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ABSTRACT 

 

Evidence based medicine requires strong scientific evidence upon which to base treatment. Because the 

available study populations for rare diseases are small, this evidence is difficult to accrue. Investigators 

need to consider a flexible toolkit of methods to deal with the problems inherent in the study of rare 

disease. We present some potential solutions in this paper. 
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_____________________________________________________________________________________ 

 

INTRODUCTION 

Rare diseases are estimated to affect millions of 

North Americans and millions globally.
1
 Although 

any one rare disease may affect only few patients, 

in aggregate the public health impact is huge. The 

Institute of Medicine has identified a number of 

challenges in developing safe and effective 

treatments for rare diseases, including difficulties 

in attracting research funding, recruiting sufficient 

numbers of research subjects, finding appropriate 

research designs for small populations, and 

securing adequate expertise at regulatory agencies 

for the approval of new products.
 1
  

Reasoned clinical decision making 

depends on having accurate information. Rational 

therapeutic decisions weigh the benefits and costs 

(in terms of adverse outcomes as well as financial 

costs) of the alternatives; better decisions can be 

made with valid information about the benefits 

and costs of alternative treatments.  

Modern clinical science is an inductive 

practice. The inductive method was proposed by 

Sir Frances Bacon – to replace Aristotle’s 

deductive syllogism. In the inductive method, we 

make observations about nature, use them to 

develop hypotheses, and then test those 

hypotheses. A strong inductive argument is one in 

which the evidence supplied by its premises 

makes it highly improbable that its conclusion is 

false when all premises are true.
2
 

The inductive method was applied to 

clinical medicine by Parisian physician, Pierre 

Louis, in the early 1800s. He devised his 

numerical method, and used it to show that 

bloodletting (the application of leeches) led to 

increased mortality in pneumonitis.
3
 His 

influential publication led to the disappearance of 

leeching worldwide. This was one of the first 

applications of evidence-based practice. 

Evidence-based medicine (EBM), while 

an old practice, is a relatively new term coined in 

1990.
4 

It is defined as practicing medicine using 

expert clinical judgment, combined with the best 

external evidence, and guided by patient values.
5 

Evidence that is derived from observational data 

can suffer from confounding, resulting in a 

distortion of the estimated treatment effect.
6
 The 

confounder is both a) causally related to the 

outcome independent of the exposure, and b) 

associated with the exposure but not a 

consequence of exposure.  

One important source of bias in 

observational treatment studies is confounding by 

indication (also known as treatment selection bias 

or susceptibility bias).
6,7

 In this situation 

prognostic factors actually influence treatment 
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exposure, i.e., patients with a better prognosis 

receive one treatment while patients with a worse 

prognosis receive another treatment.
7
  

However, some of the bias is reduced by 

statistical adjustments if the confounding factors 

are both known and measured.
6  

Clinical experiments (e.g. randomized 

controlled trials – Fig. 1) are considered to be the 

most valid way to generate unbiased evidence, 

and avoid confounding. Imbalances between 

groups are reduced to chance, and this probability 

can be made small by increasing the sample size.  

However, in rare diseases a large sample 

size for study is not readily available. Thus, 

observational studies may have special 

importance for rare diseases. Observational 

studies may also evaluate treatment efficacy in a 

population that is more representative than 

persons in a randomized clinical trial.
8 

There are an estimated 5,000 to 8,000 rare 

or orphan diseases that affect about 25 million 

Americans and 30 million Europeans.
9 

Although 

there is no single definition of rare diseases, 

countries and organizations define it by their 

prevalence. For example, in the European Union a 

disease is called rare if it affects no more than 5 

out of 10,000 in the population.
9
 In the US, a rare 

disease affects 7 out of every 10,000.
10

 Many or 

most of the rare diseases have a genetic origin, 

start their manifestation early in childhood, are 

severe, chronic and often life-threatening with 

high psychosocial burden and poor quality of 

life.
11

 

We have little evidence for the treatment 

of rare diseases due to several inherent constraints 

to internal and external validity of small (low 

sample size) trials.
12

 Research standards and 

clinical trial protocol requirements are the same 

for both rare and common diseases; however, 

because of a low incidence and prevalence, patient 

accrual into RCTs of rare diseases may be very 

difficult and almost infeasible in some instances. 

For example, an RCT involving treatment of 

indolent T-cell LGL leukemia would need 439 

patients to demonstrate a 50% relative risk 

reduction of death with a total trial duration of 5 

years. However, considering the usual 5% patient 

enrolment into cancer trials, and a disease 

prevalence of 160 patients per year, it would take 

up to 55 years to enroll the required number of 

patients.
13

 The RCT of itraconazole for the 

prevention of severe fungal infection in children 

and adults with chronic granulomatous disease 

required 10 years to enroll the required sample of 

39 subjects.
14

 

Because rare diseases may have variable 

disease progressions, it may be hard to enroll a 

homogeneous study population and achieve 

balanced randomization. Selecting a more 

heterogeneous population may increase the 

study’s external validity but may also lead to 

erroneous conclusions. For example, when 

patients with different sub-types of peripheral T-

cell lymphoma were considered together, 

investigators achieved inaccurate conclusions 

about the disease prognosis.
13

 

Because the disease progression in many 

rare diseases is not fully described, investigators 

may need to use composite or surrogate outcomes 

with un-established validity and reliability. For 

example, for many inborn errors of metabolism 

the levels of various biomarkers as predictors of 

good outcome are not well established.
15

 

The quality of RCTs in rare diseases may 

be jeopardized because of the existing constraints, 

as described above. For example, a systematic 

review of RCTs in juvenile idiopathic arthritis 

(JIA) found that only about 5% of studies met the 

6 included quality indicators.
16

 

 

Design studies to only pick up large treatment 

effects 

Perhaps one solution to the study of treatment for 

rare diseases is to only design trials that will 

uncover very large treatment effects (far fewer 

subjects are needed in RCTs to demonstrate large 

treatment effects). For common diseases, 

treatments of only modest effect may not benefit 

many individual patients, but may offer a large 

benefit to society. For rare diseases, we may only 

be interested in treatments that are likely to 

benefit our individual patients themselves. 

The number needed to treat (NNT) can be 

used to illustrate this point. The NNT is the 

number of patients that a physician needs to treat 

in order to affect one additional cure, or 

response.
17

 For illnesses where the treatment 

benefit is obtained by a few (e.g., NNT = 100, 1 
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additional patient in 100 benefits), if the treatment 

was relatively affordable and safe enough, it 

would be wise public policy to treat everyone – 

even though the chance that any one individual 

would benefit from treatment is low. For a very 

rare disease, and for a treatment with a similar 

NNT, there would be no public policy argument 

for treatment, and since most patients would not 

see a personal benefit, the wise choice may be to 

not offer treatment. For very rare diseases, we 

might argue that we are only interested in 

treatments that are highly likely to benefit the 

individual patient – perhaps with NNTs in the 

order of 2 or 3. This is likely a controversial 

solution, and warrants further discussion and 

debate. 

 

Use more acceptable study designs (i.e. limited 

exposure to placebo) 

Study designs that have higher acceptability 

among investigators and patients may have better 

enrolment, an important factor for studies of rare 

diseases. Acceptability can be improved by 

eliminating a placebo comparison or by allowing 

it only for a short time. Here we present some 

examples of such designs. 

 

Active comparator 

Patients may not wish to enroll into trials because 

of concerns about being randomized to a 

placebo.
18 

The most common types of control 

conditions used in RCTs are placebo controls; 

active comparator controls are used when there is 

a currently available acceptably effective and safe 

treatment. A survey that evaluated physicians' 

preferences showed that physicians were 

significantly more likely to enroll into active-

controlled trials.
19

 

When possible, RCTs in rare diseases 

should be designed with an active comparator 

group in order to enhance recruitment.
20

 As an 

example of an active comparator, the single RCT 

of factor replacement prophylaxis in hemophilia 

A, a rare sex-linked genetic disorder, compared 

prophylactic factor VIII infusions against an 

enhanced episodic factor VIII infusion schedule.
21 

Although the enhanced episodic infusion of factor 

VIII had never been investigated in a placebo-

controlled trial, it was considered to be the most 

reasonable standard of therapy; the investigators 

considered it to have been unethical to randomize 

subjects to a placebo. 

 

Post-trial provision of beneficial treatment / 

open-labeled extension 

Patients may be more willing to participate in 

trials if they are offered access to the experimental 

treatment after the trial end (no matter which 

treatment arm they had been assigned to). There is 

an ethical support for this; the Declaration of 

Helsinki states that at the end of the study patients 

should be informed about the results, and share 

any benefits from the trial findings (such as 

having access to beneficial interventions 

established by the study).
22

 In fact, many national 

and international guidelines support post-trial 

mandatory provision of beneficial interventions.
23

 

The interruption of treatment at the end of the trial 

can create frustration and a feeling of exploitation 

among participants. In contrary, when the 

experimental treatment is offered at the end of 

trial for as long as necessary, patients may feel 

rewarded for their participation. Moreover, they 

may agree to a continued follow-up that will 

provide data for a longer-term effectiveness and 

safety (often called an ‘open-labeled extension 

phase’). Some trial sponsors argue that a post-trial 

provision may be very costly and may take funds 

from other potential projects;
24 

however, in rare 

diseases the overall budget impact is likely to be 

small because the number of eligible patients is 

small as well. Post-trial provisions may encourage 

patients to participate in RCTs and help 

investigators to fulfill their ethical obligations. 
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FIG. 2  Cross-over Study 

 
In the cross-over design, subjects are randomized to a first period in which some start with experimental 

treatment, and the others with control treatment. At the end of the first period outcomes are measured. If 

required, there is then a washout period after which each subject is exposed to the other treatment group. 

At the end of the second period outcomes are measured again. 
 

Cross-over Trials 

 

 
 

 

Cross-over trials compare two (or more) 

treatments by allocating each participant to all 

compared treatments in a randomly selected 

sequence. The design offers many advantageous 

features to investigators of rare diseases such as 

less variability (as each patient acts as his or her 

own control allowing for within patient 

comparisons) / higher precision – and therefore 

the need for a smaller sample size (in some cases 

almost half of what is needed for a parallel 

design). In addition all patients will receive the 

experimental treatment at some time during the 

trial which may lead to enhanced acceptability 

and improved recruitment.
25,26 

The design is 

limited to studies of chronic, stable conditions, to 

investigation of symptom relief, to short-term 

therapies, and for treatments that do not induce a 

permanent effect.  

 

Cross-over trials have been widely used in 

pediatrics, cancer research, clinical pharmacology 

and psychiatry.
26

 For example, a review of all 

RCTs in the Archives of Disease in Childhood 

from 1982–1996 found that about one-third used a 

cross-over design.
27

 Methodological challenges 

that need careful consideration in cross-over trials 

include an effective washout period (time 

necessary to wait before administrating the next 

medication to clear the effect of the prior 

medication, to avoid a carryover effect), order 

effect and period effect.
28 

The design is also more 

sensitive to dropouts and missing data as each 

patient carries more weight in the analysis. 
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Enriched enrolment, randomized withdrawal 

The enriched enrolment randomized withdrawal 

(EERW) design addresses ethical concerns and 

patient preferences about placebo assignment by 

shortening the time patients are on control 

therapy/placebo. The EERW trial design has two 

phases and was first described in 1975.
29 

The first 

phase, the enrichment phase, is used to identify 

the experimental drug responders by enrolling 

study participants into an open-label trial where 

all patients receive the treatment under the study. 

Once the responders are identified, they are 

enrolled into the randomized withdrawal phase 

where they are randomly allocated to continue 

receiving experimental treatment or switch to a 

control treatment. The trial endpoints are usually 

the return of symptoms.
30 

The enrichment design 

effectively increases the average benefit of the 

experimental treatment over the control. Since 

even those subjects who have therapy withdrawn 

can re-start effective experimental therapy when 

they have flared, the time on placebo is limited. 

This is thought to increase acceptability and 

accrual; as such, this design has been widely used, 

e.g., in pediatric rheumatology trials.
31

 

 

 

FIG. 3  Randomized withdrawal design 

 

In this design, all subjects are begun on the experimental therapy. Those that respond are then randomized 

to continue experimental therapy, or to be withdrawn to placebo. The groups are followed to see which 

group has a greater flare rate. 

 

 

 

A non-exhaustive, keyword search 

‘randomized withdrawal’ conducted in the 

MEDLINE and EMBASE databases from January 

2000 until April 2011 (limiting to English 

language and human studies) identified 42 

abstracts, 17 of which described original RCTs 

with EERW design. The review of these abstracts 

revealed that almost half were related to pain 

management and one-third to psychiatric 

conditions. All 17 studies used placebo as a 

control and only 5 used a time-to-event outcome 

as a primary end-point. This review also indicated 

that the use of EERW design is increasing as 11 of 

17 studies were conducted after 2008. 

The methodological challenges of this 

design include potential carryover effects, 

establishment of the enrichment duration, disease 

activity status ascertainment (assessment if this is 

a real remission/improvement), data imputation 

methods for missing values for withdrawals 

(unless time-to-event analyses are applied) and 

capturing of long-term adverse events.
30

 



A new toolkit for conducting clinical trials in rare disorders  
 

 
J Popul Ther Clin Pharmacol Vol 21(1):e66-e78; February 23, 2014 

© 2014 Canadian Society of Pharmacology and Therapeutics. All rights reserved.  

e71 

 

Randomized placebo-phase design  

The Randomized placebo-phase design (RPPD) 

was developed with the primary aim to improve 

the acceptability of entering a trial by effectively 

decreasing the time necessary to be allocated to 

placebo.
32

 It was designed for treatments that may 

produce a lasting remission or response (and so 

would not be suitable for cross-over designs). As 

in the parallel group RCT (Figure 1), patients in 

the RPPD are first randomly allocated to either an 

experimental or control group. However, after a 

short, fixed time period (called the placebo-phase) 

patients in the control group are blindly switched 

to the experimental treatment (Figure 4). The 

design is based on the assumption that if the 

treatment is effective, patients who receive it 

sooner will respond, on average, sooner. At the 

end of the trial, average response times of the 

groups are compared, most often using time-to-

event analysis. 

 

FIG. 4     Randomized placebo phase design (RPPD) 

 

In the RPPD, subjects are randomized to begin therapy earlier, or later. Those that start later are begun on 

a period of placebo to preserve blinding. Outcomes are measured as time-to-response 

 

 

 

FIG. 1    Parallel groups randomized controlled trial (RCT) 

 
In the RCT, subjects are randomized to take either experimental treatment or control treatment (often 

placebo). Outcomes may be measured at the end of the study period, or during the study period 

(longitudinally, or as time-to-event). 
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If the RPPD is, in fact, more acceptable to 

potential subjects and enrolling physicians, there 

is a real benefit to the design. We did a computer 

simulation study assessing the performance of the 

RPPD against the parallel group RCT under 

different time-to-response distributions.
33 

The 

results revealed that under the lognormal and 

Weibull distributions the RPPD can be very close 

in efficiency (statistical power) to the RCT. If the 

RPPD makes it easier to accrue subjects, there is a 

real benefit for rare diseases. Another computer 

simulation study established effective internal 

monitoring and early stopping rules for the 

RPPD.
34

 

Response time distributions for specific 

patient population and treatment modality can be 

estimated from patient registries or past clinical 

trials.
35 

The establishment of the optimal placebo-

phase duration and overall trial duration is very 

important. A longer placebo-phase duration will 

decrease the required sample size; however, the 

optimal duration is defined only after carefully 

considering patient preferences, the disease 

progress model, the minimal clinically important 

drug potency / effect size, and the response time 

to drug statistical distribution.
33

 

 

Use Bayesian adaptive trial design and analysis 

to achieve interpretable results from small 

studies 

Bayesian analysis allows us to provide estimates 

of treatment effectiveness even in small studies. 

The traditional, or frequentist, paradigm for the 

analysis of clinical trials focuses on the 

probability (p-value) that the observed data (or 

values more extreme) were obtained by chance 

alone (i.e. under the null hypothesis).
36 

By 

convention, when the probability is less than 0.05, 

we conclude that the observed difference is 

“statistically significant”. The 0.05 probability of 

incorrectly concluding that there is a treatment 

effect (if in fact there is none) is known as a Type 

I (or false positive) error.
37

 Therefore, we interpret 

the question answered by the p-value as only 

whether there is a treatment effect, rather than 

how large that treatment effect may be. Estimates 

of the magnitude of treatment effects are however 

of most relevance to decision makers.
38

 The 

magnitude of the p-value is not only related to the 

effect size, but also the sample size (which helps 

determine the precision of the study).
36

 As such, 

the traditional approach is not ideally suited to the 

study of rare diseases, where larger clinical trials 

may not be feasible. 

In contrast, a Bayesian analysis allows for 

maximal information to be gained from a limited 

number of subjects. The Bayesian approach 

achieves this, in part, by providing for formal 

incorporation of prior information into the 

analysis, which may reduce sample size 

requirements.
39

A Bayesian analysis also provides 

a meaningful estimate of the direct probability of 

any given magnitude of treatment response. 

Bayesian approaches to assessment of a 

health technology can be defined as an “explicit 

and qualitative use of external evidence in the 

design, monitoring, analysis, interpretation and 

reporting of the results”.
40

 In addition to analysis, 

the Bayesian approach can be used in the design 

and monitoring of clinical trials, including sample 

size estimation and stopping rules.
40

 

Central to this approach, is the notion of 

the prior probability distribution, which is a 

probability distribution of the variable of interest 

(say, the effect size of an experimental treatment) 

from data external to the study. This prior may be 

based on previous studies or on expert opinion.
41

 

A Bayesian analysis is a formal method of 

integrating this prior distribution with the 

distribution of the new data – known as the 

likelihood, which is the probability of the data 

observed, or more extreme, given a hypothesis 

(see above for a description of p values) – to yield 

a posterior probability distribution.
40 

For 

example, in the analysis of a clinical trial of an 

experimental treatment, the prior distribution may 

be an estimate of the treatment response from 

previous studies (early phase studies, or studies in 

other populations). This is then combined with the 

actual data from the trial to yield a posterior 

distribution, which is the new, and better, estimate 

of the probability of the treatment response. 

Formal incorporation of data from 

previous studies, may allow investigator to 

address questions meaningfully with fewer 

subjects;
39

 however, inclusion of prior information 

is controversial. Some suggest that we can’t be 

certain that the information contained in the prior 
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is correct.
42

 In order to address this criticism, 

Bayesian analyses can be done with a specific 

type of prior – a skeptical prior – which is a prior 

that is constructed to have a high probability of 

there not being an experimental treatment effect.
40

 

An analysis using a skeptical prior are particularly 

important for clinical trials. Since the skeptical 

prior reflects a low probability of a meaningful 

treatment response—and the posterior distribution 

updates this probability on the basis of the data—

this posterior probability distribution, therefore, is 

what an individual who holds a skeptical view of 

the treatment should believe with new knowledge 

from the trial data. Using a skeptical prior, we ask 

whether the data from our trial are sufficiently 

strong to convince a skeptic to adopt the 

treatment. 

A major benefit for the study of rare 

disease is that, unlike the traditional method, the 

Bayesian method yields a direct estimate of the 

probability of a meaningful treatment effect.
43 

This is true, no matter what the size of the data 

collection is. As is true for the traditional 

frequentist approach, more data will yield a more 

precise estimate, but with the Bayesian approach 

we are not limited by arbitrary decisions regarding 

“significance” based on a p value. 

This can be illustrated with data from a 

hypothetical placebo controlled trial with 30 

participants (15 in each group) of a drug for 

symptom management of a rheumatologic 

disorder. The outcome of this study is a quality of 

life instrument. A difference of 2-points is 

believed to be clinically important. The mean 

value in the experimental arm is 13.6 units 

(standard deviation: 4.97) and in the control arm 

10.5 units (standard deviation: 4.36). A traditional 

frequentist analysis with a t-test provides 

insufficient evidence to disprove the null 

hypothesis – t-statistic 1.797, df = 28, p = 0.083, 

mean difference 3.06: 95% confidence interval: -

0.42 to 6.56. For this small study, the power is 

low and the results may be false negative. A 

Bayesian analysis (using an uninformative prior
1
) 

provides very similar estimates for the difference 

                                                           
1An uninformative prior probability distribution assumes that we 
have no knowledge of the treatment effect before we start our 
study. It is therefore uncontroversial, but doesn’t allow us to take 
full advantage of the Bayesian approach. 

in means between the groups (median value: 3.05, 

95% credible interval -0.58 to 6.61). However, 

unlike the frequentist analysis the Bayesian 

analysis allows us to determine that the 

probability of a clinically important difference of 

2 points is 74% – which can be thought of as 3:1 

odds favoring the experimental treatment. For an 

inexpensive and safe treatment, this may be 

enough evidence to support treatment. There is a 

96% probability that the experimental treatment is 

at least a little bit better. Therefore, this small 

study, that would have likely been regarded as 

“negative” with the frequentist approach, may 

provide useful information when analyzed by the 

Bayesian approach. A Bayesian reanalysis of a 

small RCT of methotrexate in scleroderma came 

to similar conclusions.
44

 

 

Get more information from individual subjects 

Multiple cross-over designs 

As discussed above, in a cross-over study each 

subject’s experience on both experimental and 

control therapy is contrasted. Because the 

comparison is ‘within subject’, the variability in 

response is reduced (i.e. the precision is 

increased) and fewer subjects are needed to 

demonstrate an important effect size.
45

 In a 

multiple cross-over study, each subject is crossed 

between experimental and control treatments 

several times; in this way, we gain additional 

information for each subject, and the total number 

of subjects in a study may be decreased without 

sacrificing power.
46

 

One problem with multiple cross-over 

designs is that they are administratively complex, 

and they are very sensitive to drop-out. If a 

subject drop-outs from one of the treatment 

periods, all that subject’s data must be dropped 

from a traditional analysis, or the analysis has to 

be changed to account for the drop-out. 

 

Multiple n-of-1 trials 

A more flexible method is to combine n-of-1 trials 

using a form of Bayesian meta-analysis.
47

 N-of-1 

studies are randomized clinical trials, with 

multiple cross-overs, in single subjects.
48,49 

Because cross-over periods are assigned, the 

design is limited by the same factors that limit 

other crossover designs (see above). N-of-1 trials 
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are flexible by nature, since the number of periods 

may be varied according to each subject; the study 

can be continued until a definitive conclusion can 

be made for that subject being studied. However, 

because they are studies done in a single subject, 

no generalizations can be made about the studied 

treatment to others. 

By combining subjects who have had n-

of-1 studies (in each of whom there is a precise 

understanding of how well the experimental 

treatment works) it is possible to estimate the 

treatment effect in the population. For example, 

we studied the anti-emetic effects of 

metopimazine combination therapy in children 

getting chemotherapy for brain tumours,
50

 the pain 

relieving effects of amitriptyline in children with 

arthritis,
51

 and the effect of topical vitamin E in 

preventing mucositis in children receiving cancer 

chemotherapy,
52

 using this method. Each study 

was small (total sample size ranged from 6 to 16 

subjects) yet each provided us with an estimate of 

treatment effectiveness adequate to draw 

conclusions about its use. We used a Bayesian 

meta-analytic technique to combine the subjects’ 

data, but other statistical methods may also be 

used.
53 

In situations in which a crossover design 

may be used, and maximal flexibility is desired, 

multiple n-of-1 studies may be a helpful strategy. 

 

Use adjustment to get unbiased estimates from 

observational data 

The rigorous use of already collected treatment 

data (observational data) – say, from clinical 

charts – is an alternative solution. There is much 

useful data about treatment effectiveness for rare 

diseases that lives in our existing records. As 

discussed above, though, confounding by 

indication is a critical threat to the validity of 

inferences made using this approach, and as such, 

must be accounted for. Confounding by indication 

occurs when there is non-comparability between 

the study groups resulting from the way they were 

constructed. Exposed and unexposed patients may 

differ systematically in important characteristics. 

That is, there is a reason why some patients are 

treated with one therapy, and other patients get 

another – they may be more severe, have a poorer 

prognosis, have different health care access, etc. It 

is often these patient differences that have more to 

do with outcome than the treatments themselves. 

Small differences in many covariates can 

accumulate into substantial overall differences.
54 

This can result in biased estimation of treatment 

effect. 

However, innovative study design and 

analytic techniques can be used to make the study 

groups comparable. In this way, unbiased 

estimates of treatment effect can be achieved that 

are comparable to similarly sized RCTs. One 

strategy is the use of propensity score (PS) 

methods. A propensity score is the conditional 

probability of assignment to a treatment based on 

the observed covariates.
55 

For each individual, the 

PS is a measure of the likelihood that a person 

would have been treated with a particular 

treatment using their baseline characteristics.
56

 It 

reduces the collection of baseline characteristics 

to a single composite score that appropriately 

summarizes the collection of characteristics.
54

 

Once estimated, the PS can be used to create 

comparable groups through pair matching on the 

PS, sub-classification on the PS or covariate 

adjustment using the PS.
55,57

 Therefore, the PS can 

be thought of as a balancing score, to create 

groups that are comparable. The test of a good PS 

model is the degree to which it results in the 

baseline characteristics being balanced between 

exposed and unexposed individuals.
58

At any value 

of the PS, the difference between the treatment 

and control groups is an unbiased estimate of the 

average treatment effect. 

The use of PS methods has advantages 

compared to other adjustment methods. PS are 

more reliable tools because the assumptions 

needed to make their answers appropriate are 

transparent.
54

 The methods also allow for 

inspection of the data to assess whether the 

exposed and unexposed groups overlap enough in 

characteristics to allow sensible estimation of 

treatment effect.
54 

In the setting of rare disease, PS 

methods confer additional value. Commonly used 

regression techniques typically require at least 10 

outcomes for every covariate included in a model. 

In the setting of a rare disease, there may not be 

sufficient data for necessary covariates to be 

included. By reducing the important baseline 

covariates to a single composite score (the PS), 
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the necessary covariates can be accounted for 

using data from a small sample of patients. 

We have used PS methods to evaluate the 

effect of warfarin on survival in scleroderma 

associated pulmonary arterial hypertension (SSc-

PAH).
59 

SSc-PAH is an uncommon disease with 

an estimated prevalence of 2.93 per million.
60  

SSc-PAH has a poor prognosis, with a median 

survival rate as low as 12 

months.
61

Anticoagulation with warfarin is 

recommended to improve survival in these 

patients. However there is no evidence to support 

this recommendation. We evaluated the ability of 

warfarin to improve survival in these patients 

using observational data. We found the SSc-PAH 

patients exposed to warfarin had more severe 

disease and used more PAH-specific medications 

than warfarin unexposed patients. Thus the crude 

association between survival and warfarin use is 

likely to be confounded (confounding by 

indication). If these differences were not 

accounted for, the estimated treatment effect of 

warfarin on survival would be biased. This would 

have led to the conclusion that warfarin worsens 

survival. Bayesian propensity scores were used to 

adjust for differences between patients exposed 

and not exposed to warfarin, and assemble a 

matched cohort. In the matched cohort, the hazard 

ratio was 1.06 and the probability that warfarin 

improves median survival by 6-months or more is 

only 23.5%. We concluded that there is a low 

probability that warfarin improves survival by an 

important amount in SSc-PAH. Our use of 

propensity score matching reduced the effect of 

confounding by indication allowing us to make a 

less biased estimate of treatment effect. 

PS matching has been applied to the study 

of early aggressive corticosteroid treatment in 

juvenile dermatomyositis – a commonly practiced 

treatment strategy for which a RCT has never 

been done because of the rarity of the disorder.
62

 

More complicated models – including marginal 

structural modeling
63

 and instrumental variable 

modeling
64

 – may be useful in situations that are 

more complex. For example, we used a marginal 

structural model when evaluating the 

effectiveness of intravenous immunoglobulin for 

resistant juvenile dermatomyositis;
65

 this is 

another widely used treatment that could not have 

been studied by an RCT given the rarity of the 

disorder. 

 

SUMMARY 

 

Rare disorders pose challenges to clinicians and 

scientists who are interested in applying the best 

evidence-based treatment decisions to medical 

care. While the parallel groups RCT is considered 

the gold standard experimental method, there are 

situations in which RCTs cannot feasibly be done. 

The solution proposed is for the investigator to 

consider a flexible “toolkit” of study designs that 

can be applied to generate the needed treatment 

evidence. This toolkit – which includes designs to 

maximize the acceptability of studies, get more 

information from fewer subjects, use more 

flexible and informative analytic methods, and 

derive valid treatment conclusions from already 

collected data – is only limited by the imagination 

of investigators. 
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