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ABSTRACT 

Breast Cancer is a common type of cancer found in women. In this paper, we model breast cancer 

data using a new three parameter family of distribution, called the Three Parameter Gull Alpha Power 

Exponential (TP-GAPE) Distribution. The new distribution is more useful because it can correspond 

to various hazard rate functions, which are widely used in reliability investigations. With the help of 

the proposed model, data with rising, uni-modal, and modified uni-modal hazard rate functions can 

be analyzed. We determine the essential statistical and reliability properties of the suggested model. 

The goodness-of-fit criteria have been studied using two real-life data sets. The proposed model is 

compared to other current modifications of the exponential distribution with the aim of evaluating the 

model's efficacy using a variety of goodness of fit measures, including the Akaike Information 

Criterion, Bayesian Information Criterion, etc. These results suggest that the proposed model fits the 

cancer data as well as some other scientific data more precisely than any recently developed 

extensions of exponential distribution. 

 

Keywords: Akaike Information Criterion, Bayesian Information Criterion, Anderson-Darling 

estimation; Cramér-von Mises estimation; data analysis; exponential distribution; mean residual life. 

 

INTRODUCTION 

Applications for lifetime data analysis can be extended to a number of areas, including business, 

engineering, finance, and health [1, 2]. The key objective of such analyses is often to simulate the 

probability distribution of the time to an event and/or the factors influencing the time to an event of 

interest. Various probability models, such as log-logistic, beta, gamma, Weibull, exponential, and 

many more, are available for modeling lifetime data and in several cases.These traditional approaches 

[3, 4] are inadequate for modeling lifetime data, prompting the use of updated iterations of current 

distributions [5].  
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The modeling of data, including survival analysis, is frequently performed through statistical 

distributions. The literature focuses a lot on the exponential, Weibull, Rayleigh, gamma, and 

lognormal distributions because they are some of the most flexible distributions implemented in 

survival analysis. These distributions may not be enough for modeling, however, considering the 

many different ways that data can be generated [6]. 

 

The development of new probability model in statistical distribution theory frequently involves the 

addition of a new parameter to an existing family of distribution functions. A class of distribution 

functions become more flexible by adding an additional parameter, which can be very 

valuable whenever performing data analysis. For instance, in order to provide the normal distribution 

greater flexibility, Azzalini [7] devised the skew-normal distribution by adding one additional 

parameter. A two-parameter the exponentiated Weibull model was suggested by Mudholkar and 

Srivastava [8] consisting of two shape parameters and one scale parameter. The new exponentiated 

Weibull model is able to adapt better than the two-parameter Weibull model since it has an additional 

shape parameter.Marshall and Olkin [9] and Eugene et al. [10] proposed methods to add additional 

parameters to any distribution function.Later, several other exponentiated distributions have been 

introduced by several authors. As a result, the exponential distribution has been frequently employed 

to model data sets from survival analysis. The exponential distribution's problem is that it can only 

accurately convey data with a constant hazard function. 

 

In order to increase flexibility of exponential family, the purpose of this research is to add an 

additional parameter to a family of distribution functions. The new model is termed as "Three 

Parameter Gull alpha Power Exponential (TP-GAPE) distribution ". As a result of the suggested TP-

GAPE method's elegance, it can be utilized for analyzing many data sets very effectively. The 

Weibull, Gamma, or GE distributions can have forms that are comparable to the PDF and hazard 

functions of the TP-GAPE distribution. The well-known Weibull, Gamma, or GE distributions can 

thus be replaced with it. Since the CDF of the TP-GAPE distribution can be written clearly, it may be 

used relatively easily to the analysis of censored data as well. Moreover, we deal with the maximum 

likelihood estimation method for the unknown parameters and introduce the three-parameter TP-

GAPE distribution, which is mostly used for data analysis. For illustration purpose, an analysis of an 

actual dataset has been implemented. 

 

The Proposed TP-GAP Method  

Ijaz [11] introduced a Gull Power Alpha family of distribution. For some other families, we refer to 

[12-24]. In this article, a new family (TP-GAP) is presented by introducing a new shape parameter 

“γ” which is given by 

𝐹(𝑦, 𝛼, 𝛾) =
𝛼𝛾[𝐹(𝑦)]𝛾

𝛼𝛾𝐹(𝑦)  If α > 1   (1)     

Where F(y) represents the CDF of the baseline distribution and probability density function of f(y) is 

𝑓(𝒴, 𝛼, 𝛾) = 𝛾𝛼𝛾[1−ℱ(𝒴)][ℱ(𝒴]𝛾 ℱ(𝒴) (
1

ℱ(𝒴)
− 𝑙𝑛𝛼) (2) 

 

TP-GAPE distribution and its statistical properties 

This section uses the CDF of the exponential distribution known as "a three parameter Gull alpha 

power exponential distribution" (TP-GAPE) to illustrate the unique form of TP-GAPE. The 

cumulative distribution function (CDF) of the exponential distribution is presented by 

𝐹(𝑌) = 1 − 𝑒−𝜆𝑦 y>0  (3) 

Where λ in the above equation represents scale parameter. 

By replacing (3) in (1), the CDF and PDF of TP-GAPE are, respectively, given by 

𝐹(𝒴) = 𝛼𝛾𝑒−𝜆𝒴
[1 − 𝑒−𝜆𝒴]

𝛾
 , y >0 &𝛼; β; γ >0  (4) 

𝑓(𝑦, 𝛼, 𝜆, 𝛾) = 𝜆𝛾𝛼𝛾𝑒−𝜆𝒴
[1 − 𝑒−𝜆𝑦]

𝛾
𝑒−𝜆𝒴 [

1

1−𝑒−𝜆𝑦 − 𝑙𝑛𝛼] , y>0 (5) 
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Figure 1 and 2 presents numerous shapes of the CDF and PDF with different set of parameter values. 

 
Figure 1: Cumulative distribution function of TP-GAPE distribution 

 
Figure 2:Probability density functions of TP-GAPE distribution. 

 

The Survival and Hazard Rate Function.  

The survival and hazard rate function of TP-GAPE is defined by 

 

𝒮(𝑦) = 1 − 𝐹(𝒴)And using equation (4) we get 

𝒮(𝑦) = 1 − (𝛼𝛾𝑒−𝜆𝑦
[1 − 𝑒−𝜆𝑦]

𝛾
)   (6) 

 
Figure 3: Survival functions of TP-GAPE 

 

The hazard rate function of TP-GAPE is provided by 

( )
( )

( )

f x
h x

S x
=
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Using equation (5) & equation (6), we get  

ℋ(𝑦) =
𝜆𝛾𝛼𝛾𝑒−𝜆𝒴

[1−𝑒−𝜆𝒴]
𝛾

𝑒−𝜆𝒴[
1

1−𝑒−𝜆𝒴
−𝑙𝑛𝛼]

1−(𝛼𝛾𝑒−𝜆𝒴
[1−𝑒−𝜆𝒴]

𝛾
)

   (7)  

Figure 4 demonstrates the nature of the hazard rate function for different values of parameter.

 

 Figure 4: Hazard function of TP-GAPE distribution 

 

The Quantile Function and Median of TP-GAPE distribution

 The quantile function, an inverse CDF function, is used to calculate the median, octal, decile, 

percentiles, and quantile, among various other measurements. The TP-GAPE distribution's quantile 

function is obtained as 

𝐹(𝑦) = 𝑃(𝑌 ≤ 𝑦) = 𝑢 

Where "𝑢"is a standard uniform random variable, Substituting (4), we get the result 

𝛾𝛼𝛾𝑒−𝜆𝒴
[1 − 𝑒−𝜆𝒴]

𝛾
= 𝑢   (8) 

 

The solution of equation (8) for ywill give the following result:  

𝑌 =

log [
log(𝛽)

𝑤(−𝛼√𝛽−𝛼𝑢
𝛼 𝑙𝑜𝑔(𝛽))+𝑙𝑜𝑏(𝛽)

]

𝛾
  (9) 

For median, consider u=0.5 in equation (9). 

 

Order Statistics 

Let 𝑦1, 𝑦2 ,𝑦3,…𝑦𝑛be ordered random variables from NFW, then the PDF of the HQIC order statistic 

is given by

 
𝑓𝑖;𝑛(𝑦) =

𝑛!

(𝑖−1)!(𝑛−𝑖)!
𝑓(𝑦)(𝐹(𝑦))−(𝑖−1)[1 − 𝐹(𝑦)]−(𝑛−1)  (10) 

Using equation (4) and equation (5), of TP-GAPE, we get  

 

𝑓𝑖;𝑛(𝑦) =
𝑛!

(𝑖−1)!(𝑛−𝑖)!
[𝜆𝛾𝛼𝛾𝑒−𝜆𝒴

[1 − 𝑒−𝜆𝒴]
𝛾

𝑒−𝜆𝒴 [
1

1−𝑒−𝜆𝒴
− 𝑙𝑛𝛼]] [𝛼𝛾𝑒−𝜆𝒴

[1 − 𝑒−𝜆𝒴]
𝛾

]
𝑖−1

[1 −

𝛼𝛾𝑒−𝜆𝒴
[1 − 𝑒−𝜆𝒴]

𝛾
]

𝑛−𝑖

         (11) 

Using equation (11), the smallest and largest order statistic of TP-GAPE is defined by 

f(1; 𝒴) =
n!

(1−1)!(n−i)!
[λγαγe−λ𝒴

[1 − e−λ𝒴]
γ

 e−λ𝒴 [
1

1−e−λ𝒴
− lnα]] [αγe−λ𝒴

[1 − e−λ𝒴]
γ

]
1−1

[1 −

αγe−λ𝒴
[1 − e−λ𝒴]

γ
]

𝑛−1

         (12) 

and the largest order statistic is; 
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𝒇(𝑛; 𝑛)(𝒴) =  𝑛 {𝜆𝛾𝛼𝛾𝑒−𝜆𝒴
[1 − 𝑒−𝜆𝒴]

𝛾
𝑒−𝜆𝒴 [

1

1−𝑒−𝜆𝒴
− 𝑙𝑛𝛼]} [𝟏 − 𝛼𝛾𝑒−𝜆𝒴

[1 − 𝑒−𝜆𝒴]
𝛾

]
𝒏−𝟏

(13) 

 

PDF of Median, smallest and largest order statistics 

Let us consider a random sample of size k from aTP-GAPE distribution having Parameters α, β and 

γ. Then the smallest order statistics is given by: 

𝑔1−𝑘(𝑦) = 𝑘𝑔(𝑦)[1 − 𝐺(𝑦)]𝑘−1     (14)   

By putting the equation (4) and equation (5) of TP-GAPE distribution, we have 

𝑔1−𝑘(𝑦) = 𝑘 (𝜆𝛾𝛼𝛾𝑒−𝜆𝑦
(1 − 𝑒−𝜆𝑦)

𝛾
𝑒−𝜆𝑦 (

1

1−𝑒−𝜆𝑦 − 𝑙𝑛𝛼)) (1 − 𝛼𝛾𝑒−𝜆𝑦
(1 − 𝑒−𝜆𝑦)

𝛾
)

𝑘−1

(15) 

Order statistics for median 

We know that 

𝑔(𝑚+𝑘)(𝑦̃) =
(2𝑚+1)!

𝑛!𝑚!
(𝑔(𝑦̃){𝐺(𝑦̃)}𝑛){1 − 𝐺(𝑦̃)}𝑚    (16) 

g(m+k)(ỹ) =
(2m+1)!

n!m!
[λγαγe−λy

(1 − e−λy)
γ

e−λy(−lnα)] (αγe−λy
(1 −

e−λy)
γ

)
m

(
1 −

αγe−λy
(1 − e−λy)

γ)
m

 (17) 

Density of the Maximum order statistics: 

g1−k(y) = kg[G(y)]k−1     (18) 

By putting the equation (4) and equation (5) of TP-GAPE distribution, we get 

gk−k(y) = k (λγαγe−λy
(1 − e−λy)

γ
e−λy (

1

1−e−λy − lnα)) (αγe−λy
(1 − e−λy)

γ
)

k−1

 (19) 

 

Joint PDF of smallest and largest order statistics 

We can derive the joint density for the smallest and largest order statistics of TP-GAPE distribution. 

The expression for joint density is as follows: 

𝑔𝑖.𝑗.𝑘(𝑥𝑖, 𝑥𝑗) =
𝑘𝑖

(𝑖−1)!(𝑗−𝑖−1)!(𝑘−𝑗)!
      (20) 

Putting CDF and PDF of TP-GAPE distribution in equation (20), we have the resultant form,  

Let w=
𝑘𝑖

(𝑖−1)!(𝑗−𝑖−1)!(𝑘−𝑗)!
       (21) 

gi.j.k(xi, xj) = w [αγe−λyi (1 − e−λyi)
γ

]
i−j

[(αγe−λyi (1 − e−λyi)
γ

) − (αγe−λyi (1 −

e−λyi)
γ

)]
j−i−1

[−αγe−λyi (1 − e−λyi)
γ

]
k−j

[λγαγe−λyi (1 − e−λyi)
γ

e−λyi (
1

1−e−λyi
− lnα)]  

         (22) 

For special case if we put k=j and i=1 we will have the following form of minimum and maximum 

order statistics. 

g1:j:j(x1, xk) =
j!

(1−1)!(j−1−1)!(j−j)!
[G(x1)]1−1. [G(xj) − G(x1)]

j−1−1
.[1 − G(xj)]

j−j
g(x1)g(j)(23) 

g1:j:j(x1, xk) = j(j − 1)[G(xj) − G(xi)]
j−2

g(x1)g(xj)    (24) 

g1:j:j(x1, xk) = j(j − 1) [(αγe−λyi (1 − e−λyi)
γ

) . g(x1)g(xj)]   (25) 

 

Skewness and Kurtosis of TP-GAPE 

The Bowley’s Skewness and Moors kurtosis are 

SK =

( )

3

3
2 2

3 3 2 1 2 1

2 1

   

 

  − +

 −

OR  SK =

3 1 1
2

4 4 2

3 1

4 4

Q Q Q

Q Q

     
+ −     

     

   
−   

      (26)
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( )

2 4

2
2

4 4 3 1 6 2 1 3 1

2 1
KU

     

 

     − + −
=

 −
OR  

7 3 5 1

8 8 8 8

6 2

8 8

Q Q Q Q

KU

Q Q

       
+ − −       

       =
   

−   
     (27)

 

 

APPLICATIONS 

Two real data sets with extreme values are studied, one with non-monotonic and the other with 

monotonic hazard rate shapes, in order to evaluate the performance of the suggested model. To assess 

the effectiveness of the suggested model, several goodness of fit statistics were taken into assessment, 

including the Akaike information criteria (AIC), Hannan and Quinn information criteria (HQIC), 

Anderson darling (A), Cramer-von Mises (W), consistent Akaike information criteria (CAIC), and 

Bayesian information criteria (BIC). The aforementioned circumstances are described mathematically 

as follows: 

Where “xi” is the random sample, 𝐿 = 𝐿(𝛹, 𝑋𝑖) is the maximized likelihood function is the MLE, and 

“p” is the number of parameters in the model. Typically, the probability model that satisfies a smaller 

number of these various prerequisites has been considered to be the best fitted one. 

 

Data Set 1: Kevlar 49/epoxy strands under 90 percent pressure. 

The data set comprises 101 observations corresponding to the failure time in hours of Kevlar 49/epoxy 

strands with pressure at 90%. The data set displayed in Table 1can be found in [25, 26]. 

 

Table1. Kevlar 49/epoxy strands under 90 percent pressure 

0.01 ,0.01, 0.02, 0.02, 0.02, 0.03, 0.03, 0.04, 0.05, 0.06, 0.07, 0.07, 0.08, 0.09, 0.09, 0.10, 0.10, 

0.11, 0.11, 0.12, 0.13, 0.18, 0.19, 0.20, 0.23, 0.24, 0.24, 0.29, 0.34, 0.35, 0.36, 0.38, 0.40, 0.42, 

0.43, 0.52, 0.54, 0.56, 0.60, 0.60, 0.63, 0.65, 0.67, 0.68, 0.72, 0.72, 0.72, 0.73, 0.79, 0.79, 0.80, 

0.80, 0.83, 0.85, 0.90, 0.92, 0.95, 0.99, 1, 1.01, 1.02, 1.03, 1.05, 1.10, 1.10, 1.11, 1.15, 1.18, 

1.20, 1.29, 1.31, 1.33, 1.34, 1.40, 1.43, 1.45, 1.50, 1.51, 1.52, 1.53, 1.54, 1.54, 1.55, 1.58, 1.60, 

1.63, 1.64, 1.80, 1.80, 1.81, 2.02, 2.05, 2.14, 2.17, 2.33, 3.03, 3.03, 3.34, 4.20, 4.69, 7.89 

 

 
Fig. 5 Empirical and fitted density and CDF plots of Kevlar data 
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Figure.6 Q-Q, TTTand Histogram plot for Kevlar 49/epoxy strands under 90 percent pressure 

 

Table2. MLE and standard error of each distribution parameters of a data failure times of 

Kevlar 49/epoxy strands under than 90 percent pressure. 

MODELS    TPGAPE EGPIE EGBIE EGGIE EGLIE 

 

MLE 

0.4744  

1.0609   

0.7170 

26.062 

7.320  0.175  

0.002 

11.644   

8.862 

0.313     0.003 

0.664   

20.525 

0.498     0.002 

0.018   

19.277 

0.616     0.002 

 

STANDARD 

ERROR 

0.3560      

0.1672      

0.1669 

0.009  1.770 

0.019  0.002 

(1.925×10−5) 

(1.136×10−4) 

(2.141×10−2) 

(8.755×10−5) 

(2.412×10−1) 

(4.798×10−3) 

(1.360×10−1) 

(9.954×10−4) 

(5.004×10−1) 

(3.845×10−3) 

(6.431×10−2) 

(6.301×10−4) 

 

Table3. Goodness of fit criteria for failure times of Kevlar 49/epoxy strands under 90 percent 

pressure. 
Model Log-

likelihood 

AIC AICc BIC A W K-S Ranks 

TP-

GAPE 

  - 210.5921 210.8395 218.4375 0.7101897 0.10929 NA   1 

EGPIE −116.660 241.314 241.946 251.774 NA 0.738 0.182   2 

EGBIE −122.930 253.868 254.500 264.328 NA 0.926 0.195   3 

EGGIE −140.090 288.170 288.802 298.631 NA 1.386 0.237   4 

EGLIE −134.010 276.025 276.657 286.486 NA 1.211 0.203   5 
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The TP-GAPE distribution utilizing the Kevlar data is shown in Figure 5 along with the empirically 

determined and fitted density and CDF charts. The results for Kevlar are plotted in Figure 6 using a 

Q-Q plot, TTT plot and Histogram. Table 2 shows the estimates with the highest probability and their 

standard errors. The goodness of fit measurements for strands made of Kevlar 49 and epoxy at 90 

percent pressure are shown in Table 3. In comparison to the other models, the TP-GAPE distribution 

provides a better fit to the data set. The TP-GAPE distribution, when compared to the other fitted 

models, has the highest log-likelihood and the lowest values for W, AIC, AICc, and BIC, as shown 

in Table 3. 

 

Data Set 2: Breast cancer patients Data acquired from a large hospital between 1929 and 1938. 

The data set comprises 121 breast cancer patients acquired from a large hospital between 1929 and 

1938. The data set displayed in Table 4 can be found in [27]. 

 

Table 4. 121 breast cancer patients acquired from a large hospital between 1929 and 

1938. 

0.3,0.3,4.0,5.0, 5.6, 6.2, 6.3, 6.6, 6.8, 7.4, 7.5, 8.4, 8.4, 10.3, 11.0, 11.8, 12.2, 

12.3,13.5,14.4,14.4, 14.8, 15.5, 15.7, 16.2, 16.3, 16.5, 16.8, 17.2, 17.3, 17.5, 17.9, 19.8,20.4, 

20.9, 21.0, 21.0, 21.1, 23.0, 23.4, 23.6, 24.0, 24.0, 27.9, 28.2, 29.1, 30.0,31.0, 31.0, 32.0,35.0, 

35.0,37.0, 37.0, 37.0, 38.0, 38.0, 38.0, 39.0, 39.0, 40.0, 40.0, 40.0, 41.0, 41.0, 41.0,42.0, 43.0, 

43.0, 43.0, 44.0, 45.0, 45.0, 46.0, 46.0, 47.0, 48.0, 49.0, 51.0, 51.0, 51.0, 52.0,54.0, 55.0, 56.0, 

57.0, 58.0, 59.0, 60.0, 60.0, 60.0, 61.0, 62.0, 65.0, 65.0, 67.0, 67.0, 68.0,69.0, 78.0, 80.0, 83.0, 

88.0, 89.0, 90.0, 93.0, 96.0, 103.0, 105.0, 109.0, 109.0, 111.0,115.0, 117.0, 125.0, 126.0, 127.0, 

129.0, 129.0, 139.0, 154.0 

 

 
Figure 7:  Empirical and theoretical densities and Empirical and theoretical CDFs 
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Figure.8 Q-Q, TTT and Histogram plot for 121 breast cancer patients acquired from a large hospital 

between 1929 and 1938. 

 

Table5. Descriptive Statistics of 121 breast cancer patients acquired from a large hospital 

between 1929 and 1938. 
 No of samples maximum minimum mean Median variance Kurtosis Skewness 

121 154 0.30 46.33 40 1244.464 3.402139 1.04318 

 

Table6. Goodness of fit criteria 121 breast cancer patients acquired from a large hospital 

between 1929 and 1938. 

Distribution Parameters Log-likehood AIC Rank 

TP-GAPE 0.36227649, 0.3190185, 1.0506364 NA 1164.204 1 

EIE 
0.350733 

0.007599 

-584.9013 

 
1173.803 2 

IE 10.3215 -677.2791 1,356.558 3 

 

Figure 5 shows the Empirical and theoretical densities of PDF and Empirical and theoretical CDFs 

Charts of the TP-GAPE distribution using the Breast cancer patient’s data. Figure 6 shows the Q-Q 

plot, TTT plot and Histogram plot for 121 breast cancer patients acquired from a large hospital 

between (1929 and 1938) data. In Table 5, the breast cancer data set is positively skewed, with a 

coefficient of skew-ness of 1.04318 and a variance of 1,244.464. Table 6 lists the goodness of fit 

measure for Kevlar 49/epoxy strands fewer than 90 percent pressure. Compared to the other models, 

the TP-GAPE distribution offers a superior match to the data set. Table 6 shows that when compared 

to the other fitted models, the TP-GAPE distribution has the lowest W, AIC, AICc, and BIC values. 
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CONCLUSION 

Probability distributions have significance for modeling various sets of data in a number of fields, 

including engineering, business, reliability analysis, insurance, and biostatistics. The present study 

offers a new method to obtain a new probability model to adequately model various data sets including 

breast cancer data. The TP-GAPE (α, γ, λ) distribution, a unique probability distribution with three 

parameters, has been proposed. 

Several attractive properties have been discussed for the new model including the cumulative 

distribution and probability density function, the survival function, hazard function, quantile function, 

median, order statistics, etc. The parameters were estimated using the greatest likelihood method. 

Plots of the PDF, CDF, and hazard rate function are made to show how the suggested distribution 

behaves. Furthermore, the performance of the TP-GAPE (α, γ, λ) distribution is compared to other 

distributions using various model selection criteria. The results show that TP-GAPE (α, γ, λ) gives 

results that are better than the other distributions. 
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