Journal of Population Therapeutics & Clinical Pharmacology

RESEARCH ARTICLE

DOI: XYZ10.53555/jptcp.v29i04.3446

STUDY OF THE EFFECTS OF EUGENIC ACID IN ARTHRITIS AND DIABETES MELLITUS IN EXPERIMENTAL RATS

Dr. Rajesh R. Patil^{1*}, Dr. Gaurav Kumar Sharma², Mr. Rajesh Kumar Sinha³, Mrs. Vineeta Chourasia⁴

¹*Associate Professor, Sinhgad Institute of Pharmaceutical Sciences, Lonavala Pune (Maharashtra)

*Corresponding Author:- Dr. Rajesh R. Patil

*Associate Professor, Sinhgad Institute of Pharmaceutical Sciences, Lonavala Pune (Maharashtra) Email- rajeshpatil11@gmail.com

Abstract

Background: Systemic inflammatory burden in rheumatoid arthritis (RA) has been shown to predispose to developing both insulin resistance and type 2 diabetes mellitus (DM). Polypharmacy with cumulative side effects are common problems met with in these medical situations of combined diseases.

Aim of the work: the present study evaluates the potential role of Eugenic Acid as a natural product with anti-inflammatory and hypoglycemic activities in combating both DM and RA in experimental animals.

Materials and methods: Twenty four male albino rats were used. Eight male rats were used as a normal control group received saline (group1). Arthritis was induced in 16 male albino rats by intradermal injection of 0.1 ml of Freund's Complete Adjuvant (FCA) in the right hind paw then diabetes induced by alloxan (arthritic and diabetic animals). Animals were divided into 2 groups. Arthritic and diabetic control received sesame oil oral (group 2). Arthritic and diabetic animals treated with Eugenic Acid 100 mg/kg/day orally (group 3). Treatment was started with Eugenic Acid after diabetes induction for two weeks.

Results: arthritic and diabetic control animals showed significant elevation in serum level of C-reactive protein (CRP), nitric oxide (NO), malondialdehyde (MDA) tumor necrosis factor- α (TNF- α), hyperglycemia and dyslipidemia compared to normal control group. Treatment with Eugenic Acid exhibited significant reduction in serum level of CRP, NO, MDA, TNF- α , blood glucose level, triglycerides, total cholesterol and LDL compared with arthritic diabetic control group. There was insignificant change in HDL serum level.

Conclusion: These results suggested that dietary supplementation with Eugenic Acid could

²Associate Professor & H.O.D., Faculty of Pharmaceutical Sciences, Mewar University Chittorgarh (Rajasthan)

³Associate Professor & H.O.D., Late Pooran Ramprakash Dixit College of Pharmacy, Gahrauli Hamirpur (U.P.)

⁴Associate Professor, Late Pooran Ramprakash Dixit College of Pharmacy, Gahrauli Hamirpur (U.P.)

beneficially treat hyperglycemia and dyslipidemia. Also, Eugenic Acid ameliorates RA and could be useful as a beneficial supplement in treatment of RA and DM.

Keywords: Rheumatoid arthritis, diabetes mellitus, Eugenic Acid, inflammatory mediators.

INTRODUCTION

Rheumatoid arthritis is a chronic inflammatory disease associated with increased disability, morbidity and mortality (Giles et al., 2008). Both oxidative stress and inflammation are considered major role players in the pathogenesis of chronic degenerative diseases including cardiovascular diseases (Lüscher, 2015), DM (Odegaard et al., 2016) and RA (McInnes and Schett, 2011). Rheumatoid arthritis as an inflammatory autoimmune disorder has been found associated with development of insulin resistance and both IL-6 and TNFα contribute in developing insulin resistance (Chung et al., 2008). Currently, although several synthetic regimens are used to attenuate oxidative stress and inflammation-mediated degenerative diseases, none are free from side effects when utilized in the treatment of cardiovascular diseases (Alagona and Ahmad, 2015), DM (Kokil et al., 2015) or RA (Albrecht and Müller, 2010). Over the last two decades, tremendous experimental advancements have been made in the use of natural products against different types of degenerative diseases targeting oxidative stress and inflammation (Fischer and Maier, 2015). Many studies have also demonstrated that phytochemicals are important therapeutic agents targeting oxidative stress and inflammation, which are the major culprits in the pathogenesis of chronic degenerative diseases (Uttara et al., 2009, Aggarwal et al., 2011). Eugenic Acid (4-allyl-2methoxyphenol) is the active principles of clove (Zyzygium aromaticum) also be found in basil and cinnamon. Eugenic Acid is known to possess antioxidant, analgesic and neuroprotective properties among others (Yogalakshmi et al., 2010; Park et al., 2011 and Prasad et al., 2016). In addition, it exhibit anti- inflammatory activities (Murakami et al., 2005) and antiulcer activity (Santin et al., 2011).

Chronic diseases such as cardiovascular disorders, DM, hyperlipidemia and RA are common situations met and represent serious causes of polypharmacy, morbidity and reduced longevity. They also pose tremendous economic burdens on individuals, families and societies.

The anti-inflammatory and hypoglycemic activities of Eugenic Acid in addition to the little side effects and low cost expected with its use therapeutically have gained interests for developing new therapy for arthritis and diabetes. Previous studies have been done on DM (Azza et al., 2011) and RA (Safwat et al., 2015) separately to show the effect of Eugenic Acid in each disease. So, the current study was designed to evaluate the possible therapeutic effect of Eugenic Acid on both FCA-induced arthritis and alloxan induced diabetes in rats.

MATERIALS AND METHODS

Animals

Male adult albino rats weighing 150-200 grams at the age of 3.0-4.0 months have been used. Animals were obtained from the animal house, Faculty of Medicine, Assiut University and were housed in animal place with room temperature being maintained at 25±2°C. Animals were fed on a commercial pellet diet and kept under normal light/dark cycle. Animals were given a free access for food and water *ad libitum*.

Induction of arthritis

To induce arthritis, the right hind paw of male albino rats was sterilized with 70% alcohol. Rats were intradermal injected with 0.1 ml of FCA (10 mg/ml) suspension of heat-killed Mycobacterium tuberculosis according to the method (Rajesh et al., 2009 and Yao et al., 2014). Control animals were injected intradermal with saline in equal volume. Chronic inflammation was allowed to progress for 12 days.

Induction of diabetes

Diabetes was induced after induction of arthritis in overnight fasted rats by single intra-peritoneal injection of alloxan (60 mg/kg body weight) (Glauce et al., 2004) which dissolved in 0.5ml of physiological saline. Control rats received the same amount of saline. Development of hyperglycemia in rats was confirmed by fasting blood glucose measurement (blood samples from tail vein, 0.5 ml/each rat), 72 hours after alloxan administration with portable glucometer (Accu-Check, Roche, Germany). Animals having blood glucose level 200 mg/dl and above were considered diabetic and included in the study (Ojezele and Abatan, 2011).

Treatment

Rats were divided into 3 groups of eight rats each. The treatment of animals began on the 3rd day after alloxan injection and this was considered as 1st day of treatment. The animals were treated for 2 weeks as follows:

Group I: saline treated normal control.

Group II: FCA arthritic and diabetic control received sesam oil 1.0 ml/rat oral.

Group III: FCA arthritic and diabetic animals treated with Eugenic Acid 100 mg/kg oral (Abraham, 2001).

At the end of treatment peroid, blood was collected from the heart and serum was separated by centrifugation and stored at -80°C until analysis.

Chemicals and solutions preparation

Eugenic Acid: (Sigma Aldrich Company, England). Eugenic Acid was pure oily solution, bottle contain 100 ml and freshly diluted with sesame oil (Abraham, 2001).

Alloxan monohydrate: (Pharco Co. for pharmaceuticals, Cairo, Egypt). It was available in powder, 25 gm. in bottle and has been dissolved in normal sterile saline (0.9%) before administration as intraperitoneal injection (Ojezele and Abatan, 2011).

Sesame Oil: (Nile Co. for pharmaceuticals, Cairo, Egypt). It has been used for dilution of Eugenic Acid, 1ml/rat/day (Pourgholami et al. 1999).

Freund's complete adjuvant (FCA) was purchased from Sigma-Aldrich.

Biochemical assessment

Serum samples collected were used to evaluate serum level of glucose as described by Caraway and Watts (1987); total cholesterol by Richmond (1973), triglyceride as described by Stein (1987), HDL cholesterol and LDL cholesterol as described by Friedewald et al. (1972).

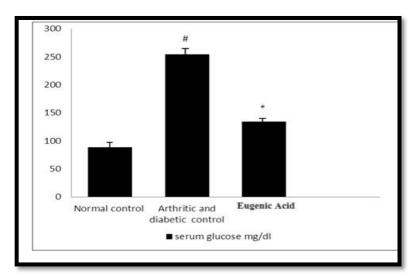
The level of C-reactive protein was determined using ELISA kit catalog No. 557825 for the quantitative measurement of rat CRP in serum.

Malondialdehyde, the oxidative stress product of lipid peroxidation, reacts with thiobarbituric acid under acidic conditions at 95°C to form a pink-colored complex with an absorbance at 532 nm (Ohkawa et al., 1979).

Nitric oxide concentration in serum was determined with the Greiss method. The Greiss reagent is made up of a 1% solution of sulfanilamide in 5% phosphoric acid and 0.1% naphthy lethylenediamine dihycrochloride in distilled water. The protein and phenol red of the serum were deleted using zinc sulfate (6 mg/400 μ l). Sodium nitrite (0.1 M) was used for the standard curve and increasing concentrations of sodium nitrite (5, 10, 25, 50, 75 and 100 μ M) were prepared. The Greiss solution was added to all microplates, containing sodium nitrite and serum and was read by

ELISA reader in 540 nm (Khazaei et al., 2011).

Tumor necrosis factor- α was measured, using a sandwich enzyme immunoassay kit protocol supplied by the manufacturer of the antibodies (Multisciences Biologic Company, Hangzhou, China) and resultant optical density determined, using a microplate reader (Thermo Multiskan MK3) at 450 nm.


Statistical analysis

Statistics was performed using the statistical graph pad prism 5. One way analysis of variables (ANOVA) was used. Significant differences between the groups were determined using a posthoc Newman-keuls test. Data were expressed as means \pm standard error of the mean (SEM) and the level of significance between groups were considered significant (*) at p<0.05.

RESULTS

Effect of Eugenic Acid on serum glucose level

Serum glucose level of arthritic and diabetic control rats was significantly higher than corresponding normal control rats. There was significant reduction of serum glucose level in rats treated with Eugenic Acid as shown in figure (1).

Figure (1): Effect of Eugenic Acid (100 mg/kg) on serum glucose level in induced arthritis and diabetes in rats

Data represent mean \pm SE of 8 observations. \sharp Significant result at p<0.05 from normal control.

Effect of Eugenic Acid on lipid profile

Lipid profile of arthritic and diabetic control rats was significantly higher than corresponding control normal rats. Results showed significant reduction in total cholesterol, triglyceride and LDL cholesterol after Eugenic Acid administration. There was no significant change in HDL level after Eugenic Acid treatment (table 1).

Table (1): Effect of Eugenic Acid (100 mg/kg) on lipid profile in induced arthritis and diabetes in

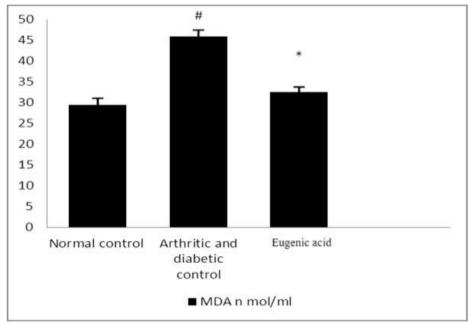
		rais		
Treatment	Triglyceride	Total cholesterol	HDL-cholesterol	LDL-cholesterol
	mg/dl	mg/dl	mg/dl	mg/dl
Normal control	66.57±2.59	87.49±3.18	39.82±2.01	27.88±2.01
Arthritic and diabetic control	99.87±4.52 [#]	128.42±6.87 [#]	32.45±2.99 [#]	66.34±4.32 [#]
Eugenic acid	70.45±2.17*	96.29±6.16*	33.58±2.68	45.87±3.01*

Data represent mean \pm SE of 8 observations. \sharp Significant result at p<0.05 from normal control. \ast Significant result at p<0.05 from arthritic and diabetic control group.

^{*} Significant result at p<0.05 from arthritic and diabetic control group.

Effect of Eugenic Acid on C-reactive protein

The level of CRP was significantly elevated in the serum of arthritic and diabetic control group as compared to the normal control group. Treatment with Eugenic Acid significantly reduced CRP as compared to the arthritic and diabetic control group. Results showed that Eugenic Acid is effective in decreasing CRP (Table 2).


Table (2): Effect of Eugenic Acid (100 mg/kg) on C-reactive protein in induced arthritis and diabetes in rats

Groups	CRP mg/L
Normal control	0.311±0.017
Arthritis and diabetic control	2.59±0.21 [#]
Eugenic acid	1.72±0.14*

Data represent mean \pm SE of 8 observations. \sharp Significant result at p<0.05 from normal control. \ast Significant result at p<0.05 from arthritic and diabetic control group.

Effect of Eugenic Acid on lipid peroxidation in induced arthritis and diabetes

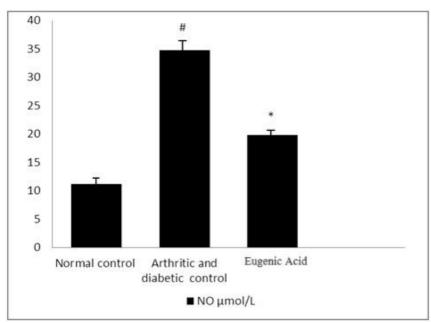

After induction of arthritis and diabetes, level of MDA in serum was significantly increased in arthritic and diabetic rats (group II) than that of control group (group I). After treatment with Eugenic Acid, MDA level was significantly decreased. Eugenic Acid is effective in reducing MDA level as shown in figure (2).

Figure (2): Effect of Eugenic Acid (100 mg/kg) on MDA in induced arthritis and diabetes in rats Data represent mean \pm SE of 8 observations. *Significant result at p<0.05 from normal control. *Significant result at p<0.05 from arthritic and diabetic control group

Effect of Eugenic Acid on nitric oxide in induced arthritis and diabetes

Serum level of NO was significantly elevated in arthritic and diabetic group compared to normal control group. Administration of Eugenic Acid significantly decreased serum NO level (Figure 3).

Figure (3): Effect of Eugenic Acid (100 mg/kg) on NO in induced arthritis and diabetes in rats Data represent mean \pm SE of 8 observations. *Significant result at p<0.05 from normal control *Significant result at p<0.05 from arthritic and diabetic control group.

Eugenic Acid effect on tumor necrosis factor alpha Arthritic and diabetic control group revealed significant increase in serum level of TNF- α when compared with normal control group. Eugenic Acid administration modified the elevated serum level of TNF- α and produced significant decrease in its level. Results showed that Eugenic Acid is effective in decreasing TNF- α (Table 3).

Table (3): Effect of Eugenic Acid (100 mg/kg) on TNF- α in induced arthritis and diabetes in rats

Groups	TNF-α pg/ml
Normal control	14.97±1.38
Arthritis and diabetic control	49.31±4.13 [#]
Eugenol	25.78±1.76*

Data represent mean \pm SE of 8 observations. *Significant result at p<0.05 from normal control. *Significant result at p<0.05 from arthritic and diabetic control group.

DISCUSSION

Diabetes is usually associated with inflammation and the latter contributes to the development of diabetes (Pradhan et al., 2001). Besides, evidence have shown that insulin resistance as a proinflammatory status may have existed for years before the occurrence of type 2 diabetes (Festa et al., 2000). Moreover, increased CRP and TNF- α are associated with nephropathy, retinopathy and cardiovascular disease in both types of diabetes (Goldberg, 2009).

Patients inflicted with various clustering chronic diseases (e.g. RA and DM) require treatment with multiple drugs with possible cumulative side effects of multiple drugs as well as drug-drug interactions. Therefore, the present study provides naturally-occurring compound for reducing or eliminating polypharmacy. Among the several constituents of plant essential oils, studies have shown that Eugenic Acid has antioxidant, anti-inflammatory, DNA-protective, analgesic and antimicrobial properties (Yogalakshmi et al., 2010 and Park et al., 2011) and neurorestorative effects (Prasad et al., 2016). Previous findings indicate that Syzygium aromaticum, whose major compound is Eugenic Acid, has an immune-modulatory effect (Carrasco et al., 2009).

Administration of Eugenic Acid produced significant decline in blood glucose level which is comparable to the arthritic and diabetic control rats. This is in harmony with previous reports about

hypoglycemic effect of Eugenic Acid treatment in streptozotocin (STZ)-induced diabetic rats (Tanaka et al. 2006; Atef and Talal, 2007 and Radhiah et al., 2010). Eugenic Acid has dual mode of action in combating diabetes; it lowers blood glucose by inhibiting α -glucosidase and prevents advanced glycation end products formation by binding to ε -amine group on lysine, protecting it from glycation, offering potential use in diabetic management (Singh et al., 2016). Prasad and coworkers (2016) hypothesize that Eugenic Acid may be employed as an adjuvant therapeutic molecule to alleviate complications under diabetic conditions. His *in vitro* studies under experimentally induced hyperglycemic conditions showed that exposure of cells to Eugenic Acid (5–10 μ M) improved their viability, reduced the glutathione levels and significantly decreased the glucose-associated oxidative stress (by diminishing reactive oxygen species (ROS) and peroxide levels).

The common pattern of dyslipidemia in diabetic patients shows elevated triglyceride, total cholesterol, LDL and decreased HDL cholesterol levels. (Pushparaj et al., 2000).

Administration of Eugenic Acid to arthritic and diabetic rats for two weeks produced significant reduction in serum level of triglyceride, total cholesterol, LDL cholesterol and insignificant change in HDL cholesterol level compared to control values. These results are in agreement with those obtained by Rajasekaran et al. (2006). Hypolipidemic effect of Eugenic Acid was reported by Chhanda et al. (2006), Atef and Talal. (2007) in STZ- induced diabetic rats, after two weeks treatment and (Karuppasamy et al., 2014). The previous studies showed that Eugenic Acid had hypolipidemic effect since it is probably mediated through inhibition of hepatic cholesterol biosynthesis, reduction of lipid absorption, enhanced catabolism of LDL-cholesterol and catabolism of TG (Mnafgui et al., 2013 and Venkadeswaran et al., 2014).

In recent decades, more studies have shown that inflammatory reactions and oxidative stress play critical roles in the pathogenesis of DM (Meng et al., 2013). Clove bud powder may represent potential functional food for the prevention and management of type 2 diabetes (Stephen et al., 2014). C-reactive protein is an inflammatory marker, which is a member of the group of acute phase proteins and the level of CRP increases in response to inflammation (Kamezaki et al., 2008, Rhodes et al., 2011). It has been also implicated that increased levels of C-reactive protein could directly participate in amplifying the immune response leading to increased tissue damage (Yeh 2003). C-reactive protein can bind with various Fc receptors by forming complement activating complexes which generate antibody towards Fc fragment and causes cartilage degradation in RA (Jones et al., 2012). The present study demonstrated that Eugenic Acid treatment resulted in lowering of serum level of CRP in arthritic and diabetic rats compared to the control which confirms that Eugenic Acid suppress generation of autoantibody towards Fc fragments and protecting cartilage degradation.

Lipid peroxidation is well known as an important parameter for assessing oxidative stress. It leads to permeability and fluidity of the membrane lipid bilayer and can dramatically alter cell integrity (Dix and Aikens, 1993). As observed in figure 2, elevated serum MDA levels in arthritic and diabetic control rats suggest enhanced lipid peroxidation leading to tissue damage and inability of antioxidant defense mechanisms to prevent free radical attack. This peroxidative damage to membranes may lead to the leakage of enzymes and metabolites into the blood circulation (Stephen et al., 2014). The cloves treatment significantly reduced lipid peroxidation in STZ-induced diabetic rats by restoring the antioxidant enzyme levels (Radhiah et al., 2010) which is in accordance with the present results. Malondialdehyde was a peroxidation product produced because of lipid attacked by free radicals and the level of MDA represented the intensity of body injury (Su et al., 2015). Results of present study showed significant reduction in MDA serum level after Eugenic Acid administration and this is in harmony with Nagababu and his colleagues (2010) which showed that Eugenic Acid inhibits iron and OH radical initiated lipid perioxidation. Other studies evaluated the effect of Eugenic Acid on MDA and are in accordance with the present results (Fouad and Yacoubi,

2011; Gülçin, 2011). Gülçin found that Eugenic Acid inhibited 96.7% lipid peroxidation of linoleic acid emulsion at a 15 μ g/ml concentration. According to the results of his study, he concluded that Eugenic Acid had the most powerful antioxidant activity and radical scavenging activity (Gülçin, 2011).

Oxidative stress inflicts damage to joints because of excessive generation of ROS and reactive nitrogenspecies in rheumatoid arthritis (Phillips et al., 2010). Oxidative stress leads to impaired β -cell function and reduced β -cell mass. Thus, there is a vicious cycle, in which hyperglycemia and increased free fatty acids induce oxidative stress, which disturbs β -cell function, and accelerates the hyperglycemia. In addition, oxidative stress is suggested to be one of the major causes of aberrant insulin signaling in target tissues, by activating Jun N-terminal kinase and Nuclear-factor-kappa-B pathways as well as by other mechanisms (Chang and Chuang, 2010).

Previous reports have shown that macrophages secrete inducible nitric oxide synthase (iNOS) involved in the production of large amount of NO (Ignarro, 2002). Hyperglycemia induces O2• and ONOO— overproduction (Du et al., 2000). In the present study, NO serum level significantly increased in untreated arthritic and diabetic rats. It raised from the possibility that excessive NO production by iNOS induced by TNF- α and IL-1 and resulted in the formation of excessive amounts of superoxide (O2–) (Hitchon and El- Gabalawy, 2004), which reacted with NO to generate peroxynitrite (ONOO–). It had been reported that peroxynitritere acting with tyrosine residues of protein to produce nitrotyrosine contributed to rheumatoid arthritis pathogenesis (Swindle and Metcalfe, 2007). Diabetes mellitus, via hyperglycemia-driven ONOO—, resulted in accelerated apoptosis (Ping et al., 2007).

The decrease in serum NO level by Eugenic Acid might be attributed to its inhibition of the lipopolysaccharides (LPS) -mediated production of NO by inhibiting the expression of iNOS protein without any toxic effects on cell viability, suggesting that Eugenic Acid can act as anti-inflammatory agents. Inhibiting action of Eugenic Acid on iNOS induction is independent of phosphorylation of IkB and further decrease the expression of COX-2 protein, implying that Eugenic Acid can act as principal anti- inflammatory mediators (Li et al., 2006).

Insulin resistance and type 2 DM are closely associated with chronic inflammation, characterized by abnormal cytokine production (mainly TNF- α) and the activation of a cascade of inflammatory signaling pathways (Wellen and Hotamisligil, 2005). TNF- α has been shown to enhance adipocyte lipolysis, which further increases free fatty acids and also elicits its own direct negative effects on the insulin signaling pathway by increasing serine/threonine phosphorylation of insulin receptor substrate 1 (Hotamisligil, 2000). The pro-inflammatory cytokines, TNF- α and IL-1 could promote the release of prostaglandins (e.g. PGE2 causes synovial inflammation), leukotriene and oxygen free radical and generate collagenases and neutral protease, which induced the cartilage matrix breakdown, cartilage resorption and bone destruction (Lee et al., 2009). Results of the present study demonstrated that Eugenic Acid treatment in arthritic and diabetic rats caused a significant decrease in serum TNF- α . Eugenic Acid was shown to block the release of interleukin-1 β , TNF- α and prostaglandin E2 from LPS-stimulated macrophages. Eugenic Acid suppressed the messenger RNA expression of LPS-induced IL-1 β , TNF- α and COX-2 in macrophages. The results suggest a potential anti-inflammatory effect of Eugenic Acid (Lee et al., 2007).

CONCLUSION

These results suggested that dietary supplementation with Eugenic Acid could beneficially treat hyperglycemia and dyslipidemia. In addition, these results insight into the previously described anti-inflammatory and hypoglycemic beneficial effects of Eugenic Acid. Eugenic Acid may be employed as an adjuvant therapeutic molecule to eliminate or reduce polyphrmacy with cumulative side effects and possible drug-drug interactions. Also, Eugenic Acid may alleviate complications

under rheumatoid arthritis and diabetic conditions. Further study will be done clinically in patients have RA and DM.

REFERENCES

- 1. Abraham S K. (2001). Antigenotoxicity of trans- anethole and Eugenic Acid in mice. food and chemical toxicology, May 39,(5): 493-498.
- 2. Aggarwal B. B., S. Krishnan and S. Guha, (2011): Inflammation, Lifestyle and Chronic Diseases: The Silent Link, CRC Press, New York, NY, USA.
- 3. Alagona P. and T. A. Ahmad (2015): "Cardiovascular disease risk assessment and prevention: current guidelines and limitations," Medical Clinics of North America, 99(4): 711–731.
- 4. Albrecht K. and U. Müller-Ladner (2010): "Side effects and management of side effects of methotrexate in rheumatoid arthritis," Clinical and Experimental Rheumatology, 28(5): supplement 61, S95–S101.
- 5. Atef M Al-Attar and Talal A Zari 2007. Modulatory effect of ginger and clove oils on physiological response in streptozotocin induced diabetic rats. International journal of pharmacology, 1(3): 34-40.
- 6. Azza Abouelella, Hala Madkour and Mahmoud Abdel-Raheem (2011): Effect of Eugenic Acid vs Glibenclamide in Alloxan Induced Diabetic Rats Sci. Med. J., Oct.; 23(4): 35-52.
- 7. Caraway WT and Watts NB 1987. Carbohydrates In: Tietz NW, ed. Fundamentals of Clinical Chemistry. 3ry ed. Philadephia WB saunders, 422-447.
- 8. Carrasco FR, Schmidt G, Romero AL, Sartoretto JL, Caparroz- Assef SM, Bersani-Amado CA, Cuman RK. (2009): Immunomodulatory activity of Zingiber officinale ROSCOE, Salvia officinalis L. and Syzygium aromaticum L. essential oils: evidence for humor- and cell-mediated responses. J. Pharm. Pharmacol., 61: 961–967.
- 9. Chang YC, Chuang LM. (2010): The role of oxidative stress in the pathogenesis of type 2 diabetes: from molecular mechanism to clinical implication. Am J Transl Res., 2: 316–331.
- 10. Chhanda Mallick, Rajkumar Maiti And Debidas Ghosh (2006): Comparative Study onantihyperglycemic and antihyperlipidemic effects of separate and composite extract of seed of eugenia jambolana and root of musca paradisiaca in streptozotocin-induced diabetic male albino rat. Iranian Journal of Pharmacology & Therapeutics, 5: 27-33.
- 11. Chung C. P., Annette Oeser, Joseph F. Solus, Tebeb Gebretsadik, Ayumi Shintani, Ingrid Avalos, Tuulikki Sokka, Paolo Raggi, Theodore Pincus and C. Michael Stein (2008): Inflammation- Associated Insulin Resistance: Differential Effects in Rheumatoid Arthritis and Systemic Lupus Erythematosus Define Potential Mechanisms. Arthritis Rheum. Jul; 58(7): 2105–2112.
- 12. Dix TA and Aikens J, (1993): Mechanisms and biological relevance of lipid peroxidation initiation. Chem Res Toxicol, 6: 2–18.
- 13. Du XL, Edelstein D, Rossetti L, Fantus IG, Goldberg H, Ziyadeh F, Wu J, Brownlee M.(2000) Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. Proc Natl Acad Sci U S A.; 97: 12222–12226.
- 14. Festa A, D'Agostino R, Jr, Howard G, et al. (2000). Chronic subclinical inflammation as part of the insulin resistanceyndrome: The insulin resistance atherosclerosis study (iras). Circulation, 102(1): 42-7.
- 15. Fischer R. and O. Maier, (2015): "Interrelation of oxidative stress and inflammation in neurodegenerative disease: role of TNF," Oxidative Medicine and Cellular Longevity, 2015; Article ID 610813, 18 pages.
- 16. Friedewald WT, Levy RI, Fredrickson DS. 1972; Estimation of the concentration of LDL-C in plasma without use of the prepara-tive ultracentrifuge. Clin Chem. 18: 449-502.
- 17. Giles JT, Bartlett SJ, Andersen RE, Fontaine KR, Bathon JM. (2008): Association of body composition with disability in rheumatoid arthritis: impact of appendicular fat and lean tissue mass. Arthritis Rheum. 14: 1407–1415.

- 18. Glauce SB Viana, Ana Carolina C Medeiros, Ana Michelle R Lacerda, L Kalyne AM Leal, Tiago G Vale1 and F José de Abreu Matos (2004): Hypoglycemic and anti-lipemic effects of the aqueous extract from Cissus sicyoides BMC Pharmacology, 4: 9.
- 19. Goldberg RB(2009). Cytokine and cytokine-like inflammation markers, endothelial dysfunction and imbalanced coagulation in development of diabetesand its complications. J Clin Endocrinol Metab, 94(9): 3171-82.
- 20. Hotamisligil GS. Molecular mechanisms of insulin resistance and the role of the adipocyte. Int J Obes Relat Metab Disord. 2000; 24: S23–S27.
- 21. Kamezaki F, Yamashita K, Kubara T, et al. (2008): Derivatives of reactive oxygen metabolites correlates with high-sensitivity C-reactive protein. J. Atheroscler Thromb. 15: 206–212.
- 22. Karuppasamy V., Arumugam R. M., Thangaraj A., Vasanthakumar V. R., Mahalingam S., Ramalingam A., Philip A. Thomas and Pitchairaj Geraldine (2014): Antihyper-cholesterolemic and Antioxidative Potential of an Extract of the Plant, Piper betle and Its Active Constituent, Eugenic Acid, in Triton WR-1339-Induced Hypercholesterolemia in Experimental Rats. Hindawi Publishing Corporation Evidence-Based Complementary and Alternative Medicine Volume 2014, Article ID 478973, 11 pages.
- 23. Khazaei M, Roshankhah S, Ghorbani R, Chobsaz F. (2011) Sildenafil effect on nitric oxide secretion by normal human endometrial epithelial cells cultured in vitro. Int J Fertil Steril. 5: 142–147.
- 24. Kokil G. R., R. N. Veedu, G. A. Ramm, J. B. Prins and H. S. Parekh (2015): "Type 2 diabetes mellitus: limitations of conventional therapies and intervention with nucleic acid-based therapeutics," Chemical Reviews, 115(11): 4719–4743.
- 25. Lüscher T. F., (2015): "Ageing, inflammation and oxidative stress: final common pathways of cardiovascular disease," European Heart Journal, 36(48): 3381–3383.
- 26. McInnes I. B. and G. Schett, (2011): "The pathogenesis of rheumatoid arthritis," The New England Journal of Medicine, 2011; 365(23): 2205–2219.
- 27. Meng, Bo; Li, Jun; Cao, Hong (2013): Antioxidant and Antiinflammatory Activities of Curcumin on Diabetes Mellitus and its Complications. Current Pharmaceutical Design, 19(11): April, pp. 2101-2113(13).
- 28. Mnafgui K, Kaanich F, Derbali A, Hamden K, Derbali F, Slama S, et al. Inhibition of key enzymes related to diabetes and hypertension by Eugenic Acid *in vitro* and in alloxan-induced diabetic rats. Arch Physiol Biochem. 2013; 119(5): 225–33.
- 29. Murakami Y., Shoji M., Hirata A., Tanaka S., Yokoe I., Fujisawa S. (2005): DehydrodiisoEugenic Acid, an isoEugenic Acid dimer, inhibits lipopolysaccharide-stimulated nuclear factor kappa B activation and cyclooxy genase-2 expression in macrophages. Arch. Biochem. Biophys. 434: 326–332.
- 30. Odegaard A. O, D. R. Jacobs, O. A. Sanchez, D. C. Goff, A. P. Reiner and M. D. Gross, (2016): "Oxidative stress, inflammation, endothelial dysfunction and incidence of type 2 diabetes," Cardiovascular Diabetology, 15(1): 1–12.
- 31. Ohkawa H, Ohishi N, Yagi K. (1979) Assay of lipid peroxide in animal tissue by thiobarbituric acid reaction. Ann Biochem. 95: 351–358.
- 32. Ojezele MO, Abatan OM. (2011). Hypoglycaemic and coronary risk index lowering effects of Bauhinia thoningii in alloxan induced diabetic rats. African Health Sciences, 11(1): 85 89.
- 33. Park S.H., Sim Y.B., Lee J.K., Kim S.M., Kang Y.J., Jung J.S., Suh H.W. (2011): The analgesic effects and mechanisms of orally administered Eugenic Acid. Arch. Pharm. Res., 34: 501–507.
- 34. Ping Song, Yong Wu, Jian Xu, Zhonglin Xie, Yunzhou Dong, Miao Zhang and Ming-Hui Zou (2007): Reactive Nitrogen Species Induced by Hyperglycemia Suppresses Akt Signaling and Triggers Apoptosis by Upregulating Phosphatase PTEN (Phosphatase and Tensin Homologue Deleted on Chromosome 10) in an LKB1-Dependent Manner. Molecular Cardiology Circulation. 2007; 116: 1585-1595.
- 35. Pourgholami a, M. Kamalinejad b, M. Javadi a, S. Majzoob a, M. Sayyah a, (1999). Evaluation of the anticonvulsant activity of the essential oil of Eugenia caryophyllata in male mice. J

- Ethnopharmacol. Feb; 64(2): 167-71.
- 36. Pradhan AD, Manson JE, Rifai N, Buring JE, Ridker PM. (2001). C-reactive protein, interleukin 6, andrisk of developing type 2 diabetes mellitus. JAMA, 286(3): 327-34.
- 37. Prasad SN, Bharath MM, Muralidhara (2016): Neurorestorative effects of Eugenic Acid, a spice bioactive: Evidence in cell model and its efficacy as an intervention molecule to abrogate brain oxidative dysfunctions in the streptozotocin diabetic rat. Neurochem Int. May; 95: 24-36.
- 38. Pushparaj P, Tan CH, Tan BKH 2000. Effects of Averrhoa bilimbi leaf extract on blood glucose and lipids in streptozotocin-diabetic rats. J Ethnopharmacol. 72: 69–76. doi: 10.1016/S0378-8741(00)00200-2.
- 39. Radhiah Shukri, Suhaila Mohamed, Noordin Mohamed Mustapha (2010): cloves protect the heart, liver and lens of diabetic rats. Food chemistry, October 2010; 122(4): 15 Pages 1116–1121.
- 40. Rajasekaran S, Ravi K, Savgananam K, Subramanian S. (2006): Beneficial effects of Aloe vera leaf gel extract on lipid profile status in rats with streptozotocin diabetes. Clin Exp Pharmacol Physiol, 33: 232-237.
- 41. Rajesh Rajaiah, David Y.-W. Lee, Zhongze Ma, Arthur Y. Fan, Lixing Lao, Harry HS Fong, Brian M. Berman, and Kamal D. Moudgil (2009): Huo-Luo-Xiao-Ling Dan modulates antigen-directed immune response in adjuvant-induced inflammation. J. Ethno pharmacol. May 4; 123(1): 40–44.
- 42. Rhodes B, Fürnrohr BG, Vyse TJ. (2011): C- reactive protein in rheumatology: biology and genetics. Nat Rev Rheumatol. 7: 282–289.
- 43. Richmond N., Clin Biochem, 1973; 19: 1350-1356.
- 44. Safwat A. Mangoura, Hala I. Madkour*, Hanan Sayed M. Abozaid, Reda S. Yousef (2015): Eugenic Acid ameliorates freund's adjuvant induced arthritis in male rats. ejbps, 2(7): 386-392.
- 45. Santin J.R., Marivane Lemos, Luiz Carlos Klein- Júnior, Isabel Daufenback Machado, Philipe Costa, Ana Paula de Oliveira, Crislaine Tilia, Juliana Paula de Souza et al., (2011): Gastroprotective activity of essential oil of the Syzygium aromaticum and its major component Eugenic Acid in different animal models. Naunyn-Schmiedeberg's Archives of Pharmacology. Feb.; 383(2): 149-158.
- 46. Singh P, Jayaramaiah RH, Agawane SB, Vannuruswamy G, Korwar AM, Anand A, Dhaygude VS, Shaikh ML, Joshi RS, Boppana R, Kulkarni MJ, Thulasiram HV, Giri AP. (2016): Potential Dual Role of Eugenic Acid in Inhibiting Advanced Glycation End Products in Diabetes: Proteomic and Mechanistic Insights. Sci Rep. 2016; 6: 18798.
- 47. Stein EA; Lipids, (1987) lipoprotein and apolipoproteins, In: NW Tietz, ed, fundamental and clinical chemistry, Philadelphia: WB Saunders, 1087; 448.
- 48. Stephen A. Adefegha, Ganiyu Oboh, Omowunmi M Adefegha, Aline A Boligon and Margareth L Athayde (2014): Antihyperglycemic, hypolipidemic, hepatoprotective and antioxidative effects of dietary clove (Szyzgium aromaticum) bud powder in a high- fat diet/streptozotocin-induced diabetes rat model. 94(13): October Pages 2726–273.
- 49. Su S., Jinao Duan, Ting Chen, Xiaochen Huang, Erxin Shang, Li Yu, Kaifeng Wei, Yue Zhu, Jianming Guo, Sheng Guo, Pei Liu, Dawei Qian and Yuping Tang (2015): Frankincense and myrrh suppress inflammation via regulation of the metabolic profiling and the MAPK signaling pathway. Scientific Reports | 5:13668 | DOI: 10.1038/srep13668.
- 50. Tanaka M, Misawa E, Ito Y, Habara N, Nomaguchi K, Yamada M, Toida T, Hayasawa H, Takase M, Inagaki M, Higuchi R. 2006. Identification of five phytosterols from Aloe Vera gel as antidiabetic compounds. Biol Pharmaceut Bull, 29: 1418–1422.
- 51. Uttara B., A. V. Singh, P. Zamboni and R. T. Mahajan, (2009): "Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options," Current Neuropharmacology, 7(1): 65–74.
- 52. Venkadeswaran K, Muralidharan AR, Annadurai T, Ruban VV, Sundararajan M, Anandhi R, et al. (2014): Antihypercholesterolemic and Antioxidative Potential of an Extract of the Plant, Piper betle and Its Active Constituent, Eugenic Acid, in Triton WR-1339- Induced Hypercholester-

- olemia in Experimental Rats. Evid Based Complement Alternat Med. 2014; 2014: 478973.
- 53. Wellen KE, Hotamisligil GS. Inflammation, stress and diabetes. J Clin Invest. 2005; 115: 1111–1119.
- 54. Yao Q. Pi Z, Liu S, Song F, Lin N, Liu Z. (2014): A metabonomic study of adjuvant-induced arthritis in rats using ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Mol Biosyst. Oct; 10(10): 2617-25.
- 55. Yeh ET, Willerson JT. (2003): Coming of age of C- reactive protein: Using inflammation markers in cardiology. Circulation; 107: 370-1.
- 56. Yogalakshmi B., Viswanathan P., Anuradha C.V. (2010): Investigation of antioxidant, anti-inflammatory and DNA-protective properties of Eugenic Acid in thioacetamide-induced liver injury in rats. Toxicology, 268: 204–212.