
Vol.31 No.01 (2024): JPTCP (1339-1356) Page | 1339 

Journal of Population Therapeutics 

& Clinical Pharmacology 
RESEARCH ARTICLE 

DOI: 10.53555/jptcp.v31i1.4179 

 

BRAIN TUMOR DETECTION AND CLASSIFICATION USING 

DEEP FEATURE FUSION AND STACKING CONCEPTS 
 

Saqlain Raza1, Nasim Gul2, Haider Ali Khattak3, Arisha Rehan4, Muhammad Imran Farid5, 

Anum Kamal6, Dr Jai Singh Rajput7, Sajid Mukhtiar8*, Aziz Ullah9 

 
1,8*Department of Control Science and Engineering, Xi’an University of Architecture and 

Technology, Xi’an, Shaanxi 710055, China 
2Specialist Neurosurgery Zayed Military Hospital -  Abu Dhabi 

3Consultant Neurosurgeon, Neurosurgery Department, Ayub Medical Complex, Abbottabad - 

Pakistan 
4,6MBBS Jinnah Sindh Medical University, Karachi - Pakistan 

5Department of Electrical and Computer Engineering, Air University, Islamabad - Pakistan 
7Independent Researcher Family Medicine, Montgomery - Alabama 
9IMS University of Science and Technology, Bannu KPK - Pakistan 

 

*Corresponding author: Sajid Mukhtiar   

*Department of Control Science and Engineering, Xi’an University of Architecture and 

Technology, Xi’an, Shaanxi 710055, China, E-mail: sajidmukhtiar5@gmail.com 

 

Abstract:  

The Classification of brain tumors plays an important role in determining the treatment plan, course 

of therapy and survival rate. A new technique is proposed in this work for classification of brain 

tumors based on pre-trained neural networks and a stacking algorithm. Then our method begins with 

drawing multiple pre-train CNNs on T1 weighted images of MR brain scans where it extracts features 

from these. Afterwards, an ensemble of these features are used as input to a single layer stacking 

algorithm, which stacks together the predictions of several base classifiers to arrive at the final 

prediction. We evaluate our method on two publicly available datasets of brain MRI scans and show 

it can detect lesions with superior accuracy compared to other methods. In our approach using a pre-

trained CNN allows us to leverage the transfer learning concept because the CNN had been trained 

in advance on a huge image database and extracted relevant features for the task of classifying brain 

tumors. An enhanced accuracy is achieved through a combination of various base classifiers with a 

stacking algorithm. The results of our study demonstrate that we have a promising method of 

categorizing brain tumors and improving healthcare provision. 

 

Keywords: transfer learning; deep learning; ensemble learning; brain tumor classification; PCA; 

machine learning 

 

1. Introduction 

1) Making generalization, reviewing of preview research 

2) Indicate a Gap, field knowledge 

3) Outlining purposes, announcing present findings, indicate structure. 

The brain is the most intricate organ in the human body. It comprises over 100 billion nerve cells and 

regulates the whole neurological system[1]. This crucial organ is originated in the cerebral cortex of 

the brain. Thus, any brain anomaly might be dangerous for human health; the deadliest of these 
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conditions is a brain tumor. A brain tumor can be either primary or secondary. A brain tumor that 

occurs in the brain is known as primary tumor while a secondary brain tumor develops when 

malignant cells travel through the bloodstream to the brain and settle there[2]. Brain tumors can be 

treated in a variety of methods, depending on the size, location and kind of the tumor. Currently, 

surgery is the most popular method of treating brain tumors since it has no detrimental effects on the 

brain[7]. It has been effectively adapted to diagnose, analyze, monitor and treat disorders in the 

human body using medical imaging technologies such as X-rays, ultrasound imaging (UI), computed 

tomography (CT) and magnetic resonance imaging (MRI).  

The radiologists prefer MRI over all other available technologies because, it offers extensive 

microscopic chemical and physical information of the human body at the molecular level. Due to its 

great resolution, MRI is more effective than other technologies in diagnosing and classifying diseases. 

Consequently, MRI scans are frequently employed in medical applications to classify brain tumors.  

 

Recently, early tumor detection using brain MRI imaging has gained considerable importance and is 

regarded as a lifeline for patients with brain tumors. However, it is vital to classify brain tumors; 

knowing the kind of tumors is equally necessary in order to enhance patient survival and recommend 

appropriate therapy. The brain MR images can be categorized as normal and abnormal; a variety of 

techniques have been reported for effectively classifying brain tumors utilizing incredibly high-

resolution brain MRI images with appropriate contrast. The current investigations provide their 

insights into how brain MR imaging is perceived. The robustness of conventional machine learning 

(ML) techniques is constrained by their reliance on manually produced features. However, because 

deep learning-based algorithms automatically identify relevant traits, their performance is far higher. 

Though, it is difficult to acquire the huge amount of data required for deep learning-based algorithms 

for training. In this study, we proposed an innovative approach for extracting robust and discrete deep 

features from brain MR images using a variety of deep convolutional neural networks (CNNs) that 

have already been trained on ImageNet dataset. The extracted deep features are then subjected to 

principal component analysis (PCA) to reduce their dimensionality, and before different machine 

learning (ML) classifiers are used to distinguish between normal and abnormal brain MR images, 

their hyper-parameters are tuned using the GridSearchCV algorithm to boost their efficiency even 

more. According to the proposed criteria, the performance of 9 pre-trained CNN models is examined 

along with 10 distinct Machine learning classifiers. In this study, we fused the top-3 deep features to 

examine the robustness of combining deep features from 3 distinct pretrained deep models. The 

features fusion process assists to gather more diverse and robust features than using a single CNN 

model. Several ML classifiers are then fed the combined top-3 features to predict each output 

separately, and then the top 5 classifiers are selected to perform the single layer stacking algorithm. 

Finally, concatenate features obtained through deep learning are inputted into the single-layer stacked 

classifiers to predict the final output. We used two distinct brain tumor datasets and provided a 

detailed evaluation of 9 Pre-trained CNN models and 10 distinct Machine Learning classifiers. We 

named the small dataset as BTS and large dataset as BTL. Both datasets contain two classes 

(tumor/normal). The outcomes of our experiment show that a combination of deep features and a 

single layer stacking algorithm can significantly boost model performance. The summary of our main 

contributions is summed up as follow:  

● The overall classification accuracy is enhanced by introducing a new automated approach that can 

replace traditional brain tumor classification. 

● The quality of brain MR images is enhanced by employing an efficient strategy. 

● To boost the classification accuracy on a small dataset, a data augmentation strategy is applied, 

and the influence of over-fitting on classification performance is investigated. 

● Pre-trained CNN models are employed for robust and discriminative features extraction. 

● PCA algorithm is applied on the acquired deep features from pre-trained CNN models to perform 

dimensionality reduction.  

● Single layer stacking technique is employed on the selective ML classifiers. 
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● Top-3 deep features are concatenated and subjected to the single layer stacking algorithm to attain 

the highest level of performance. 

● Brain tumor classification using the proposed method is compared to cutting-edge methodologies. 

The rest of paper is organized as follows: Section (2) elaborates the relevant research work, Section 

(3) briefly explains the methodology of our proposed framework, Section (4) contains the 

experimental results, Section (5) includes a brief discussion, and at last, Section (6) offers the 

conclusion, limitation as well as future work. 

 

2. Related Work 

Researchers have proposed numerous traditional and automated techniques for addressing the brain 

tumor classification problem. This section covers some of the most recent findings.  

In traditional machine learning, data preprocessing, feature extraction, feature selection, model 

training, and model testing are common steps. However, the accuracy of classification primarily 

depends on the features extracted from input images, making feature extraction the most critical step. 

Low-level features, including statistical measures, texture features, and intensity, as well as high-

level features such as SIFT, SURF, BoW, and HoG, are the two types of feature sets employed in 

traditional ML. The choice of features is determined by the problem being addressed and the available 

data. The effectiveness of traditional ML approaches is highly reliant on the chosen features and their 

capacity to capture the essential information in the images. For instance, Ahmed et al. [8] utilized a 

noise-reduction approach to extract essential image features by utilizing gray-level co-occurrence 

matrix (GLCM) characteristics. Brain tumor segmentation was conducted through Discrete Wavelet 

Transform (DWT) to improve the efficiency of the process by reducing complexity. The DWT was 

applied to decompose the original image into different sub-bands, which were then filtered by 

thresholding. Finally, the segmented image was obtained by applying an inverse DWT. The study 

reported that the proposed method improved the accuracy of brain tumor segmentation by up to 95%. 

Cheng et al.[9]proposed a brain tumor classification method that involved the use of multi-scale MRI 

images of the brain. They utilized image dilation techniques to identify regions of interest (ROI) in 

the MR images, and augmented the tumor area with fine-ring-shaped features to improve the 

classification accuracy. The team then extracted features from the images using three different feature 

extraction techniques, namely intensity histogram, GLCM, and BoW models, and evaluated their 

effectiveness. They evaluated their model using a T1-weighted CE-MRI dataset obtained from 

General and Nanfang Hospitals, China, and achieved accuracies of 87.54%, 89.72%, and 91.28% for 

the three different feature extraction methods, respectively. 

Researchers have developed several methods to eliminate undesired regions of the brain in medical 

imaging. Kumar et al. [10] presented a hybrid approach to classify brain tumor magnetic resonance 

images (MRIs). Their approach involves extracting a feature matrix using the Discrete Wavelet 

Transformation (DWT), followed by reducing the number of features with Principal Component 

Analysis (PCA). Finally, the normal and abnormal brain MR images are classified using a Support 

Vector Machine (SVM) classifier. They claimed 90.9 % accuracy on the SICAS Medical Image 

Repository brain MR Images dataset. Bahadure and NileshBhaskarrao Ray et al. [11] Firstly, applied 

Wiener Filter on brain MR images to remove unwanted noise. Secondly, the feature matrix was 

extracted by Histogram and Co-occurrence Matrix then they used Principal Component Analysis 

(PCA) for dimensionality reduction. Finally, authors employed a kernel-based Support Vector 

Machine (SVM) to classify normal and pathological brain MRI images. The study was conducted 

using a T1-weighted brain MRI dataset, obtained from the Harvard Medical School Website, and 

reported an accuracy of 94%, with a fraction of 95%, a similarity index of 96.20%, and a total error 

of 7.5%. An additional fraction of 0.025% was also reported by the authors. 

Conversely, machine learning techniques such as deep learning utilize neural networks to extract 

features directly from the input data, thereby eliminating the need for a separate feature extraction 

step. During the training process, the network learns to identify the most relevant features for the 

given classification task. This is especially advantageous when dealing with intricate and 

multidimensional data, such as brain MRI scans, where selecting significant features can be a difficult 
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task for human experts. For instance, Jiang et al. [12] proposed a brain tumor classification approach 

using T1-weighted MRI scans. The authors utilized a region-based active contour model to extract 

regions of interest (ROIs) in the brain MRI images. After that, a set of intensity and texture features 

were extracted from the segmented ROIs. The feature space was reduced through Principal 

Component Analysis (PCA) to address the curse of dimensionality. Finally, the authors employed the 

Random Forest (RF) algorithm for brain tumor classification. The dataset used in this study was 

obtained from the Cancer Imaging Archive (TCIA). The proposed method achieved an accuracy of 

93.5% in the classification of brain tumors. Yao et al. [13] have utilized fuzzy cognitive maps (FCMs) 

to develop a model for the classification of low-grade and high-grade gliomas. The study involved 

the use of magnetic resonance imaging (MRI) data from the Cancer Imaging Archive (TCIA). The 

proposed model employed FCMs to represent the complex relationships between various imaging 

features and the tumor grade. The study reported an accuracy of 87.5% in the classification of low-

grade and high-grade gliomas using the proposed FCM-based approach. The brain MRI images were 

segmented and classified using backpropagation neural network (BPN) and radial basis function 

neural network (RBFN), as proposed by Deep and Devi et al.[14]. First, optimal textural features 

were extracted by using statistical approach then both (BPN) and (RBF) classifiers were applied to 

examine their efficiencies. The (RBFN) algorithm performed better than (BPN) with 85.71% 

accuracy. The statistical approach to extract textural features of MRI brain images, and then BPN and 

RBF classifiers are used for segmentation and classification of the infected region of the brain. 

Authors claimed 85.71% accuracy, over all. 

Recent advances in machine learning and computer vision have led to the development of various 

techniques for medical image analysis, including brain tumor segmentation. In a study conducted by 

Khened et al. [15], they proposed a deep learning-based approach for brain tumor segmentation in 

magnetic resonance images (MRI). The proposed approach used a convolutional neural network 

(CNN) architecture called U-Net, which was specifically designed for biomedical image 

segmentation. The U-Net architecture consisted of an encoder and a decoder, which helped in 

extracting relevant features and reconstructing the segmentation map, respectively. The study 

reported promising results, achieving an average dice score of 0.87 on the BraTS 2017 dataset, which 

is a benchmark dataset for brain tumor segmentation.Soltaninejad M et al. [16] devised an automated 

approach for detecting and segmenting aberrant tissues associated with brain tumors (edema and 

tumor core). The superpixel technique and superpixel classification methodology has implemented 

in the proposed framework. Numerous image features including Gabor textons, intensity, curvatures, 

and fractal analysis are calculated to ensure the robust classification. The classification task is 

performed using two different types of classifiers, namely Support Vector Machine (SVM) and 

Extremely Randomized Trees (ERT), and the outcomes of these classifiers are compared to determine 

their effectiveness. The proposed method had trained and tested on the BRATS (2012) dataset, the 

corresponding evaluation results are 88.09% and 0.88% respectively.  

Recently, different researchers have combined traditional and automated learning methods to classify 

brain MRI images. Integrating traditional and automated learning techniques in classifying brain MRI 

images can improve model performance in several ways. Traditional techniques can help identify key 

features in the images that are crucial in classification. Automated learning techniques, on the other 

hand, can help to optimize the classification process, making it more efficient and accurate. For 

instance, Li et al. [17] proposed a hybrid approach that combined traditional and automated learning 

methods for the classification of brain MRI images. The proposed method employed a combination 

of wavelet-based texture analysis, gray-level co-occurrence matrix (GLCM) features, and deep 

learning-based features extracted using a convolutional neural network (CNN). A support vector 

machine (SVM) classifier was then used to classify the brain MRI images. The proposed method was 

tested on a publicly available dataset and achieved an overall classification accuracy of 93.5%, 

indicating the effectiveness of the hybrid approach in the classification of brain MRI images.  

Based on a comprehensive review of the literature, it is evident that there has been a significant 

amount of research conducted on the segmentation, feature extraction, and classification of brain 

images obtained from both MRI and CT scans. Researchers have proposed various models and 
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techniques for detecting, segmenting, and classifying brain tumors. Some of these models have been 

proposed with the aim of achieving greater accuracy and efficiency in the diagnosis and treatment of 

brain tumors. Certain researchers have proposed models that focus solely on the segmentation of the 

tumor region in the brain, while others have developed models that can handle both segmentation and 

classification tasks simultaneously. Additionally, most of the researchers performed above mentioned 

tasks by traditional way of machine learning.They manually handled all the recommended steps and 

then obtained their results. Some of them, fused different traditional models together and improved 

their overall accuracy rate. Numerous researchers worked the same on deep learning side as well. 

They performed the same task either by using single model or ensemble different deep leaning 

models.  

 

3. Materials and Methods 

This research focuses on a new knowledge-based system for the diagnosis of brain tumors using two 

different datasets via image-preprocessing, features extraction, dimensionality reduction, features 

fusion, ML classifiers ensemble, prediction and classification techniques. This section has been 

divided into certain sub-sections: We first preprocessed the MR Images of both training and 

validation datasets. In Section 3.1, the MR images undergo preprocessing by cropping, resizing, and 

normalization of their values. The preprocessed images then undergo augmentation in Section 3.2 

before being fed into pre-trained CNNs to extract features through deep models in Section 3.3. To 

reduce the high dimensionality of the correlated deep features space, Principal Component Analysis 

(PCA) is utilized in Section 3.4 to convert it into a low dimensional uncorrelated feature space. The 

low-dimensional features are then evaluated using multiple ML classifiers in Section 3.5, and their 

hyperparameters are fine-tuned using GridSearchCV technique in Section 3.6. Finally, the 

performance of the proposed method is analyzed in Section 3.7.Figure 1 depicts the primary 

schematic of our proposed farmwork. 

 

 
Figure 1 The main diagram of our proposed model 
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3.1. Pre-Processing 

The brain MRI datasets being considered contain unwanted areas that can impact the model's 

performance. To address this, a cropping method is utilized. The method involves identifying the 

extreme points along the brain's contour in the image[18]. The process is shown in Figure 2. First, 

the original MRI dataset is loaded as input. Next, a threshold is applied to separate the brain region 

from the rest of the image, converting it to a binary image. Then, erosion and dilation operations are 

used to remove noise and the image is slightly blurred. The extreme points are determined by finding 

the smallest and largest x-coordinates in the brain's contour. The same process is repeated for the y-

coordinate, giving the north and south coordinates. These extreme points are used to encircle the most 

prominent contour of the threshold image and the image is cropped. 

 

 
Figure 2.Procedure to crop unwanted voids and regions in MR image. 

 

In this work, pre-trained CCN models are used to extract the feature space. The pre-trained models 

accept input images with 224 x 224 pixels in size except for inception-V3 which needs a 299 x 299 

pixeled input image. Hence, the cropped images have been resized by either 224 x 224 or 299 x 299 

pixels. 

 

3.2. Image Augmentation 

The concept of data augmentation comes when we deal with the small dataset. Optimizing the data 

can be done through the inclusion of slight modifications of existing data or by generating new 

synthetic data utilizing the existing knowledge of the dataset[19]. To prevent overfitting the machine 

learning model during training, a variety of data augmentation strategies are applied. Also, it enhances 

the model's overall performance. By enhancing the data, we can configure and fine-tune several 

settings. In this work, we augmented the BTS MRI dataset by applying left/right mirroring, flipping 

the image around both the x-axis and y-axis, adding some noise and applying 15-degree rotation. We 

increased the BTS images from 253 to 977 images. 

 

3.3. Deep Features Extraction  

3.3.1. Convolutional Neural Networks 

The major applications of a convolutional neural network (CNN), which comprises one or more 

convolutional layers, are image processing, segmentation, classification, and other auto correlated 

data. The convolutional layers are essentially a filter that slide all over the input and fetch useful 

information [20,21]. To understand this concept much better is looking at smaller areas of the image 

might be more productive than scanning the entire image for specific traits. In order to lower the 

overall number of parameters, CNN's convolutional layers employ a weight-sharing technique 

[22,23]. Typically, CNN is made up of three components: First, a convolutional layer that is used to 

fetch temporal and spatial characteristics. Second, a max-pulling layer that is used for down-sampling 

the dimensionality of extracted features. Last, a fully connected layer that is used to categorize the 

data. The architecture of convolutional neural network is represented in Figure 3. 
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Figure 3.Depicts the design of Convolutional Neural Networks. 

 

3.3.2. Transfer Learning 

Training a neural network on a big dataset might take weeks. Fortunately, this time may be reduced 

by using model weights from previously trained models. Transfer learning is the process of applying 

a previously trained model to a fresh problem[24]. t is presently very well-liked in deep learning due 

to its capacity to train deep neural networks with only a modest amount of data. In general, CNN 

performs better on bigger datasets than on smaller ones. In scenarios where obtaining a substantial 

training dataset is not feasible, utilizing transfer learning can be an alternative. Transfer learning 

decreases the lengthy training period typically needed to construct deep learning models from the 

ground up and eliminates the need for a sizable training dataset[25,26]. The conceptional 

representation of transfer learning is illustratedin Figure 4. 

 

 
Figure 4 Transfer learning approach. 

 

3.3.3. Deep Feature Extraction 

The technique of turning raw data into numerical features that can be handled while keeping the 

information in the original data set is known as feature extraction[27]. The deep neural networks' 

multiple convolutional layers enable us to extract from the input image both low-level and high-level 

characteristics. The MRI datasets that are used in this work are not particularly large and since it is 

sometimes impractical to train and optimize deep CNNs like InceptionResNetV2 from scratch, we 
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use a transfer learning approach to utilize pre-trained deep models to extract features from MRI scans. 

These CNNs are first trained on the ImageNet dataset to acquire a set of fixed weights for each model. 

The pretrained deep models that are used in this study include InceptionResnetV2[28], DenseNet[29], 

VGG[30], Inception V3[31], NASNetMobile[32], MobileNetV2[33], and MobileNet[34]. 

 

3.4. Dimensionality Reduction 

Large data sets are becoming more common, and they are frequently difficult to understand. PCA is 

a method for reducing the dimensionality of such datasets while preserving information. The PCA 

approach primarily transforms the feature space through the connection between attributes and maps 

the original feature space to the low-dimensional feature space [35,36]. PCA employs an 

unsupervised learning dimensionality reduction approach to correlate multidimensional data groups 

in order to reduce the data dimensions. It eliminates all parameter restrictions, simplifies the data 

structure, makes the data set easier to use, and lowers algorithm computation costs by decreasing 

information loss[37,38]. Eigenvectors with low eigenvalues are eliminated from the transformation 

matrix for data reduction. As a result, PCA shrinks the size of the eigenvector space to which data is 

projected. In the current work, various deep feature extractors are used that is why every feature 

extractor produces different range of features but the number of manually selected PC is set 1250 for 

BTL and 800 for BTS. 

 

3.5. Machine Learning Classifiers 

Several ML classifiers, including K-Nearest Neighbors (k-NN), NuSVC, AdaBoost, SVM with four 

discrete kernels, Random Forest (RF), XGBoost, Light GBM, and Multilayer Perceptrons (MLPs), 

are used to examine the deep features acquired by pre-trained models. All of above are integrated 

with the help of ML library [39]. The subsequent paragraphs elaborate the ML classifiers and their 

hyper-parameters more in detail. 

 

3.5.1. Adaboost 

AdaBoostcontains the set of week learners that are trained iteratively, with the weights of 

misclassified examples being adjusted at each step to increase the focus on difficult example. This 

process continues until a satisfactory level of accuracy is achieved, at which point the final model is 

a weighed combination of all individual weak learners. categories that are initially trained to identify 

misclassified data then their weights are boosted iteratively[40]. By increasing the number of 

estimators to 200, we were able to possibly achieve higher precision than other classifiers[41]. 

 

3.5.2. K-Nearest Neighbors 

K-Nearest Neighbors algorithm is a versatile, non-parametric, instance-based method that performs 

well in classification and regression tasks, especially when the data is high-dimensional. However, 

it's computational complexity, sensitivity to noisy features and the importance of finding the optimal 

parameter, K, make it less desirable for datasets with large number of instances[42]. K-NN uses 

Euclidean distance and Manhattan distance to determine K objects which are most similar to a fresh 

sampling of data, and then decides using the majority decision of its k neighbors. The majority vote 

of its k neighbors determines the outcome. [43]. 

 

3.5.3. Random Forest 

A random forest classifier, also known as an ensemble of decision trees, is a machine learning 

algorithm that uses multiple decision trees to make predictions [44]. The classifier builds multiple 

decision trees using a random subset of the data, and each tree makes its own prediction. The final 

prediction is made by taking the majority vote of all the trees. This approach helps to reduce 

overfitting, as well as increase the accuracy of the model. The random forest classifier can be used 

for both classification and regression problems and is considered one of the most robust and accurate 

machine learning algorithms. Additionally, it can handle high-dimensional data and missing 
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values[45]. It is widely used in various fields such as bioinformatics, image processing, and natural 

language processing[46]. 

 

3.5.4. Support Vector Machine (SVM) 

It is a supervised learning technique that uses to classify or cluster the higher dimensional data. It 

allows using of different kernel functions according to the nature of the data. There are four kinds of 

SVC kernel options available like Linear (which is the linear regression technique), Poly (for 

nonlinear or poly regression), Sigmoid and RBF. In this work, we used all four kernel functions of 

SVM algorithm[47]. Their mathematical representation is shown in Table.1. 

 

Table 1.SVM kernel types, mathematical representations and the prerequisites for each. 

Kernel Mathematical Representation Hyper-Parameters 

Linear 𝐾(𝑥𝑛, 𝑥𝑖) =  (𝑥𝑛, 𝑥𝑖)  

Poly 𝐾(𝑥 , 𝑦) = (𝑥𝑇𝑦 + 𝐶)𝑑 C 

Sigmoid 𝐾(𝑥𝑛, 𝑥𝑖) = (𝑥𝑛, 𝑥𝑖)  + 𝐶) γ, C 

RBF 𝐾(𝑥𝑛, 𝑥𝑖) = 𝑒𝑥𝑝 (−𝛾 ||𝑥𝑛 − 𝑥𝑖  ||2 + 𝐶)   γ, C 

 

3.5.5. NuSVC 

Nu Support Vector Classification, or NUSVC, is a variant of the Support Vector Classification (SVC) 

algorithm that is used for classification tasks. NuSVC allows to a user to specify the number of 

support vectors through the use of a parameter called “nu,” which can be useful in situation where 

the data contains a high level of noise or outliers. NuSVC can be represented as the optimization 

problem of finding the hyperplane in a high-dimensional space that maximally separates different 

classes of data point, while minimizing the complexity of the model. This is achieved through the 

minimization of the sum of squared errors between the predicted and actual values, subject to a set of 

contraints that ensure that the points are correctly classified. Overall, NuSVC is a powerful and widely 

used algorithm for classification tasks that allows for the flexibility to control the number of support 

vectors through the use of the “nu” parameter[48] 

 

3.5.6. XGBoost 

The decision-tree-based ensemble method which is also known as XGBoost, in which it follows an 

iterative procedure to create a strong classifier based on weak learners. It Keeps correcting the errors 

of previous predictors until the training data is correctly predicted by the final best model. It provides 

parallel tree boosting and effectively addresses a variety of data science issues.  

XGBoost is an efficient and effective algorithm for supervised learning problems, specifically for 

classification and regression. Its ability to handle large datasets, high-dimensional spaces and the 

built-in regularization helps prevent overfitting, but its complexity and the importance of parameter 

tuning makes it a challenging algorithm to use[49]. 

 

3.5.7. ML Classifiers Ensemble 

We combined the top five-base learners at a base-level and then provided their outputs to a meta 

classifier as an input. The final class was obtained by applying the hard-voting technique. The 

algorithm representation is shown in algorithm 1. It was noticed that the accuracy was equal to or 

greater than the base learners' greatest accuracy[50]. 

 

1:Input: training data 𝐷 = {𝑥𝑖, 𝑦𝑖}𝑚 𝑖=1  (𝑥𝑖 ∈ 𝑅𝑛, 𝑦𝑖 ∈  ƴ ) 

2:Output: ensemble classifier 𝐻 

3:Step 1: learn a base-level classifiers 

4:fort = 1, 2, 3..., 𝑇do 

5:  learn a base level classifier ℎ𝑡𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝐷 

6:end for 

7:Step 2: construct new dataset of predictions 
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8:fori = 1, 2, 3..., mdo 

9:𝐷ℎ  = {𝑥𝑖
′, 𝑦𝑖},   𝑤ℎ𝑒𝑟𝑒  𝑥𝑖

′ = {ℎ1 (𝑥𝑖), . . , ℎ𝑇(𝑥𝑖)} 

10:end for 

11:Step 3: learn a meta-classifier 

12:learn 𝐻 based on 𝐷ℎ 

13:return 𝐻 

Algorithm 1: Stacked Ensemble 

 

3.6. GridSearchCV 

In this study, GridSearchCV technique is utilized to optimize the hyperparameters of several machine 

learning classifiers. By systematically searching through different combinations of hyperparameters, 

the best set of hyperparameters was found for each model and dataset. The effectiveness of machine 

learning models was improved because to this method. By determining the ideal hyperparameters for 

a specific task, the models were able to achieve higher accuracy and better generalization on new 

data. When using GridSearchCV, there are two critical fundamental terms to understand: the 

estimator and parameter grid. The estimator is the classifier that will be trained and is passed as an 

argument to GridSearchCV. The parameter grid is a Python dictionary that specifies the 

hyperparameters to be optimized for the estimator. It uses parameter names as keys and lists of 

parameter settings as values.  

GridSearchCV then systematically searches through all possible combinations of the hyperparameters 

specified in the parameter grid to achieve the highest accuracy for the estimator. This process involves 

training and evaluating the estimator using cross-validation on different subsets of the data. By 

comparing the performance of the estimator across all hyperparameter combinations, GridSearchCV 

can identify the optimal set of hyperparameters that result in the best performance for the given task. 

This technique is an essential tool for machine learning practitioners and researchers looking to 

optimize their models for specific tasks. All potential combinations of these elements are looked at 

to achieve the utmost accuracy.  [51].The procedure of Grid Search CV is represented in Figure 5. 

 

 
Figure 5. Representation of Grid Search CV process 
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3.7. Performance Analysis of the Proposed Method 

Sensitivity measures the proportion of correctly identified positive events, including genuinely 

positive cases[52], while specificity measures the percentage of accurately identified negative cases. 

Accuracy, on the other hand, represents the percentage of correctly identified true positive and true 

negative cases of brain tumors.Sensitivity is a metric that exclusively focuses on positive cases. It 

indicates the proportion of correctly classified positive cases compared to the actual number of 

positive cases. A higher sensitivity value suggests a lower false negative rate. 

 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃
+ 𝐹𝑁 (1) 

 

Specificity is a metric that solely deals with negative cases. It reflects the proportion of accurately 

classified negative cases in relation to the actual number of negative cases. A higher specificity value 

indicates a lower false positive rate. 

 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁
+ 𝐹𝑃  (2) 

 

Positive predictive value (PPV) is a metric that is concerned solely with positive predictive cases. It 

indicates the proportion of correctly classified positive predictive cases compared to the total number 

of positive predictive cases. 

 

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒(𝑃𝑃𝑉) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3) 

 

Negative predictive value (NPV) is a metric that exclusively focuses on negative predictive cases. It 

reflects the proportion of accurately classified negative predictive cases in relation to the total number 

of negative predictive cases. A higher NPV value indicates a lower false positive predictive rate.  

 

                     𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒(𝑁𝑃𝑉) =
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 (4) 

 

Accuracy is a metric that assesses the correctness of classification results. The system's efficiency is 

deemed high when accuracy value is greater. 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (5) 

 

The F-Score is a performance metric that considers both Precision and Sensitivity equally. Between 

Precision and Sensitivity, it is determined as the harmonic mean. 

 

4. Investigations and Findings 

4.1. Dataset 

Two publicly accessible brain MRI datasets that we used in a series of experiments were both acquired 

from the well-known website Kaggle. The first dataset consists of 253 images in total, out of which 

98 images are without tumors and the rest of the 155 images contain tumors[53]. The second dataset 

contains three-thousands photos, of which fifteen- hundreds are tumor-free and remaining fifteen-

hundreds are images containing tumors. [54]. We named these datasets BTS and BTL, respectively. 

At a ratio of 80% to 20%, we divided each dataset into a training set and a testing set. Figure 6 and 

Table 2 show the visual representation and details of both datasets.respectively.  
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Figure 6. Brain MR images in datasets BTL and BTS. 

 

Table 2.Details of brain MR datasets 

Title Training Set Test Set No. Classes 

BTS 202 51 2 

BTL 2400 600 2 

 

4.2. Experimental Setup and Results 

In this section, we analyzed the performance of our approach on two distinct datasets, BTS and BTL. 

The section is divided into several parts to provide a comprehensive analysis of our approach. Firstly, 

we compared the performance of nine pre-trained CNN networks on ten different machine learning 

classifiers. The results of this comparison are presented in Tables 3 and 4, respectively. In the next 

part of the section, we analyzed the effectiveness of features fusion from two pre-trained models. The 

experimental results of this analysis were presented in Tables 5 and 6. Finally, we examined the 

compatibility of our proposed model with the top three fused features, and the outcome of this analysis 

is presented in Tables 7 and 8. Overall, our analysis demonstrated the effectiveness of our approach 

and its ability to achieve high accuracy in classifying brain tumors using MRI scans. 

 

Table 3.Accuracies of all participated deep features with ML classifiers on BTL dataset (* sign 

represents the superior accuracies) 

PCA-

Transform

ed  

Deep 

Features 

Machine Learning Classifiers Accuracy 

 

 K-NN 
SVM 

(Linear) 

SVM 

(Poly) 

SVM 

(RBF) 

 SVM 

(Sigmoid) 
NuSVC RF AdaBoost XGBoost 

Light 

GBM 
MLP Average 

VGG16 

features 
0.7272 0.8961 0.8571 0.8831 0.8961 0.8831 0.7922 0.7142 0.7792 0.7792 0.9090 0.8288 

VGG19 

features 
0.8051 0.8701 0.8701 0.8441 0.8571 0.8701 0.8571 0.7402 0.7662 0.8051 0.8831 08335 

InceptionV

3 features 
0.8311 0.7792 0.8571 0.8701 0.7922 0.8701 0.7532 0.8441 0.8311 0.8051 0.8831 0.8288 

MobileNet 

features* 
0.7792 0.9220 0.9350 0.8571 0.7532 0.8831 0.8960 0.8571 0.8961 0.9220 0.8571 0.8689 

MobileNet

V2 

features* 

0.7792 0.9090 0.9090 0.8871 0.8311 0.8961 0.8441 0.8311 0.8441 0.8571 0.8441 0.8575 

NASNetMo

bile features 
0.7792 0.8831 0.8831 0.8871 0.7272 0.8831 0.8051 0.8571 0.8181 0.8181 0.8701 0.8374 

DenseNet1

21 features* 
0.7792 0.9220 0.8961 0.8871 0.7922 0.8831 0.8181 0.8441 0.8961 0.8831 0.8571 0.8551 

InceptionRe

sNetV2 

features* 

0.6753 0.9220 0.8311 0.8871 0.8181 0.8831 0.8311 0.8311 0.8701 0.8571 0.8961 0.8457 

DenseNet1

69 features* 
0.8571 0.8571 0.8961 0.8871 0.8441 0.8831 0.8051 0.8441 0.8571 0.8441 0.8440 0.8566 

Average 0.7734 0.8845 0.8861 0.8767 0.8124 0.8817 0.8051 0.8181 0.8398 0.8412 0.8715  

Note. The highest average accuracy is denoted by the bold text. 

 

As shown in Table 3, K-NN performs the least well on the BTS dataset compared to other ML 

classifiers. This is because K-NN is very dependent on having a dense data. PCA is a linear 

dimensionality reduction method that is optimized for linearly separable data with correlated 

features, but KNN is a non-parametric method that doesn't make any assumptions on the underlying 

data distribution and it's sensitive to the scale of the features. This means that data that is not linearly 
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separable and has uncorrelated features may not perform well with PCA-transformed data. Another 

reason is that KNN classifiers rely on the distance between points in feature space to determine the 

class of a new point, so if the points are far apart in the original feature space but close together in 

the reduced feature space obtained from PCA, KNN may not be able to accurately classify them. 

Additionally, when PCA is applied to deep features, it can lead to a loss of information, which can 

negatively impact the performance of KNN. While PCA can be beneficial for some classification 

algorithms, it may not be the most effective choice for KNN when working with deep features. 

It is also noted in Table 3, the deep features acquired by pre-trained MobileNet and DenseNet models 

cause to produce exceptional results and maintain their superiority on the BTS dataset. This is due 

to the fact that the deep features gathered from MobileNet and DenseNet cover a broad spectrum of 

complexity. Consequently, it often provides more smooth decision limits, which can accurately 

forecast in the absence of sufficient training data. In contrast, the deep features acquired by VGG 

models yield inferior results for both MRI datasets. This is due to the absence of residual blocks in 

its architecture. 

 

Table 4. Accuracies of all participated deep features with ML classifiers on BTL dataset (* sign 

represents the superior accuracies) 
PCA-

Transform

ed  

Deep 

Features 

 

                                      Machine Learning Classifiers Accuracy 

 K-NN 

 SVM 

(Linear) 

 SVM 

(Poly) 

 SVM                 

(RBF) 
   SVM 
(Sigmoid) NuSVC RF 

Ada 

Boost 

XGBo

ost 

Light 

GBM MLP Average 

VGG16 

features 

0.92

83 0.9800 0.9716 0.9833 0.9533 0.9850 0.9116 

0.861

6 

0.92

16 0.9300 0.9833 0.9467 

VGG19 

features 

0.89

66 0.9800 0.9733 0.9800 0.9433 0.9700 0.9316 

0.888

3 

0.91

16 0.9233 0.9833 09437 

InceptionV3 

features 

0.92

16 0.9866 0.9850 0.9816 0.9666 0.9816 0.9066 

0.921

6 

0.92

83 0.9450 0.9783 0.9548 

MobileNet 

features* 

0.92

50 0.9916 0.9833 0.9116 0.9866 0.9850 0.9316 

0.931

6 

0.95

66 0.9683 0.9800 0.9592 

MobileNetV

2 features* 

0.93

00 0.9866 0.9783 0.9500 0.9683 0.9766 0.9116 

0.935

0 

0.93

83 0.9550 0.9750 0.9549 

NASNetMo

bile features 

0.95

16 0.9733 0.9650 0.9883 0.9250 0.9766 0.9366 

0.876

6 

0.90

00 0.9450 0.9733 0.9455 

DenseNet12

1 features* 

0.95

66 0.9783 0.9883 0.9800 0.9683 0.9850 0.9466 

0.921

6 

0.93

00 0.9450 0.9933 0.9630 

InceptionRe

sNetV2 

features* 

0.93

66 0.9883 0.9800 0.9816 0.9466 0.9816 0.9183 

0.923

3 

0.94

50 0.9483 0.9783 0.9570 

DenseNet16

9 features* 

0.97

16 0.9866 0.9883 0.9733 0.9716 0.9833 0.9566 

0.923

3 

0.95

83 0.9550 0.9883 0.9669 

Average 

0.93

53 0.9834 0.9792 0.9694 0.9588 0.9805 0.9279 

0.909

2 0.9299 0.9416 0.9814  

Note. The highest average accuracy is denoted by the bold text. 

 

The similar trends were observed in Table 4. Specifically, the pre-trained MobileNet,DenseNet 

models and SVM with linear kernel produced exceptional results and maintained their superiority on 

both datasets BTS and BTL. 

 

Table 5. Accuracies of concatenated deep features with ML classifiers on BTS datasets 
 

PCA-

Transformed  

Deep 

Features 

 

 

                           Machine Learning Classifiers Accuracy 

 

 

 K-NN 
SVM 

(Linear) 

SVM 

(Poly) 

SVM 

(RBF) 

  SVM 

(Sigmoid) 
NuSVC RF AdaBoost XGBoost 

Light 

GBM 
 MLP 

MobileNet 

features* 
0.7792 0.9220 0.9350 0.8571 0.7532 0.8831 0.8960 0.8571 0.8961 0.9220  0.8571 

InceptionRes

NetV2 

features* 

0.6753 0.9220 0.8311 0.8871 0.8181 0.8831 0.8311 0.8311 0.8701 0.8571  0.8961 

DenseNet169 

features* 
0.8571 0.8571 0.8961 0.8871 0.8441 0.8831 0.8051 0.8441 0.8571 0.8441  0.8440 

MobileNet+In

ceptionResNe

tV2 

0.7792 0.9220 0.9090 0.8961 0.7532 0.8961 0.8571 0.9090 0.8961 0.9220  0.8961 
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MobileNet+D

enseNet169 
0.7922 0.9220 0.9090 0.8961 0.7792 0.8961 0.8701 0.8961 0.8961 0.8961  0.9220 

InceptionresN

etV2+ 

DenseNet169 

0.8701 0.9220 0.9090 0.9090 0.8180 0.9090 0.8311 0.8571 0.8831 0.8701  0.9090 

MobileNet+ 

DenseNet169 

+InceptionRe

sNetV2                 

0.7922 0.9220 0.9220 0.9090 0.8051 0.9090 0.8311 0.9220 0.9090 0.8961  0.9090 

Note. The highest average accuracy is denoted by the bold text. 

It can be seen in Table 5; an ensemble model fails to yield superior results for most of the ML 

classifiers on BTS dataset. This is due to the BTS dataset that generates insufficient training 

samples, which prevents an ensemble model from learning complex deep features. 

 

Table 6. Accuracies of concatenated deep features with ML classifiers on BTL dataset. 
PCA-

Transformed  

Deep 

Features 

 

Machine Learning Classifiers Accuracy 

 

  

 K-NN 
 SVM 

(Linear) 

SVM 

(Poly) 

SVM 

(RBF) 

 SVM 

(Sigmoid) 
NuSVC RF AdaBoost XGBoost 

Light 

GBM 
MLP 

MobileNet 

features* 
0.9250 0.9916 0.9833 0.9116 0.9866 0.9850 0.9316 0.9316 0.9566 0.9683 0.9800 

InceptionRes

NetV2 

features* 

0.9366 0.9883 0.9800 0.9816 0.9466 0.9816 0.9183 0.9223 0.9450 0.9483 0.9783 

DenseNet169 

features* 
0.9716 0.9866 0.9883 0.9733 0.9716 0.9833 0.9566 0.9233 0.9383 0.9550 0.9883 

MobileNet+In

ceptionResNe

tV2 

0.9416 0.9933 0.9900 0.8400 0.9866 0.9866 0.9366 0.9516 0.9516 0.9666 0.9816 

MobileNet+D

enseNet169 
0.9533 0.9950 0.9883 0.8200 0.9883 0.9850 0.9500 0.9533 0.9583 0.9683 0.9866 

InceptionresN

etV2+ 

DenseNet169 

0.9966 0.9916 0.9850 0.9366 0.9816 0.9883 0.9483 0.9483 0.9466 0.9600 0.9816 

MobileNet+ 

DenseNet169 

+InceptionRe

sNetV2                 

0.9550 0.9950 0.9866 0.8016 0.9866 0.9866 0.9550 0.9650 0.9583 0.9633 0.9916 

Note. The highest average accuracy is denoted by the bold text. 

 

According to Table 6, a concatenated model of deep features from 2-3 pre-trained models performs 

better than each individual pre-trained model. This is because each pretrained model comes with 

unique deep features. Therefore, combining the deep features of 2-3 distinct pre-trained models 

actually maximizes the chances of obtaining a wide variety of deep features that helps to yield better 

outcomes.  

 

Table 7. Accuracies of best 3 concatenated deep features with best 5 ML Classifiers, and our 

proposed model on BTS dataset. 

Metrics SVC((Linear) SVC(Poly) NuSVC AdaBoost MLP Proposed Model 

Accuracy 0.9220 0.9220 0.9090 0.92220 0.9016 0.9434 

Precision 0.92 0.92 0.9 0.92 0.9 0.94 

Recall 0.92 0.92 0.905 0.92 0.905 0.94 

F1 Score 0.92 0.92 0.905 0.92 0.905 0.94 

Note. The highest average accuracy is denoted by the bold text. 

 

Table 8. Accuracies of top 3 concatenated deep features with best 5 ML Classifiers, and our 

proposed model on BTL dataset. 

Note. The highest average accuracy is denoted by the bold text. 

 

Metrics SVC (Linear)   SVC (Poly) SVC(Sigmoid) NuSVC MLP Proposed Model 

Accuracy 0.995 0.99 0.99 0.99 0.99 0.9989 

Precision 0.995 0.99 0.985 0.99 0.99 0.998 

Recall 0.995 0.99 0.985 0.99 0.99 0.998 

F1 Score 0.995 0.99 0.99 0.99 0.99 0.998 
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Tables 7 and 8 demonstrate that our proposed model is an effective method that achieves higher 

accuracies on both datasets. In fact, the accuracy achieved by our proposed approach is equal to or 

surpasses the highest accuracy achieved by the base learners alone. This algorithm is able to 

effectively combine the predictions of sub-models to produce an overall prediction that is superior to 

that of each individual sub-model. 

 

5. Conclusions 

In order to devise our proposed method for classifying brain tumors that combines the powerful 

features of various CNNs, we evaluated the performance with various machine learning classifiers. 

The extracted deep features are fed into PCA to reduce their dimensionality before being assessed by 

several ML classifiers. A single vector is created by concatenating the best three deep features, which 

performed well on various machine learning classifiers. Similarly, based on our selection criteria, we 

selected the top five ML classifiers to apply a single-layer stacking algorithm on fused deep features 

to predict the final output. In this study, we evaluated nine distinct pre-trained deep convolutional 

networks and ten various machine learning classifiers on two separate brain tumor datasets (BTS and 

BTL). Our experiment findings show that (1) DenseNet-169 standalone performs better than 

alternative machine learning classifiers when the data is comparatively small in size. (2) Regarding 

the issue of classifying brain tumors utilizing MRI scans, SVM with a linear kernel outperforms 

among rest of the Machine learning classifiers. (3) The limitations of a single CNN model are 

overcome by our suggested novel feature ensemble strategy, which yields superior and reliable 

performance, for both (BTS and BTL) datasets. Our proposed model has achieved optimal accuracy 

of 99.89, 94.34%, specificity(precision) of 99.89, 94%, sensitivity (recall) of 99.89, 94%, and F1-

score 99.89, 94% on dataset BTL and BTS, respectively. These experimental findings demonstrate 

that our proposed strategy, which employs an ensemble of deep features and a single-layer stacking 

algorithm, is suitable to classify the brain tumor and aids the model to become more generic in nature. 

However, our proposed strategy yields satisfactory classification results on both datasets (BTL and 

BTS) but is computationally costly. The authors anticipated that the computational cost of the 

proposed model might be reduced by reducing the size of the model and generalized to a variety of 

clinical applications including liver lesion classification and breast tumor classification using various 

medical image modalities including X-rays, CT-Scan, and PET. 
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