

DOI: 10.53555/jptcp.v30i1.3040

THE IMPACT OF MICRONUTRIENTS IN PERIODONTAL HEALTH AND DISEASE: A NEGLECTED PATHWAY- A REVIEW

Bhavya Shetty¹, Shahaziya Faruk^{2*}, Ibrahim Fazal³, Manjusha Nambiar⁴

¹Associate Professor, Dept. of Periodontology, Faculty of Dental Sciences-Ramaiah University of Applied Sciences, Bangalore.

^{2*}Postgraduate, Dept. of Periodontology, Faculty of Dental Sciences-Ramaiah University of Applied Sciences, Bangalore.

³Consultant Periodontist and Implantologist, Bangalore.

⁴Senior Lecturer, Dept. of Periodontology, Sri Rajiv Gandhi College of Dental Sciences, Bangalore.

*Corresponding Author: Shahaziya Faruk

*Postgraduate, Dept. of Periodontology, Faculty of Dental Sciences-Ramaiah University of Applied Sciences, Bangalore.

Abstract:

Micronutrients, which have anti-oxidant and anti-inflammatory characteristics, are essential for the health of the oral mucosa and structures. Many, if not all, of the micronutrients described have an independent relationship with the frequency of periodontal disease. Micronutrient treatment, both systemic and local, can enhance tissue repair and improve the prognosis of periodontal disorders. Few studies have been conducted to investigate the efficacy of vitamin supplementation on periodontal treatment, and even fewer have been conducted to investigate the influence of micronutrient deficiencies on the occurrence of periodontitis. More research is needed to broaden the body of information, which might aid in the prevention of oral inflammatory illnesses and the creation of future therapeutic interventions.

Keywords: Micronutrients, Macronutrients, Periodontitis, Periodontal disease, Vitamins, Minerals.

INTRODUCTION

Periodontitis is a chronic inflammatory condition that affects the tooth's supporting structures and, if not treated promptly, can lead to tooth loss, which can lead to decreased masticatory function and, as a result, changes in dietary intake and nutritional status. The knowledge that periodontitis is a risk factor for a variety of serious systemic disorders has increased the necessity of good periodontitis management and treatment.¹ According to the Global Burden of Disease 2010 survey, the global age-standardized prevalence of severe periodontitis was 11.2%, making it the world's sixth-most frequent ailment, while the Global Burden of Disease 2015 report assessed the prevalence of severe periodontitis to be 7.4%. Milder types of periodontitis may account for up to 50% of all cases.² In India, the pooled prevalence percentage stated by a systematic study published in 2020 is 51%. These rising numbers highlight the need of illness knowledge and good management as a top public health goal.

In susceptible people, periodontal disease is defined as a dysregulated host inflammatory response to bacterial plaque.³ A number of risk factors have been identified that alter the host response, shifting the biological balance from health to illness. These influences are genetic, environmental (e.g., stress, bacterial assault), and lifestyle/behavioral (e.g., diet, physical activity, tobacco).

From research that has cited the significance of nutrition in a range of chronic inflammatory conditions, lifestyle being one of the primary risk factors that contribute to the onset of periodontal disease, but in the last decade the association between periodontal diseases and nutrition is grabbing the spotlight of health care professionals.^{4,5}

Dietary nutrients are important for life because they offer a critical energy source (macronutrients) as well as vital cofactors necessary for enzyme function, structural moieties, and transport (micronutrients). Malnutrition results from the depletion or lack of availability of certain nutrients at either the macronutrient or micronutrient levels. Micronutrient consumption is a critical modifiable risk factor for oral inflammatory disorders.⁶

Dietary deficiencies have been proven to have an influence on prognosis, with malnutrition being associated with a faster deterioration. Nutrient abnormalities tend to promote the inflammatory processes involved in periodontal disorders. Dietary variables, according to research, contribute to the regulation of microorganisms in the mouth cavity, which has been connected to periodontal diseases. The sections that follow demonstrate these impacts in terms of micronutrients in periodontal health and disease situations.

NUTRIENTS AND ITS TYPES

"Food is essential—it provides vital nutrients for survival and helps the body function and stay healthy,"⁷ according to the Academy of Nutrition and Dietetics. Nutrients are elements that the body need for functioning properly. Because the human body does not synthesize or create nutrients, we must receive them from our food.

Fats, carbs, proteins, minerals, vitamins, and water are the six types of nutrients necessary by the body to function and sustain general health. Non-nutrients in meals can be detrimental (such as natural poisons found in plant foods and additions such as certain colors and preservatives) or helpful (such as antioxidants)⁸. Nutrients can be further subdivided into two broad categories:

- **1. Macronutrients** must be acquired in significant amounts from the diet and are biologically converted into energy for cells. Macronutrients are classified into three types. Carbohydrates, lipids, and proteins are the three macronutrients.
- **2.** 'Micronutrients,' which are only required in little amounts in the diet yet are vital for a variety of biological processes critical to good health.¹

MICRONUTRIENTS

These are nutrients that the body requires in lesser amounts yet are nonetheless necessary for basic activities. Nutrients that are necessary for body activities but are only required in trace levels. All of the important minerals and vitamins are included in micronutrients (Figure 1). Micronutrients, unlike carbohydrates, lipids, and proteins, do not provide energy, but they do aid in the process of energy metabolism as cofactors or components of enzymes (known as coenzymes). Enzymes are proteins that catalyze (or speed) chemical processes in the body; they are involved in many areas of physiological activities, including energy production, nutrition digestion, and macromolecule formation. Aside from the categories described above, nutrients have also been classified as energy producing, organic, and inorganic.⁸

Figure 1: Types of Micro Nutrients.

Deficits in micro nutrients can be triggered by drugs (antacids, antibiotics, antihypertensives, chelation agents, corticosteroids, diuretics, laxatives, NSAIDs), inadequate absorption or diarrhea, factors related to lifestyle (diet, malnutrition, chronic alcohol or nicotine abuse, and intake of fast food or processed foods), systemic disorders (diabetes mellitus, thyroid and parathyroid disorders), and higher requirements (pregnancy, growth, mental or physical stress, breastfeeding). Nutrient absorption and utilization are affected by physiologically and dietary variables that change over life.⁴ Bioavailability, on the contrary, is affected by the chemical form as well as presence of other micronutrients such as vitamin D and calcium.^{33,34,35} The various vitamins have been discovered to have beneficial impacts on periodontal health.³⁹(Figure 2)

Figure 2: The intricate oxidation-reduction pathways through which several antioxidant micronutrients alleviate oxidative stress via redox-cycling processes. Glutathione is last antioxidant element in the cycle that creates the nonradical GSSG (oxidised glutathione), as well as a key controller of cellular redox status and inflammatory gene transcription factors. *Reproduced from Dommisch H, Kuzmanova D, Jönsson D, et al. Effect of micronutrient malnutrition on periodontal disease and periodontal therapy. Periodontol.* © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.⁴

Abbreviations: Cu, copper; Fe, iron; H2O2, hydrogen peroxide; LOO, peroxyl radical; LOOH, lipid hydroperoxide; Mn, manganese; ROS, reactive oxygen species; Se, selenium; Zn, zinc.

MINERALS

Minerals are substantial inorganic compounds that form crystals, and the amount of each mineral contained in human bodies varies substantially, as does mineral intake (Figure 2). Many minerals are required for enzyme activity, while others are utilized to preserve fluid balance, form bone tissue, synthesize hormones, convey nerve impulses, contract and relax muscles, and protect the body from damaging free radicals.

Figure 3: Types of Minerals

Minerals' Function

- Regional calcium administration improves osseointegration, and calcium supplementation improves nonsurgical periodontal treatment results.
- Magnesium supplementation enhances noninvasive periodontal treatment results as well.
- Iron and zinc have antioxidant properties that benefit the periodontium.
- Zinc also lessens the severity of diabetes-related periodontitis. Fluoride is another crucial element that preserves the teeth.

Topical Fluoride applications and supplementation therapy help to prevent tooth cavities.

VITAMINS

Organic compounds are necessary in little quantities in the diet to execute certain cellular processes for the regular upkeep of an individual's optimum growth and health. ^{11,12}

They have historically been classified as either fat-soluble (hydrophobic) or water-soluble (hydrophilic). Water-soluble vitamins work in the cytoplasm of cells or extracellular fluids like blood, whereas fat-soluble vitamins are primarily important for defending cell membranes from free radical damage. Some vitamins can be synthesized by the body, but others must be acquired from diet.^{7,15,16}

FIGURE 4: Types of Vitamins

		i to una men orginiteant	
Research Author & year	Nutrient	Source of diet	Significance in Periodontal health and disease
Yan K et al., 2020 ³⁶ Timmerman et al., 2007 ³⁷	Vit A	Cod liver oil, broccoli capsicum, liver, sweet potato, carrots, leafy vegetables	It's not clear. According to investigations, supplementing has no effect on periodontal health.
Mustafa M et al., 2013 38	Vit B	B1—Liver, oats, pork, potatoes, eggs B2— Bananas, dairy, green beans B3—Eggs, fish, meat, mushrooms, nuts B5—Avocados, meat, broccoli B7—Raw egg, liver, leafy vegetables, peanuts B9—Cereals, leafy vegetables B12— Animal products	The supplementation could/may hasten postsurgical healing.
Freeland-Graves et al., 1991 ³⁹	Vit C	Citrus fruits, vegetables, liver	GingivalbleedingandInflammationarehallmarksofscurvy.Supplementationmayimproveoutcomesofperiodontal therapyscurvy
Mustafa M et al., 2013 ³⁸ Lee JH et al., 2017 ⁴⁰ Staudte et al., 2010 ⁴¹	Vit D	Fish eggs, mushrooms, liver, milk	Deficiency may lead to delayed postsurgical healing. Local application may accelerate post- surgical healing/ osseointegration
Amaliya et al., 2015 ⁴² Jacob RA et al., 1987 ⁴³ Nakamoto T et al., 1984 ⁴⁴	Vit E	Green vegetables, egg yolk	Deficiency may lead to gingival bleeding. No known effects on periodontal therapy if supplementation used as an adjunct.

LITERATURE REVIEW OF VITAMINS and their Significant Effect on Periodontitis:

Note: Adapted from Najeeb S, Zafar MS, Khurshid Z, Zohaib S, Almas K. The Role of Nutrition in Periodontal Health: An Update. Nutrients. 2016;30;8(9):530.

BIOCHEMICAL FUNCTIONS OF MICRONUTRIENTS

Understanding the biochemical actions of micronutrients is essential for understanding their role in optimizing health, disease prevention, and therapy.¹⁰

- 1. *Cofactors in metabolism*: Trace elements are typically involved in modifying enzyme activity or are an important part of enzyme prosthetic groups, such as zinc, which is needed in the form of selenocysteine inside the enzyme glutathione peroxidase.
- 2. *Coenzymes in metabolism*: Many vitamins or vitamin metabolites are needed to play an active role in complicated biochemical events, such as riboflavin and niacin in the electron transport chain or folic acid in methyl group transfer. These processes are crucial to intermediate metabolism because they guarantee that the primary nutrients used to create energy, proteins, and nucleic acids are used.
- 3. Genetic Control: Zinc "Fingers" are transcription-controlled factors that bind to DNA and govern transcription of steroid hormone receptors and other variables as well.

4. Anti-oxidants: Much of public fascination with micronutrients originates from the discovery that several of them have antioxidant capabilities. Oxidative metabolism invariably results in formation of ROS, which has the potential to induce further oxidative reactions, particularly in portions of cell that are relatively reduced, such as cell membranes or nucleic acids.

The potential for damage is limited by mechanisms such as direct quenching of oxidant activity by tocopherols or Carotenoids or enzyme systems to dispose of oxidation products such as superoxide dismutase and glutathione peroxidase.

MICRONUTRIENTS INADEQUACY AND INVOLVEMENT OF ENVIRONMENTAL FACTORS:

A lack of vitamins and minerals in the diet can lead to deficiency illness or deficiencies, which is a health issue that is not limited to low- and middle-income nations. This "hidden hunger" can be induced by either chronic underconsumption or poor food selection. Selective micronutrient deficits can coexist with both undernutrition and obesity. Such shortages may emerge in persons with appropriate nutritional intake during periods of elevated individual micronutrient requirements, but also in situations of increased micronutrient loss, such as alcohol misuse and severe smoking. (Figure 4) Malnutrition and poor oral hygiene are two major risk factors for necrotizing gingivitis. According to one comprehensive review, micronutrient deficiencies, such as vitamin C, vitamin D, or vitamin B12, may be linked to the initiation and progression of periodontal disorders.

Adapted from: The Role of Micronutrients in Periodontal Disease Prevention and Therapy EFP, Dommisch H, Kuzmanova D, Jönsson D, Grant M, Chapple I. Effect of micronutrient malnutrition on periodontal disease and periodontal therapy. Periodontology 2000. 2018 Oct;78(1):129-53. ⁵⁸

INFLUENCE OF MINERALS ON PERIODONTAL HEALTH

Mineral nutrients are components that organisms require to exist and operate correctly (other than oxygen, carbon, nitrogen, and hydrogen). Mineral shortage has ramifications for periodontal health, *according to Najeeb et al. in 2016.*³²

According to Zahrani et al., there is an inverse relationship between dairy product consumption and the prevalence of periodontitis. A research on elderly Danish patients found that consuming more dairy products reduces the severity of periodontitis later in life.⁴⁵

Miley et al. and Gracia et al. found that, whereas periodontal clinical measures improved independent of supplementation during the maintenance programme, calcium supplements had a slight, favorable influence on periodontal treatment results.^{46,47}

Meisel et al. found a strong relationship between periodontal health and blood magnesium levels. They emphasized that dietary magnesium supplementation may enhance periodontal health and prevent or postpone tooth loss in those in their forties and fifties.⁴⁸

Yamori et al. conducted a cross-sectional research to examine the relationship of periodontitis and tooth loss with conventional risk factors for hypertension in middle-aged (46-58 years) non-smoking and non-alcohol drinking Tanzanian women who were not on medication. They concluded that a low potassium consumption in the diet, along with a low Fibre intake, may elevate blood pressure and periodontal inflammation.⁴⁹

Park et al. completed a research on young individuals aged 19 to 39 years old using data from *the Fourth Korean Health and Nutrition Examination Survey*. They discovered a link between periodontitis and reduced iron consumption in women. However, no research has attempted to identify an association between iron supplementation and periodontal treatment results.⁵⁰

In two separate case control investigations, *Thomas et al.* compared blood zinc levels in patients with diabetes and periodontitis to those in patients with periodontitis but no diabetes. Periodontitis patients, both with and without diabetes, had considerably lower zinc levels than healthy people.²⁵ Indeed, a comprehensive study by *Pushparani* found that zinc can help prevent diabetes-related periodontitis by having an anti-oxidant impact. As a result, zinc supplementation may be able to enhance the therapeutic effects of periodontal treatment.⁵¹

EFFECTS OF VITAMINS ON PERIODONTAL HEALTH

Zong et al. investigated the possible link between blood vitamin B12 and periodontitis alterations in a prospective population. They discovered that an increase in blood vitamin B12 was linked to a decrease in the clinical markers of Parkinson's disease (probing pocket depth, clinical attachment loss, and tooth loss).³³

PMNs (polymorphonuclear leukocytes) and macrophages had 10-40 times greater intracellular ascorbic acid concentrations than plasma.⁵² It has been proposed that increased ascorbic acid levels in leukocytes contribute to their ability to respond to inflammatory stimuli.⁵³

Vitamin C insufficiency has been linked to an increased risk of periodontal disease. It is generally documented that a lack of vitamin C in the diet causes scurvy, an inflammatory condition of the gingiva that causes bleeding gums and was first discovered by *James Lindhe*. *Kaur K et al.* state that Vitamin C's anti-inflammatory, antioxidant, and regenerative properties are well recognized, suggesting that it may have a role in moderating inflammatory responses in periodontal disorders.⁵

Dietrich et al conducted the first study to report an association between serum vitamin D levels and periodontitis and gingivitis, utilizing data from the US National Health and Nutrition Examination Survey, and discovered a lower prevalence of periodontitis in individuals with elevated concentrations of serum Vitamin D.⁵⁴

ROLE OF ANTIOXIDANTS IN PERIODONTAL HEALTH AND DISEASE

Oral hygiene is commonly neglected in patients who have undergone radiotherapy and they often develop dry mouth, mucositis due to radiation therapy, etc., as side effects. ⁵⁵ An emergency is a significant, unforeseen, and frequently dangerous circumstance that demands a quick response. ⁵⁶

Because of disease and trauma, the mouth cavity, like any other tissue, experiences inflammation and damage. Inflammatory processes entail immune cells producing reactive oxygen species (ROS) when provoked by pathogens. ROS and highly reactive free radicals (molecules with unpaired electrons) can cause cellular and tissue damage by changing the chemical structure of molecules. They specifically harm lipids by starting a chain reaction called lipid peroxidation. Aerobic respiration normally results in the formation of ROS. Antioxidant defense enzymes, on the other hand, lower ROS to minimize cellular damage. However, if there is an excess of ROS generation owing to inflammation or tissue injury, the antioxidant system is insufficient to reduce oxidative damage. When the equilibrium between ROS generation and antioxidant enzymes (e.g., glutathione) is upset, oxidative stress ensues. ³⁶

The periodontium can also become oxidatively damaged as a consequence of disease and/or traumainduced inflammation, as reported by *Najeeb S et al.* By intercepting ROS, antioxidants can assist in lessening disease intensity.³²

SL	Authors and	Research focus	Methods	Results	Conclusion
NO.	year of research				
1	Hans A et al., 2023 ^{2,12}	To assess if a deficiency of certain essential vitamins is a risk factor for developing periodontitis	The subjects consisted of 100 subjects, 50 with generalized chronic periodontitis and 50 periodontally healthy volunteers. The following clinical parameters were measured: Gingival Index, pocket depth (mm); Clinical Attachment Loss (mm). Serum samples were collected and analyzed for levels of cis- β - carotene, β - cryptoxanthin, vitamin B 12, folate, vitamin D, and vitamin E. Individual data collected was summarized and analyzed using statistical software	All the clinical parameters for periodontal status in the periodontitis group compared to healthy volunteers were highly significant ($p < 0.0001$). The mean levels of all the micronutrients, vitamin A precursors cisβ-carotene and β-cryptoxanthin, folate, vitamin B 12, D & E were lower in the periodontitis group than the healthy volunteers, although the difference was statistically significant only in case of β-cryptoxanthin, Vitamin B12 and Vitamin D ($p < 0.05$).	The findings of our study suggest that serum micronutrient levels especially Vitamin A, Vitamin B 12, and Vitamin D may be modifiable risk factors for periodontal disease. Providing an optimized combination of various vitamins in each meal in combination with sufficient measures of standard oral hygiene care may provide an important role in the prevention of periodontitis
2	Shankarai Malaipan et al., 2022 ¹⁵	To assess the salivary micronutrient levels in healthy and chronic periodontitis	N/A	The salivary micronutrient zinc, copper, iron levels are significantly reduced in chronic periodontitis than in healthy individuals	Within the limitations of the present study, it can be concluded that there is a significant reduction in salivary micronutrient levels of iron, copper and zinc in chronic periodontitis when compared to healthy individuals

LITERATURE REVIEW:

3	Blessy Pushparathna., 2022 ⁵⁷	To assess the correlation between salivary micronutrient levels in chronic periodontitis patients before and after non- surgical periodontal therapy	A total of 50 chronic periodontitis patients who reported to the Department of Periodontics, Saveetha Dental College and Hospitals, Chennai were enrolled. Levels of Zinc [Zn], Copper [Cu], Iron [Fe], and Selenium [Se] were measured from unstimulated saliva samples before and after scaling and root planing. Paired t-test was done and the results were considered to be statistically significant when the p-value was <0.05	At baseline (before SRP), the levels of Zn, Cu, Fe and Se were 3.05 ± 0.53 , 8.45 ± 0.73 , 7.30 ± 2.21 and 2.2 ± 1.23 respectively. At 3 weeks follow-up (after SRP), the levels of Zn, Cu, Fe and Se were 4.95 ± 0.48 , 5.95 ± 0.48 , 5.74 ± 0.34 and 4.8 ± 1.01 respectively. The difference between levels of Zn, Cu, Fe and Se before and after nonsurgical periodontal therapy was statistically significant withp < 0.05.	The salivary levels of Zn and Se were increased and levels of Cu and Fe were decreased in chronic periodontitis after non- surgical periodontal therapy. This indicates that the levels of micronutrients can be used as effective biomarkers for chronic periodontitis
4	Patricia Daniela Costa et al., 2021 ¹⁴	To evaluate the relationship between micronutrient intake, sociodemographic behavioral characteristics, and periodontal health in adults assisted by a public health care system	Data collections related to nutritional variables and the periodontal status of the population were carried out ina cross- sectional design, through home visits. In each visit, general and nutritional interviews were carried out, also applying the food frequency questionnaire, followed by anthropometric and periodontal assessments	The prevalence of at least one periodontal pocket ≥ 4 mm was 67.4%. Three clusters were identified according to periodontal status. Cluster 1 "poor periodontal status" was characterized by older individuals (n = 202; 85% females) with poor periodontal status, lower education level, mainly smokers with non- transmissible chronic diseases (NTCD), with lower energy, omega-3, fiber, Zn, K, Cu, and vitamin C intake Cluster 3 "healthy periodontal status," included younger individuals (n = 54) with the healthiest periodontal status, a higher education level, without NTCD, and with	Diet can significantly affect periodontal status, and nutritional deficiencies are very important factors in countries with upper middle- income economies. Brazil has a public health system that greatly modifies the context of oral assistance in relation to other countries. This study highlights the influence of nutritional and sociodemographic behavioral factors on periodontal status, which may guide population- based measures for low- income populations

1					
				higher energy,	
				calcium retinol	
				and riboflavin	
				intaka Cluster 2	
				make. Cluster 2	
				was labeled as	
				neriodontalstatus	
5	Mohamad El	To compare the	20 healthy non	The modian DOPI	Vitamin C
5	Mofty et al	efficacy of intra-	smokers with mildto	significantly	mesotherapy showed
	2021 15	mucosal injection	Savara	decreased after 1	better and early effect
	2021	(mesotherany) with	hyperpigmented	month in G1 (P	than tonical gel and
		tonical gel as non-	gingiya were	value $< 0.001 \text{ r} =$	both techniques were
		surgical methods for	randomly assigned	0.9 compared with	not painful and
		managing gingiyal	for Mesotherapy	non-significant	esthetically satisfying
		hyperpigmentation	(G1): intra-mucosal	change in G2. No	in managing gingival
		nyperpignentation	injection of ascorbic	pain experienced	hyperpigmentation
			acid or Gel (G2).	during or after	
			topical ascorbic acid	treatment in both	
			gel.	groups. G1 patients	
			Pigmentation index	showed	
			(DOPI), patient	significantly higher	
			satisfaction, as well	satisfaction with	
			as histological	treatment than G2.	
			analysis for	Mean area fraction	
			Fontana-Masson-	of melanin forming	
			stained specimens	cells was	
			were performed at	significantly	
			baseline and after 6	reduced in both	
			months.	groups after 6	
			Comparison	months, but the	
			between groups and	effect size was	
			changes by time	nigner in GI (r = 0.886) then in C2 (r	
			Were analyzed using	(0.880) than in G2 (r = 0.707	
			Friedman's tests	= 0.797	
6	Islam S. Bakr	To evaluate the	A three-armed	After 6 weeks of	Topical oral vitamin
0	et al 2020^{16}	effectiveness of	randomized	radiotherapy	D gel has a beneficial
	et ul., 2020	topical oral vitamin D	controlled clinical	(33.5%) the	effect in lowering
		gel in prevention of	trial on forty-five	patients in control	oral mucositis
		radiation induced oral	head and neck	group developed	development and in
		mucositis	cancer patients was	high- grade severity	reducing pain
			conducted. First	of oral mucositis	sensation during the
			group: conventional	while the patients in	radiation period
			treatment.	the two-test groups	especially when
			Second group:	"vitamin D group&	combined with
			Topical oral vitamin	combined therapy	conventional
			D gel. Third group:	group" remained	therapeutic agents
			topical oral vitamin	with low-grade	
			D gel plus the	severity or with	
			trootmont All the	romission Mas-	
			netionts wor	Dain scores showed	
			examined clinically	a significant	
			three and six weeks	decrease in the	
			after the start of	combined therapy	
			radiotherapy for	group and to a close	
			pain and WHO	degree in vitamin D	
			mucositis score	group rather than	
				thecontrol group	
7	H. Gencay	To evaluate clinical	60 CGP patients (30	Significant time-	Both modalities
	Keceli	and biochemical	per group) were	dependent	exhibited clinical

	at al 2020 17	effects of aliversting	and another a contained		:
	et al., 2020	systemic folic acid (FA) intake with scaling and root planing (SRP) in periodontitistreatment	into study groups and treated with either SRP + placebo (SRP + P) or SRP + folic acid (SRP + F). In addition to clinical parameters (plaque index [PI], gingival index [GI], probing pocket depth [PPD], clinical attachment level [CAL] and gingival recession [GR]), gingival crevicular fluid (GCF) samples were obtained at baseline and post-treatment (PT) periods, three and six months for C-reactive protein (CRP) and homocysteine (Hcy) avuluation	reduction was detected at all clinical parameters for both groups ($p < .001$). Compared to SRP + P, CAL was lower in SRP + Fat PT-1 ($p = .004$) and PT-3 ($p = .035$), whereas GR was lower at only PT-1 ($p = .015$). GCF volume and CRP did not show inter- group differences, whereas Hcy was higher in SRP + F at PT-3 ($p = .044$) and PT-6 ($p = .041$). GCF volume and Hcy showed reduction after treatment in both groups ($p < .001$)	change in biochemical parameters. Adjunctive systemic FA intake may be recommended adjunctive to periodontitis treatment to reveal better outcomes. However, its impact mechanisms should be further enlightened
8	B. Nandlal et al., 2020 ¹⁸	To examine the effects of brushing with a test toothpaste containing natural ingredients, that is, clove (Syzgium Aromaticum), aloe vera (Aloe Barbadensis), amla (Emblica Officinalis), neem (Azadirachta Indica), tulsi (Ocimum Basillicum) and honey (from Apis Mellifera) along with zinc salts and fluoride in comparison with a dentifrice formulated with fluoride alone on dental plaque and gingivitis over a 6- month period.	evaluationSubjectswereevaluated for plaqueand GI scores andwererandomlyassigned to performtwicedailytwicedailyoralhygienewith eitherthe test or the controltoothpastefortoothpastefornext6monthassessmentswereconductedafteramonthand 6-monthuse of an assignedproductaftersubjectsrefrainedfromoralhygienefor 12 h prior to eachevaluation.Comparisons of thetreatmentgroupswithrespectbaseline-adjustedGI, PI and bleedingindex scores at thefollow-upexaminationswereperformedusinganalysesofcovariance(ANCOVA).	At 3-month and 6- month examination, the test toothpaste exhibited progressive reductions in plaque, gingival and bleeding scores as compared to control toothpaste as showed by ANCOVA (p < 0.001). In comparison with the control, the test demonstrated reductions in 23.5%, 25.6%, and 73.3% for dental plaque, gingival index and bleeding index outcomes, respectively, at the finalvisit	Routine oral hygiene with the test toothpaste formulated with herbal ingredients and zinc demonstrated a clinical adjunctive improvement in oral hygiene and parameters of gingival health as compared to brushing with a fluoride toothpaste
9	Ji-Youn Hong et al., 2019 ¹⁹	To evaluate gingival inflammation from fixed-dose combinations of vitamin C, vitamin E,	OnehundredpatientswererandomlyassignedtoreceiveCELC(test)orplacebo	Ninety-three patients completed the study. The GI in the test group significantly	Within the study, CELC showed a significant reduction in gingival inflammation

		lysozyme and carbazochrome (CELC) in the treatment of chronic periodontitis following scaling and root planing	(control) for the first 4 weeks at a 1:1 ratio, and both groups received CELC for the remaining 4 weeks. Primary outcome was the mean change in the gingival index (GI) after 4 weeks. Secondary outcomes included mean change in GI after 8 weeks and plaque index, probing depth, clinical attachment level at 4 weeks and 8 weeks	decreased after 4 weeks ($p < 0.001$) and 8 weeks ($p < 0.001$) and 8 weeks ($p < 0.001$). The mean change from baseline in GI significantly decreased in the test group compared to the control group after 4 weeks ($p = 0.015$). In the GEE model adjusting for age, gender and visits, the test group showed 2.5 times GI improvement compared to the control group ($p = 0.022$)	compared with a placebo. Other parameters, however, weresimilar between groups
10.	Mohamed M. Meghil et al., 2019 ²⁰	To investigate the influence of 12 weeks of 25(OH) vitamin D supplementation (VDS) on mediatorsof systemic inflammation periodontitis patients	A total of 23 patients with moderate to severe periodontitis were randomly assigned to the vitamin D group or placebo group and received intensive single visit scaling and root planning to elicit a systemic inflammatory response	0.022 Vitamin D supplementation increased serum 25(OH)D levels approximately 2- fold over baseline levels; moreover, VDS group had reduced peripheral blood CD3 and CD3+CD8+ cytotoxic T lymphocyte (CTLs) counts and reduced pro-inflamma- tory salivary cytokines. In contrast, VDS group had higher levels of the autophagy- related proteins and other proteins crucial for anti-microbial autophagy in whole blood PBMCs	VDS has multiple benefits for reducing systemic inflammation and promoting induction of autophagy- related proteins related to anti- microbial functions.
11	Elif Inonu et al., 2019 ²¹	To determine whether association between mineral elements and periodontal status occur.	190 systemically healthy non-smoker participants (mean age 32.2 ± 6.02 ; 50 periodontally healthy, 50 gingivitis, 50 chronic periodontitis, and 40 aggressive periodontitis individuals) were included in this cross-sectional study. Salivary levels of some macro and	Statistically significant differences were found in sodium (Na), magnesium (Mg), potassium (K), calcium (Ca), vanadium (V), chromium Cr), manganese (Mn), iron (Fe), rubidium (Rb), strontium (Sr), and selenium (Se) concentrations among the groups. Significant increases in the	The results of this study demonstrated that assessment of mineral element concentrations in saliva might be useful in assessing periodontal health and disease

			trace elements were measured by using inductively coupled plasma mass spectrometry (ICP- MS). Kruskal- Wallis's test was used for statistical analysis.	essential minerals Na, Mg, K, Ca, Fe, and Se occurred in both periodontitis groups when compared to the gingivitis and periodontally healthy groups. Lower Se, Sr, Fe, Mn, and V concentrations were found in the aggressive periodontitis group than in the chronic periodontitis group.	
12	Xiao Li et al., 2018 ²²	To explore the effects of vitamin C supplementation in wound healing, following the placement of dental implants with or without bone grafts and patients with chronic periodontitis	Patients were divided into four groups, group A received dental implants supported GBR technique, group B received dental implants with Bio-Oss Collagen, group C received dental implants in patients with chronic periodontitis, and group D received dental implants without any bone grafting or periodontal disease. Follow-up appointments were performed at day 3, 7, 14 postsurgery, during which soft tissue healing and pain response scores were evaluated using the Landry index and VAS respectively	The experimental subgroups had significantly higher healing indices than the controls (P < .05) at day 7 postsurgery for group B and day 14 postsurgery for groups A, B, and C. Group D displayed no difference between the experimental and control groups at any time point. In reference to vitamin C for pain relief, there were no statistically significant differences between the study groups	Using vitamin C supplementation improves postoperative healing following dental implant surgery in patients with chronic periodontitis and patients treated with GBR or Bio-Oss Collagen grafts. However, vitamin C supplementation does not decrease the postoperative pain associated with dental implant surgery.
13	Johan P et al., 2019 ²³	To investigate the influence of an anti- inflammatory diet on different parameters in patients with gingivitis	30 patients were randomly allocated to an experimental and a control group. The experimental group had to change to a diet low in processed carbohydrates and animal proteins, and rich in omega-3 fatty acids, vitamin C, vitamin D, antioxidants, plant nitrates and fibres	No differences regarding the plaque values, the experi- mental group showed a significant reduction in gingival bleeding, a significant increase in Vitamin D values and a significant weight loss. There were no inter-group differences regarding the	The evaluated diet could significantly reduce gingivitis in a clinically rel- evant range, while serological inflammatory parameters and the subgingival microbiome seem to be unaffected in this study duration.

			-		
14	Pia- Merete et	This randomized	for 4 weeks. The control group did not change their diet. Both groups suspended inter- dental cleaning. Periodontal parameters were assessed. Serological and subgingival plaque samples were taken atbaseline and end Sixteen subjects	inflammatory serological parameters, the serological omega fatty acids, nor the sub- gingival composition	A zinc-lactate-
	al., 2019 ²⁴	controlled cross- over- design-study investigated short- term effects on oral malodor of a zinc- lactate-containing mouthwash	(18-65 years) with an organoleptic score $(OLS) \ge 2$ were included. Following rinses were used: A: a zinc-lactate- containing mouthwash (10ml/30s); B: a zinc-lactate- containing mouthwash (15ml/60s); C: a rinse without zinc- lactate (3 droplets/10ml tap water/30s) and D: tap water (10ml/30s). Each formulation was evaluated by two blinded examiners comparing OLS and three volatile- Sulphur- compounds (VSC; H2S (hydrogen sulphone), CH3SH (methyl mercaptan) and (CH3)2S (dimethyl sulphide)) before, one and three hours after rinsing. Subject's perception was investigated with a visual- analogue-scale. Linear mixed models were used to compare all parameters simultaneously with respect to the four treatment groups with a significance level	significantly reduced by A and B compared to C and D after three hours. The sum of the 3 VSCs as well as H2S alone were significantly reduced by rinses A and B after one and three hours compared to rinses C andD. Significant differences were found between the four rinses for "Taste" (p=0.003), for "Change of mouth feeling" (p=0.001), for "Feeling of freshness" (p=0.002) and for "Effectiveness" (p=0.002) in favor of A & B	containing mouthwash reduced OLS and VSC over a period of three hours with favorable patient reported outcomes

			<i>α</i> <0.05		
15	Biju Thomas et al., 2018 ²⁵	To evaluate the comparison of glutathione, catalase, and selenium levels in the serum of diabetes mellitus type 2 patients and healthy individuals with and without periodontal disease	$\alpha < 0.05$ The study was designed as a case - control study comprising of 150 subjects, inclusive of both sexes and were divided into three groups of 50 patients each. Group I: 50 subjects with type 2 diabetes mellitus and chronic periodontitis. Group II: 50 subjects who are systemically healthy with the chronic periodontitis. Group III: 50 subjects who are systemically healthy and not suffering from Periodontitis	The serum levels of glutathione in diabetic patients with periodontitis were significantly lower with a mean of $61.36 + 8.054$ when compared to healthy individuals with and without periodontitis (P \leq 0.005). The serum levels of catalase were significantly lower in diabetic patients with a mean of 19.30 + 7.355 when compared to healthy individuals with and without periodontitis (P \leq 0.005). The serum levels of selenium were significantly lower in diabetic patients with a mean of 19.30 + 7.355 when compared to healthy individuals with and without periodontitis (P \leq 0.005). The serum levels of selenium were significantly lower in diabetic patients with and without periodontitis with a mean of 81.41 + 55.419 when compared to healthy individuals withand without periodontitis (P \leq 0.005)	The findings from the study suggest that the levels of glutathione, catalase, and selenium are significantly lower in diabetic patients with periodontitis and also in healthy individuals withperiodontitis, but are highestin healthy controls, showing that the serum levels are inversely proportional to inflammation and tissue destruction
16	Gopalakrishnan Sundaram et al., 2017 ²⁶	To find out the effect of nonsurgical periodontal therapy on serum zinc (Zn), magnesium (Mg), and copper (Cu) concentration and glycemic status in type 2 diabetes with chronic periodontitis (CP).	120 patients were included in this study, which was further divided into three groups. Group 1 consisted of 40 patients with CP, Group 2 of 40 patients of CP with controlled diabetes, and Group 3 of 40 patients of CP with uncontrolled diabetes. Periodontal parameters such as PI,GI, BOP, PD, and CALs were evaluated. Blood samples were collected to assess the levels of fasting blood sugar, glycosylated hemoglobin, Zn.	The results showed statistically significant reduction in all the clinical parameters within the groups except for the CAL in group 1 patients ($P = 0.05$). The glycemic status showed a statistically significant reduction after treatment ($P < 0.001$). The intragroup comparison was taken between the values of micronutrients, showed substantial increase in the levels of both Zn and Mg and	Patients with diabetes and periodontitis had altered metabolism of Zn, Mg, and Cu contributing to the progression and complication of diabetes mellitus and periodontitis. Nonsurgical periodontal treatment improved the variation and concentration of plasma micronutrients and also the periodontal status and glycemic level

17	Aditi Chopra et al., 2015 ²⁷	To evaluate and compare the beneficial effects of green tea intakeon the total antioxidant capacity of gingival crevicular fluid (GCF) and plasma, and to examine itsrole as an adjunct to nonsurgical periodontal therapy for the management of chronic periodontitis	Mg, and Cu. All parameters were evaluated at baseline and 3 months after nonsurgical periodontal therapy. 120 subjects with mild to moderate chronic periodontitis were divided equally into two groups. Afterscaling and root planing in all subjects, green tea supplements were given to the case group and a placebo to the control group. The clinical parameters gingival index, plaque index, clinical probing depth, clinical attachment loss, percentage of sites with bleeding on probing, along with total antioxidant capacity of GCF and plasma were recorded at baseline, one and three	decrease inthe level of Cu after nonsurgical periodontal treatment There was a significant improvement in all clinical parameters along with an 8- fold greater antioxidant capacity in GCF in the case group than in thecontrol group	Green tea intake as a component of nonsurgical periodontal therapy is promising for superior and rapid resolution of the disease process. Green tea increases the total antioxidant capacity of GCF and plasma along with potent anti- inflammatory, astringent and anti- plaque effects
18	Sathish Manthena et al., 2015 ²⁸	To evaluate the effectiveness of CoQ 10 supplementation as an adjunct to scaling and rootplaning in reducing gingival inflammation and periodontal pocket depth.	30 subjects with plaque induced gingival inflammation and having atleast three nonadjacent interproximal sites with a probing pocket depth ≥ 5mm were included in the study. The subjects were randomly divided into two groups. The test group (n=15) in which patients were given oral CoQ10 supplements after NSPT and the control group (n=15) in which patients were given an oral placebo after NSPT. The PI, GI and PD were recorded at baseline, 1 month and 3	Both the groups showed marked reduction of periodontal parameters at 1 and 3 months when compared to baseline. Though there was no significant difference in PI and PPD between the two groups at any given time period, test group showed significant difference in gingival inflammation at one month and three months when compared to control group	In the present study use of Coenzyme Q10 oral supplements as an adjunct to scaling and root planing showed significant reduction in gingival inflammation when compared to scaling and rootplaning alone

			months. Statistical		
			analysis done by		
			using Student's		
			paired t-test for		
			intragroup		
			comparison and		
			unpaired t- test for		
			inter-group		
10			comparison		
19	Sunita Daiya et	To investigate	Forty-three	Salivary and serum	Adjunctive
	al., 2014 29	changes in periodontal	postmenopausal	SOD values	micronutrient
		parameters and	chronic periodontitis	significantly	supplements reduce
		superoxide dismutase	patients were	improved with	periodontal
		activity triggered by	divided into two	periodontal	inflammation and
		root surface	groups: group 1	treatment.	improve the status of
		debridement with and	(n=22) were		systemic enzymatic
		without micronutrient	provided periodontal		antioxidants in
		supplementation in	treatment in the		postmenopausal
		postmenopausal	form of scaling and		women
		women	root planing (SRP)		
			and group 2 (n=21)		
			patients received		
			SRP along with		
			systemic		
			administration of		
			micronutrient		
			antioxidants.		
			Patients in both		
			groups were		
			subjected to root		
			surface		
			debridement. Group		
			2 patients also		
			received adjunctive		
			antiovident		
			supplementation		
			Sorum and solivery		
			superovide		
			dismutase (SOD)		
			activity along with		
			neriodontal		
			periodonial parameters woro		
			recorded at baseling		
			and 3 months after		
			therany		
			incrapy.		

RECOMMENDATIONS FOR FUTURE RESEARCH

More research is needed to determine the efficacy of vitamin supplementation on periodontal treatment and the influence of micronutrient deficits on periodontitis incidence.

More study is needed on the function of micronutrients in innate and adaptive immune responses, since the relationship between nutritional status and immunological response to bacterial assault may be a key component in periodontal disease development.

Further research should be conducted to identify specific gene polymorphisms that appear to affect each individual's biological response to a specific nutritional intervention, as well as genetic testing to identify at-risk groups that may benefit from specific nutritional therapies as part of a precision approach to periodontal medicine.

Summary:

To Jot it down, the analysis of the literature revealed that periodontal disease is connected with reduced serum/plasma levels of different micronutrients, primarily vitamin D, vitamin C, and other antioxidants. However, there is a scarcity of longitudinal intervention studies in this critical field to investigate the influence of dietary therapies on periodontal results.

Scientific Hypothesis/Theory behind the Research

Nutrition has been shown to be a significant lifestyle contributor to risk for a variety of inflammatory diseases and conditions, such as cardiovascular disease, type 2 diabetes, rheumatoid arthritis, and inflammatory bowel disease, all of which have been linked to periodontitis. As a result, diet could serve an essential part in the development and treatment of periodontitis.

Inference Obtained:

In deficient patients, the existing information would support the advice of a sufficient daily consumption of foods containing natural sources of antioxidants, as well as vitamin D and calcium supplementation. As a result, the medical history should contain extensive information about the daily food consumption of the major micronutrients, as well as lifestyle factors. Inadequate antioxidant intake can be compensated for by increasing consumption of vegetables, berries, and fruits (e.g., kiwi fruit). Inadequate vitamin D and calcium supply can be corrected by dietary/lifestyle changes or supplementation.

CONCLUSION:

In a nutshell, there is developing proof supporting the role of micronutrients in general and periodontal health. Formerly we as practicing dentists have preferred not to delve beyond the limits of the standard prescription course of antibiotics when treating patients with periodontal diseases or any other ailments. This article is an attempt to draw the attention of the clinicians to take a holistic approach in treating patients and I hope that it will be an eye opener for many readers.

ACKNOWLEDGMENTS

CONFLICT OF INTEREST: Authors declare that there was no conflict of interest

FUNDING: NONE.

REFERENCES

- 1. Milward, M.R. and Chapple, I.L.C., 2013. The role of diet in periodontal disease. *Clin Dent Health*, 52(1)
- Sanz, M., Herrera, D., Kebschull, M., Chapple, I., Jepsen, S., Berglundh, T., Sculean, A., Tonetti, M.S., EFP Workshop Participants and Methodological Consultants, Merete Aass, A. and Aimetti, M., 2020. Treatment of stage I–III periodontitis—The EFP S3 level clinical practice guideline. *Journal of Clinical Periodontology*, 47
- 3. Janakiram, C., Mehta, A. and Venkitachalam, R., 2020. Prevalence of periodontal disease among adults in India: A systematic review and meta-analysis. *Journal of Oral Biology and Craniofacial Research*, *10*(4.
- 4. Dommisch, H., Kuzmanova, D., Joensson, D., Grant, M. and Chapple, I., 2018. Effect of micronutrient malnutrition on periodontal disease and periodontal therapy. *Periodontology* 2000, 78(1)
- 5. Kaur, K., Sculley, D., Wallace, J., Turner, A., Ferraris, C., Veysey, M., Lucock, M. and Beckett, E.L., 2019. Micronutrients and bioactive compounds in oral inflammatory diseases. *Journal of Nutrition & Intermediary Metabolism*, 18,
- 6. Apon, A. and Kamble, P., 2019. Role of trace mineral in periodontal health: a review. *Clinical Trials in Degenerative Diseases*, 4(2)

- 7. Smolin, L.A. and Grosvenor, M.B., 2019. *Nutrition: Science and applications*. John Wiley & Sons.
- 8. Fialkowski Revilla MK, Titchenall A, Calabrese A, Gibby C, Meinke W. Human Nutrition. 2018 Jun 5. 9. Shetty P, Shetty A, Kumari S. MICRONUTRIENTS AND ORAL HEALTH AN OPPORTUNITY TO PREVENT ORAL DISEASES. Romanian Journal of Diabetes Nutrition and Metabolic Diseases. 2019 Oct 22;26(3):311-6.
- 9. Shenkin, A., 2006. The key role of micronutrients. *Clinical nutrition*, 25(1)
- 10. Cormick, G. and Belizán, J.M., 2019. Calcium intake and health. Nutrients, 11(7)
- 11. Harinarayan, C.V. and Akhila, H., 2019. Modern India and the tale of twin nutrient deficiency– calcium and vitamin D–nutrition trend data 50 years-retrospect, introspect, and prospect. *Frontiers in endocrinology*.
- 12. Hans, M., Malik, P.K., Hans, V.M., Chug, A. and Kumar, M., 2023. Serum levels of various vitamins in periodontal health and disease-a cross-sectional study. *Journal of Oral Biology and Craniofacial Research*, *13*(4), pp.471-475.
- 13. Naveenaa, N. and Malaiappan, S., 2022. Assessment of Salivary Micronutrient Levels in Healthy and Chronic Periodontitis. *Journal of Coastal Life Medicine*, *10*, pp.572-579.
- Costa, P.D., Canaan, J.C.R., Midori Castelo, P., Campideli Fonseca, D., Márcia Pereira-Dourado, S., Mendonça Murata, R., Pardi, V. and Pereira, L.J., 2021. Influence of micronutrient intake, sociodemographic, and behavioral factors on periodontal status of adults assisted by a public health care system in Brazil: a cross-sectional multivariate analysis. *Nutrients*, 13(3), p.973.
- 15. El-Mofty, M., Elkot, S., Ghoneim, A., Yossri, D. and Ezzatt, O.M., 2021. Vitamin C mesotherapy versus topical application for gingival hyperpigmentation: a clinical and histopathological study. *Clinical Oral Investigations*, 25(12), pp.6881-6889.
- Bakr, I.S., Zaki, A.M., El-Moslemany, R.M. and Elsaka, R.O., 2021. Vitamin D oral gel for prevention of radiation-induced oral mucositis: A randomized clinical trial. *Oral Diseases*, 27(5), pp.1197-1204.
- 17. Keceli, H.G., Ercan, N., Karsiyaka Hendek, M., Kisa, U., Mesut, B. and Olgun, E., 2020. The effect of the systemic folic acid intake as an adjunct to scaling and root planing on clinical parameters and homocysteine and C-reactive protein levels in gingival crevicular fluid of periodontitis patients: A randomized placebo-controlled clinical trial. *Journal of Clinical Periodontology*, *47*(5), pp.602-613.
- 18. Nandlal, B., Sreenivasan, P.K., Shashikumar, P., Devishree, G. and Bettahalli Shivamallu, A., 2021. A randomized clinical study to examine the oral hygiene efficacy of a novel herbal toothpaste with zinc over a 6-month period. *International Journal of Dental Hygiene*, *19*(4), pp.440-449.
- 19. Hong, J.Y., Lee, J.S., Choi, S.H., Shin, H.S., Park, J.C., Shin, S.I. and Chung, J.H., 2019. A randomized, double-blind, placebo-controlled multicenter study for evaluating the effects of fixed-dose combinations of vitamin C, vitamin E, lysozyme, and carbazochrome on gingival inflammation in chronic periodontitis patients. *BMC Oral Health*, *19*(1), pp.1-8.
- Meghil, M.M., Hutchens, L., Raed, A., Multani, N.A., Rajendran, M., Zhu, H., Looney, S., Elashiry, M., Arce, R.M., Peacock, M.E. and Dong, Y., 2019. The influence of vitamin D supplementation on local and systemic inflammatory markers in periodontitis patients: A pilot study. *Oral diseases*, 25(5), pp.1403-1413.
- 21. Inonu, E., Hakki, S.S., Kayis, S.A. and Nielsen, F.H., 2020. The association between some macro and trace elements in saliva and periodontal status. *Biological trace element research*, 197, pp.35-42
- 22. Li, X., Tang, L., Lin, Y.F. and Xie, G.F., 2018. Role of vitamin C in wound healing after dental implant surgery in patients treated with bone grafts and patients with chronic periodontitis. *Clinical Implant Dentistry and Related Research*, 20(5), pp.793-798.
- 23. Woelber, J.P., Gärtner, M., Breuninger, L., Anderson, A., König, D., Hellwig, E., Al-Ahmad, A., Vach, K., Dötsch, A., Ratka-Krüger, P. and Tennert, C., 2019. The influence of an anti-

inflammatory diet on gingivitis. A randomized controlled trial. Journal of clinical periodontology, 46(4), pp.481-490.

- 24. Jervøe-Storm, P.M., Schulze, H. and Jepsen, S., 2019. A randomized cross-over short-term study on the short-term effects of a zinc-lactate containing mouthwash against oral malodour. *Journal of Breath Research*, *13*(2), p.026005.
- 25. Thomas, B., Ramesh, A., Suresh, S. and Prasad, B.R., 2013. A comparative evaluation of antioxidant enzymes and selenium in the serum of periodontitis patients with diabetes mellitus type 2. *Contemporary clinical dentistry*, *4*(2), p.176.
- 26. Sundaram, G., Ramakrishnan, T., Parthasarathy, H., Moses, J. and Lalitha, T., 2017. Evaluation of micronutrient (zinc, magnesium, and copper) levels in serum and glycemic status after nonsurgical periodontal therapy in type 2 diabetic patients with chronic periodontitis. *Contemporary clinical dentistry*, 8(1), p.26.
- 27. Chopra, A., Thomas, B.S., Sivaraman, K., Prasad, H.K. and Kamath, S.U., 2016. Green Tea Intake as an Adjunct to Mechanical Periodontal Therapy for the Management of Mild to Moderate Chronic Periodontitis: A Randomized Controlled Clinical Trial. *Oral Health & Preventive Dentistry*, *14*(4).
- 28. Manthena, S., Rao, M.V.R., Penubolu, L.P., Putcha, M. and Harsha, A.V.N.S., 2015. Effectiveness of CoQ10 oral supplements as an adjunct to scaling and root planing in improving periodontal health. *Journal of clinical and diagnostic research: JCDR*, *9*(8), p.ZC26
- 29. Daiya, S., Sharma, R.K., Tewari, S., Narula, S.C. and Sehgal, P.K., 2014. Micronutrients and superoxide dismutase in postmenopausal women with chronic periodontitis: a pilot interventional study. *Journal of Periodontal & Implant Science*, 44(4), pp.207-213.
- 30. Martinon, P., Fraticelli, L., Giboreau, A., Dussart, C., Bourgeois, D. and Carrouel, F., 2021. Nutrition as a key modifiable factor for periodontitis and main chronic diseases. *Journal of clinical medicine*, *10*(2), p.197.
- 31. Schulze-Späte, U., Dietrich, T., Wu, C., Wang, K., Hasturk, H. and Dibart, S., 2016. Systemic vitamin D supplementation and local bone formation after maxillary sinus augmentation-a randomized, double-blind, placebo-controlled clinical investigation. *Clinical Oral Implants Research*, 27(6), pp.701-706.
- 32. Najeeb, S., Zafar, M.S., Khurshid, Z., Zohaib, S. and Almas, K., 2016. The role of nutrition in periodontal health: an update. *Nutrients*, *8*(9), p.530
- Zong G, Holtfreter B, Scott AE, et al. Serum vitamin B12 is inversely associated with periodontal progression and risk of tooth loss: a prospective cohort study. J Clin Periodontol. 2016;43(1):2–9. doi:10.1111/jcpe.12483
- 34. Rizzo G, Laganà A, Rapisarda A, et al. Vitamin B12 among vegetarians: status, assessment and supplementation. Nutrients. 2016;8 (12):767. doi:10.3390/nu8120767
- 35. Russell A. International nutrition surveys: a summary of preliminary dental findings. J Dent Res. 1963;42(1):233–244. doi:10.1177/00220345630420012401
- 36. Yan K, Lin Q, Tang K, et al. Substance P participates in periodontitis by upregulating HIF-1alpha and RANKL/OPG ratio. BMC Oral Health. 2020;20(1):27. doi:10.1186/s12903-020-1017-9
- 37. Timmerman MF, Abbas F, Loos BG. Java project on periodontal diseases: the relationship between vitamin C and the severity of periodontitis. J Clin Periodontol. 2007;34(4):299–304. doi:10.1111/j.1600-051X.2007.01053.x
- 38. Mustafa M, Zarrough A, Bolstad AI, et al. Resolvin D1 protects periodontal ligament. Am J Physiol Cell Physiol. 2013;305(6): C673–C679. doi:10.1152/ajpcell.00242.2012
- 39. Freeland-Graves JH, Lin P-H. Plasma uptake of manganese as affected by oral loads of manganese, calcium, milk, phosphorus, copper, and zinc. J Am Coll Nutr. 1991;10(1):38–43. doi:10.1080/07315724.1991.10718124
- 40. Lee J-H, Shin MS, Kim EJ, Ahn YB, Kim HD. The association of dietary vitamin C intake with periodontitis among Korean adults: results from KNHANES IV. PLoS One. 2017;12(5):e0177074. doi:10.1371/journal.pone.0177074

- 41. Staudte H, Sigusch B, Glockmann E. Grapefruit consumption improves vitamin C status in periodontitis patients. Br Dent J. 2005;199(4):213–217. doi:10.1038/sj.bdj.4812613
- Amaliya A, Laine ML, Delanghe JR, et al. Java project on periodontal diseases: periodontal bone loss in relation to environmental and systemic conditions. J Clin Periodontol. 2015;42(4):325– 332. doi:10.1111/jcpe.12381
- 43. Jacob RA, Omaye ST, Skala JH, Leggott PJ, Rothman DL, Murray PA. Experimental vitamin C depletion and supplementation in young men: nutrient interactions and dental health effects. Ann N Y Acad Sci. 1987;498(1):333–346. doi:10.1111/j.1749-6632.1987. tb23772.x
- 44. Nakamoto T, McCroskey M, Mallek HM. The role of ascorbic acid deficiency in human gingivitis—a new hypothesis. J Theor Biol. 1984;108(2):163–171. doi:10.1016/S0022-5193(84)80063-6
- 45. Al-Zahrani MS. Increased intake of dairy products is related to lower periodontitis prevalence. Journal of periodontology. 2006 Feb;77(2):289-94.
- 46. Garcia MN, Hildebolt CF, Miley DD, Dixon DA, Couture RA, Anderson Spearie CL, Langenwalter EM, Shannon WD, Deych E, Mueller C, Civitelli R. One-year effects of vitamin D and calcium supplementation on chronic periodontitis. Journal of periodontology. 2011 Jan;82(1):25-32.
- 47. Miley DD, Garcia MN, Hildebolt CF, Shannon WD, Couture RA, Anderson Spearie CL, Dixon DA, Langenwalter EM, Mueller C, Civitelli R. Cross-sectional study of vitamin D and calcium supplementation effects on chronic periodontitis. Journal of periodontology. 2009 Sep;80(9):1433-9.
- 48. Meisel P, Schwahn C, Luedemann J, John U, Kroemer HK, Kocher T. Magnesium deficiency is associated with periodontal disease. Journal of dental research. 2005 Oct;84(10):937-41.
- 49. Yamori M, Njelekela M, Mtabaji J, Yamori Y, Bessho K. Hypertension, periodontal disease, and potassium intake in nonsmoking, nondrinker African women on no medication. International journal of hypertension. 2011 Aug 4;2011.
- 50. Oh K, Kim Y, Kweon S, Kim S, Yun S, Park S, Lee YK, Kim Y, Park O, Jeong EK. Korea National Health and Nutrition Examination Survey, 20th anniversary: accomplishments and future directions. Epidemiology and health. 2021;43.
- 51. Pushparani DS, Anandan SN, Theagarayan P. Serum zinc and magnesium concentrations in type 2 diabetes mellitus with periodontitis. Journal of Indian Society of Periodontology. 2014 Mar;18(2):187.
- 52. Oberritter, H., Glatthaar, B., Moser, U. & Schmidt, K. H. (1986) Effect of functional stimulation on ascorbate content in phagocytes under physiological and pathological conditions. *International Archives of Allergy and Applied Immunology* **81**, 46–50.
- 53. Boxer, L. A., Vanderbilt, B., Bonsib, S., Jersild, R., Yang, H. H. & Baehner, R. L. (1979) Enhancement of chemotactic response and microtubule assembly in human leukocytes by ascorbic acid. *Journal of Cellular Physiology* **100**, 119–126.
- 54. Dietrich, T., Joshipura, K. J., Dawson-Hughes, B. & Bischoff-Ferrari, H. A. (2004) Association between serum concentrations of 25-hydroxyvitamin D3 and periodontal disease in the US population. *American Journal of Clinical Nutrition* **80**, 108–113.
- 55. Shah MA, Sankeshwari RM, Ankola AV, Dodamani S, Tendulkar S, Jalihal S, Khot AJ, Varghese AS, Chavan P, Sankeshwari R, Ankola A. Antimicrobial Efficacy of Essential Oils and Their Combination Against Microorganisms Associated With Postradiation Therapy in Patients With Head and Neck Cancer: An In Vitro Study. Cureus. 2023 Jun 21;15(6).
- 56. Dhanasekaran AV, Shah MA, Kumari A, Vb KK. SYNCOPE IN ORAL AND MAXILLOFACIAL SURGERY MADE EASY: A REVIEW.
- 57. CHRONIC ML. CORRELATION BETWEEN SALIVARY MICRONUTRIENT LEVELS IN CHRONIC PERIODONTITIS PATIENTS BEFORE AND AFTER NON-SURGICAL PERIODONTAL THERAPY.

58. The Role of Micronutrients in Periodontal Disease Prevention and Therapy EFP, Dommisch H, Kuzmanova D, Jönsson D, Grant M, Chapple I. Effect of micronutrient malnutrition on periodontal disease and periodontal therapy. Periodontology 2000. 2018 Oct;78(1):129-53.