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Abstract 

The purpose of this research is to examine a biological model of vector-borne disease. The paper’s 

research demonstrates that its dynamics are solely dependent on the basic reproduction number R0. 

Our investigation is consisted on stability theory and numerical simulations. The Routh-Hurwitz 

Criteria and the Lyapunov approach are used to determine the local and global asymptotic stability 

of the disease-free equilibrium. In this paper, we use the work of McCluskey and van den Driessche 

to show that endemic equilibrium is stable locally. We also use the geometric approach method 

developed by Li and Muldowney to show that endemic equilibrium is stable at the global level, where 

the disease stays latent if it already exists. If R0 ≤1, the disease-free equilibrium is globally 

asymptotically stable, and the disease will vanish, and a unique endemic equilibrium exists if R0 >1. 

 

Keywords: Biological model, Stability theory, Routh-Hurwitz Criteria, Endemic equilibrium. 

 

1   Introduction 

Vector-borne diseases that emerge or re-emerge pose a worldwide health concern [1]. These diseases 

are transmitted through vectors, animal hosts, climate factors, pathogens, and vulnerable humans 

under favourable conditions [2]. Viruses are the primary cause of a significant fraction of new 

infectious illnesses, which are transmitted by vectors. In the last twenty years, there has been a 

significant rise in vector-borne infections and an increase in endemic diseases. Certain indigenous 

infections exhibit controlled proliferation in response to alterations in their natural habitats, regardless 

of the isolation between their introductions and occurrences. According to a previous study [3], 

yellow fever and dengue are more widespread globally. The correlation between vector-borne 

diseases and climate change is a subject of ongoing dispute. The reality of global warming is 
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universally acknowledged, and it has far-reaching effects on all aspects of the natural world. The 

impact of climate change in the 21st century is substantial. Current research suggests that there will 

be a temperature increase of 1.0-3.5◦C worldwide by the year 2100. This temperature change could 

potentially lead to a higher likelihood of vector-borne diseases. Weather and climate impact the 

behavior of vectors and the transmission of viruses. The construction of dams and irrigation systems 

can enhance the food and energy requirements of developing nations. Nevertheless, emerging vector-

borne infectious diseases have the potential to propagate [4]. The expansion of water resources and 

population growth can lead to ecological changes that facilitate the spread of schistosomiasis to 

previously unaffected areas [5, 6]. Gaining comprehension of the resurgence of vector-borne diseases 

is crucial in mitigating their detrimental impact. This is of utmost importance as infectious diseases 

sometimes go undiagnosed. Hence, it is imperative to closely monitor the advancements in infectious 

disease surveillance and control to facilitate timely public health interventions [7]. Mathematical 

modeling is a highly efficient approach for investigating the progression of different diseases. 

Through the utilization of these models and the implementation of investigations, we may optimize 

our planning and formulate efficient control strategies. The study was conducted to evaluate the 

global stability of a host-vector system. 

The following structure describes how this paper is organized. Section 2 explains how the 

mathematical model was constructed. The dimensionless formulation of the prescribe model is shown 

in section 3. Section 4 reveals the basic reproduction number R0, the presence of a disease-free 

equilibrium, and the stability of that equilibrium. The presence and uniqueness of endemic 

equilibrium, as well as the stability of that equilibrium, are presented in sections 5 and 6, respectively. 

Section 7 contains the results of the discussion and simulations, whereas section 8 contains the 

appendices. 

 

2  Model Formulation 

In this model, we divide a total host population Nh into few distinct compartments individually who 

are susceptible Sh, infectious Ih and recovered Rh. Most likely, the total number of vectors Nv is also 

split into two groups: vectors that are susceptible ( size Sv) and vectors that can spread disease (size 

Iv). Immune class approximately does not exits in vector class. Their death concludes their infectious 

phase. Consequently, the disease divides the host population into classes of susceptible, infectious, 

and recovered individuals, whereas the vector population divides into classes of susceptible and 

infectious individuals. At time t, the total populations of both humans and vectors are, respectively: 

Nh = Sh + Ih + Rh and Nv = Sv + Iv. So, the following set of differential equations can be used to state a 

host-vector model: 

 
 

S is susceptible, I is infected and R is recovered individual. The birth rate of those who are considered 

to be in the susceptible class is represented in model (2.1) by Λh. There are two main ways in which 

infected organisms are spread throughout a population of susceptible hosts: direct contact with an 

infected person or a bite from an infectious vector. The infection rate of susceptible people caused by 

the biting of infected vectors is equal to the infection rate of suffering people caused by forced contact 

with an irresistible person, or bβh. The occurrence of new contamination of transmission is given by 

the frequency shape bβh(ivsh/NV ). Natural mortality in humans occurs at a rate known as µh. We 
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suppose that the rate at which susceptible people develop lifelong immunity is γh. Disease-related 

mortality in humans is denoted by the rate δh. For the vector population, Λv is the birth rate and µv is 

the mortality rate due to natural causes. The rate of recently tainted vectors is again given by the 

frequency frame bβv(ihsv/NH). The following equation describes the entire host population: 

 
 

3   Dimensionless Formulation 

Where  , and   represents. Sh, Rh, Ih, Iv and Sv should 

satisfy the becoming system. In this paper, we devote all of our attention to the system’s dynamic 

behavior 

 

 
(for more detail see Appendix): 

 
 

where the solution is to be Sh + Rh + Ih = 1, Sv + Iv = 1. The value of Sv is given by Sv = 1 − Iv. Assuming 

the scale-normalized system (3.1), we can examine the reduced system (3.2) that explains all the 

dynamics in the same way throughout this paper. 

 
 

System (3.2) has a remarkably invariant set of viable regions:  

Sh + Ih ≤ 1,0 ≤ Iv ≤ 1}, where  denotes the lower-dimensional cone of  which is nonnegative. 

Table 1: For simulation analysis, the model parameters are shown below. As for system (3.2), we 

establish the following theorem. 

 

Theorem 1. Let (Sh,Ih,Iv) be the solution of the system (3.2) with initial conditions of Sh(0) = Sh
0, Ih(0) 

= Ih
0, Iv(0) = Iv

0, then Γ is positively invariant set with respect to system (3.2) and attracting under 

the flow represented by system (2.2). 

Symbol Description of parameter 

Λh The recruitment and natural fatality rate of humans 

Λv The recruitment and natural fatality rate of vectors 

βh The rate of new infection to human 

βv The rate of new infection to vector 

δh Disease mortality rates among humans 

δv Death rates of vector due to disease 

γh The rate of infectious individuals acquire permanent immunity 
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4   Stability theory to Disease-Free Equilibrium 

In this paper, we use direct calculations to show that the system (3.2) contains disease-free equilibrium 

points in steady-state solutions in which there is no infection. For the diseasefree equilibrium point, 

Sh = 1, Ih = 0, Iv = 0 that is, E0 = (1,0,0). The term "basic reproduction number" is used to refer to the 

quantity that describes the entire disease dynamics  . In model (3.2), R0 

represents the critical threshold of the epidemic model and serves as its foundational reproduction 

number. We can tell if an infectious disease has the potential to spread throughout a population by 

looking at the basic reproduction number. Using second Theorem of [8], by assuming that 

 
 

All new infections are represented by the Jacobian matrix F(E). V(E) is a representation of the net 

transition rates aside from the corresponding compartment, where 

 
 

where F and V are a 2 × 2 matrix and therefor, by linearization at 

 

 
 

hence FV −1 contains the next generation matrix of the system (3.2); 

 
 

As a result, the spectral radius R0 = ρ(FV −1) provides the basic reproduction number of the system 

(2.1) as shown below. 

. 

 

Theorem 2. System (3.2) disease-free equilibrium E0 is locally stable if and only if R0 < 1, and is 

unstable otherwise if R0 > 1. 

Proof. We evaluate the Jacobian matrix of the system (3.2) at the disease-free equilibrium point E0 

and is given by 
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. 

 

The Jacobian matrix has a characteristic equation of det(λI − J(E0)) = 0 based on the Routh-Hurwitz 

criterion. 

λ3 + a1λ
2 + a2λ + a3 = 0, (4.2) 

where 

 
 

Now we should check the said criteria. If the criteria is satisfied then all the eigenvalues have negative 

real part, 

 
 

Thus, E0 is locally asymptotically stable in model (3.2).  

The global stability of an equilibrium free of disease for system (3.2) is now being studied. 

 

Theorem 3. For bβhIv > δhIh, bβvIh > δvIv, The disease-free equilibrium E0 is globally asymptotically 

stable in Γ of the model if and only if R0 ≤ 1. In contrast, E0 is unstable if R0 > 1. 

Proof. For globally stability we construct Lyapunov function as. 

L(t) = a1Ih + a2Iv, (4.3) 

 

where, 

a1 = (δv + Λv), a2 = bβh. 

 

Taking the derivative of L along the system (3.2) solutions yields 

. 
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Thus here if R0 ≤ 1 then L·(t) is negative. Further along the solution of the system L > 0 and L = 0 iff 

Ih = Iv = 0. That is L·(t) ≤ 0 if R0 ≤ 1, then L·(t) = 0 when and only when Ih = Iv = 0. Consequently, our 

endemic equilibrium point is the singelton set E0, which is the biggest compact invariant set in 

{(Sh,Ih,Iv) ∈ Φ | L·(t) = 0} when R0 ≤ 1. Consequently, we infer that E0 is globally asymptotically stable 

in Φ by applying Lasalle’s Invariance Principle [9].  

 

5   Stability theory of the Endemic Equilibrium 

In this part, we investigate the occurrence and stability of endemic equilibrium points. A unique 

endemic equilibrium  exists in the host-vector model (2.4) if and only if R0 > 1, 

with 

 
 

where 
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Thus we obtain the polynomial function of the degree six in (5.1). Which represents the presence of 

few endemic equilibrium points. This shows that there are six possible roots for Ih
∗, which further 

means that there are at most six possible endemic equilibrium points. 

As in [10,11], we employ the additive compound matrices method to determine endemic equilibrium. 

The following Jacobian matrix is obtained by linearizing system (3.2) about the endemic equilibrium 

point E∗. 

 
 

The Jacobian matrix J(E∗) has an additive compound matrix J[2](E∗), which is given by 

 
 

Where 

 
 

we know that if the Jacobian of our dynamical system with negative real part, then the system will be 

asymptotically stable. 

 

Lemma 1. Consider Z to be a real matrix with the dimensions  . If tr(Z), det(Z), and 

det(Z[2]) are all negative, then all eigenvalues of Z have negative real part. 

For the stability of endemic equilibrium we use the above lemma. 

 

Theorem 4. If R0 > 1, then the endemic equilibrium E∗ is locally asymptotically stable. 
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If 

, 

 

then 

. 

 

For the compound matrix, the determinant of J[2](E∗), we have 

, 

Where 
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If δh = 0 and δv = 0, then 

. 

 

Consequently, the endemic equilibrium E∗ of the model (3.2) is locally asymptotically stable in Γ, in 

accordance with lemma (1).  

 

6   Stability of Endemic Equilibrium on a Global Scale 

Now we show that when R0 > 1, the endemic equilibrium is globally stable. For this, we introduce 

some important result. 

Lemma 2. System (3.2) is uniformly persistent if R0 > 1, and there exist c > 0 (Algorithmic 

independence of initial values), such that liminfx→∞ Sh(t) ≥ c , liminfx→∞ Ih(t) ≥ c and  

liminfx→∞ Iv(t) ≥ c. 

Proof. Let Π be a semi-dynamical system (3.2) in  a locally compact metric space and Γ0 = 

{(Sh,Ih,Iv) ∈ Γ | Iv = 0}. In system (3.2) Γ0 set is a compact subset of Γ and Γ/Γ0 set is positively 

invariant. Let a mapping  be defined by P(Sh,Ih,Iv) = Iv and set S = {(Sh,Ih,Iv) ∈ Γ | P(Sh,Ih,Iv) 

< ρ}, where ρ is sufficiently small constant so that R0(1 − (Λv/Λv)ρ) > 1. Assuming that x ∈ S is a 

solution such that, for all t > 0, we find P(Π(x,t)) < P(x) < ρ. Considering Lyapunov function and let 

δ be the minimum of function, then finally the result becomes: 

                          L′(t) ≥ δL(t).                                                                   (6.1) 

 

The inequality (6.1) means that if t → ∞ then L(t) → ∞. In contrast, L(t) is constrained by the set Γ. 

This completes the proof of Lemma 2 in [12], which follows from Theorem 1.  

Using Li MY and Muldowney JS’s geometrical technique in the feasible region Φ, we analyze the 

global stability of the endemic equilibrium E∗. We sum up this method as follows (see [9,13,14]). 

Each solution y(t,y0) of the differential equation is a f : y 7→ f(y) on the E1 map from the open set  

F ⊂ Rn to Rn. 

                                                 y′ = f(y)                                   (6.2) 

 

is individually defined by the initial value y(0,y0). 

The following are our assumptions: (H1) D is simply connected; 

(H2) there exists a compact absorbing set K ⊂ F; 

(H3) has unique equilibrium 𝑦̅  in F. Let p : y → p(y) be a nonsingular (
𝑛
2

) × (
𝑛
2

)  matrix valued 

function which is E1 in F and a vector norm | . | on RN, where  𝑁 = (
𝑛
2

). 

Let µ be the Lozinski˘i measure with respect to the | . |, then define a quantity q2 as 
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where B = pfp

−1 + pj[2]p−1, J[2] is the Jacobian matrix’s J second additive compound matrix. Li and 

Muldowney have proven the following theorem. 

 

Theorem 5. Assuming H1−H3 holds, the unique endemic equilibrium E∗ is globally stable in Φ if and 

only if q2 < 0. 

 
 

In the interior of Φ, it is clear that p is E1 and nonsingular. To obtain the following Jacobian matrix, 

we linearize system (3.2) about the endemic point E∗. 

 
Also the second additive compound matrix is: 

 

 
 

Take into account the norm in R3, which is defined as |(u,v,w)| = max(|u|,|v| + |w|), where (u,v,w) 

denotes the vector in R3. With regards to the define norm, the Lozinski˘i measure is 

µ(B) ≤ sup(g1,g2), (6.3) 
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with 

g1 = µ1(B11) + |B12|,g2 = µ1(B22) + |B21|. 

From system (3.2), we write down 

, 

 

whereas B11 is a scalar quantity, (therefore, each R1 vector norm has a Lozinski˘i measure equal to B11. 

Therefor 

, 

 

also g1 will become 

(6.4) 

Further, . The norm operators of |B12|, which map from R2 to 

R, are denoted by the notation B12, and |B21| are the norm operator of B21 which are mapping from R 

to R2, as well as the ı1 norm being a part of R2. Furthermore, B22 is 2×2 matrix and µ1(B22) is its 

Lozinskiˇı measure with regard to ı1 norm in R2. Consider the 

following 

, 

 

Hence, 

 
Thus, 

. (6.6) 
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Because the system (3.2) is consistently persistent for R0 > 1, and consequently when t > 0, such that 

t > T, implies that Sh(t) ≥ c, Ih(t) ≥ c, Iv(t) ≥ c and , for 

all (Sh(0),Ih(0),Iv(0)) ∈ K. Thus, 

                                    ,                        (6.7) 

 

for all (Sh(0),Ih(0),Iv(0)) ∈ K. In addition, this implies that q2 < 0. This proves that Theorem 5 holds 

true. This indicates that E∗ is globally asymptotically stable in Γ. 

 

7   Numerical simulations 

In this section, the transmission processes of Vector-Born Disease with Linear Incidence Rate has 

been presented with the help of a numerical scheme to elaborate the dynamical behavior of the 

system. Our simulation has been performed by applying the well-known MATLAB 2020 a and Runge 

Kutta order 4th MATLAB 2020a method. Different scenarios are accomplished with different 

assumptions of input values. For these numerical simulations, we considered the values of input 

factors of the system of dengue from Table 1. Moreover, the values of state variables are taken as 

follows: Sh = 0.8,Ih = 0.2,Rh = 0.1,Sv = 0.2 and Vv = 0.1. 

Symbol Description of parameter X1 X2  

Λh The recruitment and natural fatality rate of humans 0.01 0.1  

Λv The recruitment and natural fatality rate of vectors 0.02 0.2  

βh The rate of new infection to human 0.24 0.23  

βv The rate of new infection to vector 0.13 0.34  

δh Disease mortality rates among humans 0.5 0.5  

δv Death rates of vector due to disease 0.14 0.17  

γh The rate of infectious individuals acquire permanent immunity 0.01 0.1  

Table 1: The duration of incubation for some epidemic illnesses. 

 

 
Figure 1: The dynamics of each state variable for the system (3.2). 
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Figure 2: The dynamics of each state variable for the system (3.2). 

 

8    Conclusion 

In this paper, we present a host-vector model for vector-borne diseases that accounts for direct 

transmission and a dynamic human population. It refers to conditions that have a high mortality rate 

over a prolonged period of time (e.g., dengue fever or malaria). A mosquito model carrying a disease 

vector is numerically analyzed. In this model, the new infection rate in both human and vector 

populations is represented by a single number, R0. The basic reproduction number R0 governs the 

model’s (3.2) local and global dynamics. By developing Lyapunov work, we demonstrated that the 

disease-free equilibrium E0 is globally asymptotically stable in Γ, if R0 ≤ 1 and thus the disease are 

reach to ends always. If R0 > 1, then the unique endemic equilibrium exists and endemic equilibrium 

E∗ is globally asymptotically stable in Γ and thus the disease alloy at the endemic equilibrium if it is 

initially present. 
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9 Appendix 

Utilizing the transformation  and  for scaling, their 

differentials: 

, 

, and from the system (2.1) and 

(2.2), we acquire the dimensionless form (3.1). If δh = 0 and Λh = µh, then  becomes vanish and 

so NH(t) remains constant at its initial value NH0. In this case, the system (2.1) becomes the model 

with constant populace whose dynamics are the similar as the transform system (3.1). Hence, all the 

solutions with initial condition sh0+ih0+rh0 = NH0 tends to (NH0,0,0), if R0 ≤ 1, and the 

. In the other rest part of this section, we assume that δh > 0. 
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