinson Disease. JAMA neurology, 81(1), 39-49.
- 24. Leonard, H., Jonson, C., Levine, K., Lake, J., Hertslet, L., Jones, L., . . . Terry, N. (2024). Assessing the lack of diversity in genetics research across neurodegenerative diseases: a systematic review of the GWAS Catalog and literature. medRxiv, 2024.2001. 2008.24301007.
- 25. Levi, S., Ripamonti, M., Moro, A. S., & Cozzi, A. (2024). Iron imbalance in neurodegeneration. Molecular Psychiatry, 1-14.
- 26. Liang, J., Wan, Z., Qian, C., Rasheed, M., Cao, C., Sun, J., . . . Deng, Y. (2024). The pyroptosis mediated biomarker pattern: an emerging diagnostic approach for Parkinson's disease. Cellular & Molecular Biology Letters, 29(1), 1-24.
- 27. Liu, J., Lv, X., Ye, T., Zhao, M., Chen, Z., Zhang, Y., . . . Chen, L. (2024). Microbiota-microglia crosstalk between Blautia producta and neuroinflammation of Parkinson's disease: A bench-to-bedside translational approach. Brain, Behavior, and Immunity.
- 28. Liu, X., Liu, Y., Liu, J., Zhang, H., Shan, C., Guo, Y., . . . Tang, M. (2024). Correlation between the gut microbiome and neurodegenerative diseases: a review of metagenomics evidence. Neural Regeneration Research, 19(4), 833-845.
- 29. Mazzucca, C. B., Cappellano, G., & Chiocchetti, A. (2024). Nutrition, Immunity and Aging: Current Scenario and Future Perspectives in Neurodegenerative Diseases. CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders).
- 30. Mohamed, W. M. Y. (2024). Connecting the Dots: AfrAbia's Environmental Challenges and Parkinson's Disease.
- 31. Pandit, N., Kulkarni, S., & Singhvi, G. (2024). Effect of green tea on human brain health Nutraceutical Fruits and Foods for Neurodegenerative Disorders (pp. 301-331): Elsevier.
- 32. Parihar, A., Gaur, K., & Khan, R. (2024). Rapid diagnostic assays for the detection of Alzheimer's and Parkinson's diseases Smart Diagnostics for Neurodegenerative Disorders (pp. 221-250): Elsevier.
- 33. Pigott, J. S., Davies, N., Chesterman, E., Read, J., Nimmons, D., Walters, K., . . . Schrag, A. (2024). Compound impact of cognitive and physical decline: A qualitative interview study of people with Parkinson's and cognitive impairment, caregivers and professionals. Health Expectations, 27(1), e13950.

- 34. Rafe, M. R. (2024). Drug delivery for neurodegenerative diseases is a problem, but lipid nanocarriers could provide the answer. Nanotheranostics, 8(1), 90.
- 35. Shafiee, A., Rafiei, M. A., Jafarabady, K., Eskandari, A., Abhari, F. S., Sattari, M. A., . . . Bakhtiyari, M. (2024). Effect of cannabis use on blood levels of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF): A systematic review and meta-analysis. Brain and Behavior, 14(1), e3340.
- 36. Shukla, D., Jaiswal, A. K., Suryavanshi, A., Asati, V., Mahapatra, D. K., Kumar, V., & Bharti, S. K. (2024). Role of garlic and onion for better cognition and maintenance of neurodegenerative diseases Nutraceutical Fruits and Foods for Neurodegenerative Disorders (pp. 333-352): Elsevier.
- 37. Suryawanshi, M. V., Gujarathi, P. P., Mulla, T., & Bagban, I. (2024). Hypericum perforatum: a comprehensive review on pharmacognosy, preclinical studies, putative molecular mechanism, and clinical studies in neurodegenerative diseases. Naunyn-Schmiedeberg's Archives of Pharmacology, 1-16.
- 38. Tasleem, A., Kaushik, M., Kaushik, P., Tabassum, H., & Parvez, S. (2024). Neuroprotective efficacy of melatonin in the pathophysiology of neurodegenerative disorders Natural Molecules in Neuroprotection and Neurotoxicity (pp. 615-633): Elsevier.
- 39. Tosin, M. H., Goetz, C. G., & Stebbins, G. T. (2024). Patient With Parkinson Disease and Care Partner Perceptions of Key Domains Affecting Health-Related Quality of Life: Systematic Review. Neurology, 102(3), e208028.
- 40. Wang, H., Liu, Y.-T., Ren, Y.-L., Guo, X.-Y., & Wang, Y. (2024). Association of peripheral immune activation with amyotrophic lateral sclerosis and Parkinson's disease: A systematic review and meta-analysis. Journal of Neuroimmunology, 578290.
- 41. Wei, B.-r., Zhao, Y.-j., Cheng, Y.-f., Huang, C., & Zhang, F. (2024). Helicobacter pylori infection and Parkinson's Disease: etiology, pathogenesis and levodopa bioavailability. Immunity & Ageing, 21(1), 1.