Journal of Population Therapeutics & Clinical Pharmacology

RESEARCH ARTICLE

DOI: 10.47750/jptcp.2023.30.13.035

Detection of *Escherichia coli* O157:H7 strain in diabetic foot infection patients in Basrah, Iraq

Zainab Mohammed Hussein^{*1}, Lina Abbas Naser^{*2}, Abdulhussein Khudair Marzoq³ ^{1,2}University of Basrah, Iraq, College of Science, Department of Biology/Iraq ³consultant physician / Ministry of health/ Iraq

*Corresponding Author: Zainab Mohammed Hussein, University of Basrah, Iraq, College of Science, Department of Biology/Iraq, Email: 82zainb @gmail.com

Submitted: 24 March 2023; Accepted: 10 April 2023; Published: 13 May 2023

ABSTRACT

Diabetic foot ulcers (DFUs) are defined by the typical triad of neuropathy, ischemia, and infection. The shigatoxin, Enterohemorgic *E. coli*, is considered one of the most dangerous types of toxins caused by a strain of *E. coli* O157:H7 for diabetic foot patients, which is transmitted through contamination with it, causing uremic hemolytic syndrome and renal failure for those with impaired kidney function.

To detect virulence factors, medium-high chrom was used after addition of supplements; serotyping was used; and it was revealed by the molecular method using the specific gene ECVt1.

This study showed a strain on Hi-Chrome medium, and the colonies showed a dark purple color after the addition of its supplement, Novoboicin, and Calcium Tellurite. 16(38.09%) As for serotyping, the study showed a strain after purification on Maconkey sorbitol medium 7 (16.7%). The study revealed a gene, ECVt1, of this strain, 9 (21.43%), which has a size of 637 bp.

Do not use antibiotics for this strain, as they will increase its toxicity and may lead to death.

The chromogenic substrate is broken down by *E. coli* O157:H7 and produces a dark purple to magenta-colored moiety. Samples were cultured on MacConkey sorbitol agar for the purpose of testing them serologically to ensure the appearance of *E. coli*. O157:H7, where the colonies are not sorbitol fermented Genetic detection confirmed the existence of the gene ECVt1 belonging to enterohememorragic *E. coli*, the main cause of this strain O157:H7,

Keywords: shigatoxin, Enterohemorgic E. coli, Hi-Chrome EC 0157:H7, ECVt1

INTRODUCTION

Diabetes foot infection (DFI), a multi-microbial infection of the soft tissues and bones in the lower extremities of diabetes patients, Several factors predispose diabetic patients to developing a DFI. (Pitocco *et al.*, 2019) including an infection, ulceration, neuropathy, vasculopathy, immunopathy, peripheral vascular illnesses, foot biomechanics, and destruction of the deep tissues linked to neurological abnormalities in the lower extremities. (Aruoah, 2021) Moderate and severe infections include those caused by facultative anaerobic Gram-negative microorganisms. The pathogens often have synergistic relationships, such as *E. coli* (Ibrahim, 2018). *E. coli* is considered the most important member of the Enterobacteriaceae family. Some strains of *E. coli* are opportunistic (Gharajalar and Sofiani, 2017; Batt, 2019; Braz *et al.*, 2020). *E. coli* are a genetically diverse group of bacteria that form part of the normal intestinal microflora of humans and animals. They are normally non-pathogenic. However, certain subgroups acquired genes that allowed them to cause extraintestinal or gastrointestinal disease (Hlad *et al.*, 2018)

J Popul Ther Clin Pharmacol Vol 30(13):e346–e353; 13 May 2023. This article is distributed under the terms of the Creative Commons Attribution-Non Commercial 4.0 International License. ©2021 Muslim OT et al. .Both extra-intestinal infections that cause disease, such as urinary tract infections, as well as intestinal infections, including diarrheal disorders, are caused by pathogenic strains. Based on their traits and virulence factors, pathogenic E. coli strains are divided into pathotypes Shiga-Toxin Producing E. coli or Enterohemorrhagic (STEC) Ε. coli (EHEC), Enteropathogenic E. coli (EPEC), Enterotoxigenic E. coli (ETEC), Enteroinvasive E. coli (EIEC), Enteroaggregative E. coli (EAEC), and Diffusely adhering E. coli (DAEC) (Naser, 2015; Yu et al., 2021; Neema, 2022). It is believed that Shiga toxin (Stx) is the main virulence factor of different E. coli. Individuals with little to no fever, severe stomach discomfort, and blood diarrhea (BD), between 5% and 15% of which evolve into a lifethreatening hemolytic uremic syndrome (HUS) connected to ischemic organ damage, (Torti et al., 2021; Kudva and Biernbaum, 2022). E. coliO157:H7 It is the most common type of infection that causes diseases, even if the disease-causing dose is small (Hlad et al., 2018). E. coli strains are capable of causing a wide range of diseases. Shiga toxin-producing E. coli (STEC), one of these pathotypes, refers to strains of E. coli that generate at least one Shiga toxin, a kind of strong cytotoxin (Stx) (Hlad et al., 2018). E. coli that creates STEC, often referred to as Vero toxin-producing Ε. coli (VTEC) andVTEC," is a subgroup of STX genes that are normally acquired by a bacteriophage, which results in coli that express the genes of STX. Of all the newly discovered foodborne bacteria, STEC is the most dangerous. (BD) and HUS are just a few of the serious human disorders that STEC can cause. (Torti et al., 2021) Stx The characteristic thrombotic microangiop- athy triad microangiopathic haemolytic of anemia, thrombocytopenia, and renal impairment (Harkins et al., 2020). Recent studies have classified pathogenic E. coli strains using various recognize surface antibodies to antigens "183 associated with O-groups (lipopolysaccharide) and 53 H-types (flagellar antigen)" (Younis et al., 2021). The "O" and "H" antigens of E. coli strains and lineages are used to categorize them. The "O" (ohne) antigen is a component of the lipopolysaccharide (LPS) embedded in the outer leaflet of the bacteria's outer membrane and is defined serologically and determined by the repeating polysaccharide chains (Torti et al., 2021). The O and H antigens

are most frequently utilized in the serotyping of pathogenic Members of a clone of bacteria that express the same O antigen are referred to as a serogroup. E. coli because they have the best The connection with virulence factors. designation changes to serotype when the serogroup and the H (flagellar) antigen are specified together (Torti et al., 2021). Infections can be contracted by consuming tainted food, untreated or raw water, or even water that has been contaminated with both animal and human feces. Furthermore, direct transmission from one person to another can happen when an asymptomatic carrier has been identified (Al-Wahid, 2018).

MATERIALS AND METHODS

Samples collection:

A total of 42 wounds, ulcers, and amputation swab samples were collected from patients of different ages suffering from diabetic foot infections. The samples were collected from the forefoot, midfoot, and hindfoot from November 2021 to May 2022 in Basrah Al-Sader Teaching Hospital. Wounds, ulcers, and amputations samples were collected from patients admitted to the three main hospitals in Basra and popular clinics. These are: Al-Sader Teaching Hospital, Al-Faeha General Hospital, Al-Mawana General Hospital, and Popular Clinics.

Isolation and Identification :

The primary diagnosis of the isolates appeared when cultured on the differential and selective medium MacConkey agar with crystal violet and Eosin methylene blue agar (EMB). (Naser,2015) The isolates were examined under a microscope. All samples were subjected to the classic biochemical tests (imvic tests) and confirmed by using the Vitek system for negative bacteria. The results were positive, with good, very good, and excellent rates.

Detection of E. coli O157:H7 Uesd hi-chrom E. coli O157:H7

To identify *E. coli* isolated from diabetic foot patients as belonging to the hemorrhagic O157:H7 strain, Hi-chrom *ECO*157:H7 selectivity agar was used for this strain. which appears in two colors Either a light pink mauve or a dark purple magenta Downes (2015),

J Popul Ther Clin Pharmacol Vol 30(13):e346–e353; 13 May 2023.

This article is distributed under the terms of the Creative Commons $\ensuremath{\mathsf{Attribution}}\xspace{\mathsf{Non}}$

Commercial 4.0 International License. ©2021 Muslim OT et al.

IABLE 1. The table (1) shows Cultural Response				
Organism	Inoculum CFU)(Growth	Recovery	Colour of colony
E. coli ATCC 25922	50 -100	none to poor <=10%	<=10%	light pink mauve
E. coli 0157:H7NCTC12900	50 -100	luxurint	>=50%	dark purple magenata

Detection of E. coli O157:H7 Uesd Serotyping of E. coli O157:H7

The serological typing of all positive strains was carried out by slide agglutination with *E. coli* O and H antisera (O157:H7). The determination of 'O' serogroups associated with the cell wall lipopolysaccharides and 'H' serogroups of the flagella has been used to identify and characterize EHEC. as seen in Figure (3).

procedure: (Use, 2020)

1. Non-sorbitol fermenting colonies (NSFC) isolated on sorbitol MacConkey agar (SMAC) are acceptable isolates for testing for *E. coli* O157 :H7

2 .A subculture of NSFC is cultured on blood agar to identify *E. coli*

For each isolate that will be evaluated, put one drop of test latex (green cap) into the test slide well.

3. Put one drop of *E. coli* Control Latex (neutral cap) onto a different test slide in the same

Molecular detection of E.coli O157:H7 strain:

manner

4. Using the supplied plastic stick, remove part of the NSFC from the SMAC plate, and then emulsify it in the *E. coli* O157 Test Latex on the slide.

5. Agglutination should appear after rotating the slide in three planes in a circular motion for up to a minute.

6.If the *E. coli* O157 Test Latex results in agglutination and the Control Latex is negative, proceed to step 7 by striking the isolate onto a blood agar plate and incubating it overnight.

7. if agglutination is caused by both the test latex and the control latex. Throw away the test slide after reading.

8. After a planning process on a blood agar plate for 24 hours, work to take a drop of latex with a blue cover of the virulence factor H7. Then do the agglutination test. This step does not require a latex control.

TABLE 2. Primers used in the study

Primer Name	Sequence (5 to 3)	Product size (bp)	Reference	
<i>EC-vt1-2-</i> F	CGT CTT TAC TGA TGA TTG ATA GTG GC	637	(Oh et al., 2014)	
<i>EC-vt1-2-</i> R	CGC GAT GCA TGA TGA TGA C	637		

To investigate the gene responsible for the secretion of shiga toxin, polymerase chain reaction (PCR) using ECVt1 gene-specific primer sets was used for the detection of some virulence factors. primers mentioned in Table 2 were used for the detection of some virulence factors. as seen in Figure 5.

Reagent

TABLE 3. Reagent(50µl) of PCR for amplifying	
gene ECVt/Pioneer (master mix)	

<u>5</u>	gene LC VIII Ioneer (master mix)			
	No	Reagent	Volume	
	1	Genomic DNA	5 µl	
	2	Fowered primer	2 µl	
	3	Revears primer	2 µl	
	4	master mix	25 µl	
	5	N.F.W	16 µl	
	6	Total volume	50	

TABLE 4. PCR condition of *ECVt1* gene amplification

	1		
Step	Tim	Temprature	No. of cycle
Inatial denaturation	95.c	7min	1
denaturation	95.c	30sec	35
Annealing	58.c	1min	35
Extenation	72.c	1min	35
Final extenation	72.c	10min	1

Antibiotic sensitivity:

Clinically, the use of antibiotics is not advised due to the activation of the lytic cycle, which might result in the release of toxins. Studies have shown that fluoroquinolones increase the synthesis of Stx2 in STEC O157:H7. (**Torti** *et al.*, **2021**).

J Popul Ther Clin Pharmacol Vol 30(13):e346–e353; 13 May 2023. This article is distributed under the terms of the Creative Commons Attribution-Non Commercial 4.0 International License. ©2021 Muslim OT et al.

RESULTS

Identification of E. coli

The results of the culture indicated pink-dry colonies on MacConkey agar, with bile salt precipitating around the colonies concerning *E. coli*. While cultured on EMB selective media, the cells revealed a green color when examined under a microscope. The bacteria cells appear as short, red, and not spore-forming rods. Test results on the Vitek@2 System revealed the diagnosis of a strain of *E. coli* O157

Detection of bacterial E.coli O157:H7

The strain *E. coli* O157:H7 was isolated from patients with diabetic feet using Hi-Chrome *EC*O157:H7 agar, which contains sorbitol and a chromogenic combination. The colonies are light pink mauve and dark purple magenta. The turquoise color indicates the presence of *E. coli* only and not the strain O157:H7. Figure (2) shows the color of the pure and mixed colonies Figure (1).

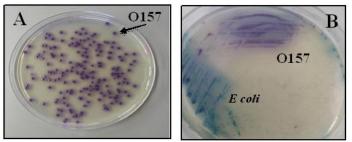


FIGURE 1. A Shown *E. coli* O157:H7 on Hi-Chromo *EC*O157:H 7 agar and B *E.coli* MixedO157:H 7 and NO O157:H 7 on Hi-Chromo *ECO*157:H 7

serotyping E.coli O157:H7

After confirming the pathological strain that appeared on the medium of the chromogenic agar, it was cultivated on the selective culture

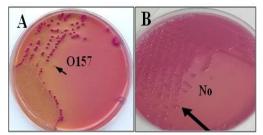


FIGURE 2. shown A. *E.coli* O157:H7 (NSFC) and B. *E.coli* No O157:H7 (SFMAC).

Then a non-fermented lactose colony is taken and cultured on the blood agar in order to test it serologically to ensure the presence of the virulence factor H7 **Figure(3**)

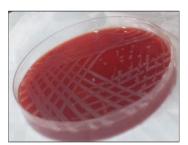
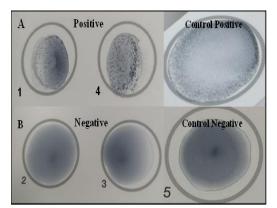



FIGURE 3. Shown *E.coli* O157:H7 on the blood agar

medium MacConkey with sorbitol agar, and the appearance of the non-ferment sorbitol colonies (NFSC) was confirmed. **Figure (2)** shows sorbitol ferment colonies (SFC) and (NFSC).

A positive response is shown by an apparent agglutination in a clear fluid, whereas a negative response is indicated by a homogeneous, milky turbidity. Seven isolates out of 16 isolates grown on HiChrome medium gave a positive result for serotyping 7 (43.75%). The **figure (4)** illustrates this agglutination (O157:H7).

FIGURE 4. shown Slide Agglutination *E.coli* O157 H7A. positive and B. negative

The PCR technique was used to amplify the gene EHEC ECVt1 that detects the virulence factor of *E. coli.* Through genetic detection The ECVT1 responsible for Shiga toxin secretion was

J Popul Ther Clin Pharmacol Vol 30(13):e346–e353; 13 May 2023. This article is distributed under the terms of the Creative Commons Attribution-Non Commercial 4.0 International License. ©2021 Muslim OT et al. investigated by the PCR technique of EHEC, the pathological strain of diabetic foot patients was identified by Hi-Chrom ECO157:H7 agar, and the O157:H7 strain was confirmed by serotyping. Figure6 The table (5) shows the detection of nine isolates of EHEC producing Shiga toxin out of 42 isolates of *E. coli* **9** (**21.43%**). Then came the

detection of 16 isolates of the strain O157:H7 on Hi-Chrome media out of 42 isolates of *E. coli* **16** (**38.09%**). These isolates were confirmed by serotyping seven isolates of the O157:H7 strain out of the 16 isolates of the O157:H7 strain tested on Hi-Chrome medium **7** (**16.7%**).

TABLE 5. Isolation of EHEC from the samples of the diabetic foot ulcer patients

EHEC No. (%)			Total No. of sample tested
EHEC ECVt1	Hi-Chrom ECO157:H7 agar	serotyping E.coli O157:H7	
9(21.43 %)	16 (38.09%)	7 (16.7%)	42

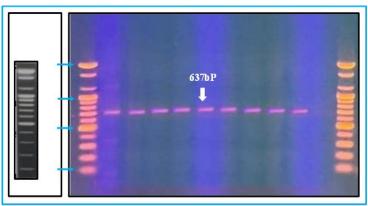


FIGURE 5. shows PCR-amplified EHEC *ECVt1* of 1% agarose gel electrophoresis, *E. coli* Approximately the size . (637bp) In comparison to a DNA lader, L1-L2 100-2000 bp isolate No1-9*Ecoli* Temperatures 58°C, 70V, and 80 min

DISCUSSION

Ecoli was diagnosed based on the differential medium, MacConkey agar. Which contains crystal violet dye and yellow salts that inhibit the growth of gram-positive bacteria. Identical results with Albadri (2021), while EMB appeared green with a metallic sheen. Identical outcomes were found in Naser *et al.* (2015) and Antony *et al.* (2016).

The Gram-negative identification card was utilized in the current study to identify Gramnegative bacteria, and the Vitek@2 System test was employed to support and corroborate the results of the biochemical identification test in addition to diagnosing a strain of *E. coli* O157:H7. This study indicates excellent results. Hano (2019), Identical with Neema (2022).

colonies appeared in a turquoise color for *E. coli* without adding any supplements Due to the bacteria's production of the enzyme glucuronidase, *E. coli* absorbs the chromogenic substrate p-nitrophenyl-p-D-glucopyranosiduronic acid (PNPG) from the medium. The intracellular glucuronidase enzyme then breaks the bond between the chromophore and the glucuronide, releasing the chromophore,

and resulting in the formation of a colony that is blue or green in color. chromogenic combination, which are used in the medium in place of lactose and indicator dyes. So, in particular and selectively, the chromaginous substrate was cleaved from the chromogenic substrate, E. coli O157:H7, and produced a dark purple to magenta-. Colonies of E. coli can range in color from pale pink to purple. This study is supported by a study Abdul Razzag *et al.*, 2021). There are other reasons for the efficiency of the medium. Downes (2015), (1) The medium becomes selective when HiCrome EC O157:H7 Selective Supplement (FD187) is added (2). Aeromonas and Providencia species are specifically inhibited by potassium tellurite. Gram-positive bacteria are prevented from growing by novobiocin. diagnosis of E. coli O157:H7. Hichrom agar is considered a suitable medium for isolation and identification of E. coli O157:H7, as confirmed in a study by Jenkins et al. (2020) compared to MacConkey and EMB agar, as Hichrom medium contains sorbitol and a chromogenic mixture of lactose and indicator instead dyes. respectively. The chromogenic agent Xglucuronide used in this medium helped in the

J Popul Ther Clin Pharmacol Vol 30(13):e346–e353; 13 May 2023. This article is distributed under the terms of the Creative Commons Attribution-Non Commercial 4.0 International License. ©2021 Muslim OT et al.

detection of the glucuronidase activity of *E. coli* cells that absorb the X-glucuronide. The released chromophore resulted in light pink to mauve-colored colonies. recorded serotype results: 7 out of 42 isolates (16.7%) (O157:H7) While in another Al-Shatty (2016) study. recorded results for the same serotype (O157:H7) but isolated from fresh beef contaminated with *E. coli*, an estimated 5% out of 540 samples. length of his search in the city of Basra.

In the present test, samples were cultured on MacConkey sorbitol agar for the purpose of testing them serologically to ensure the appearance of E. coli. O157:H7, whereas in the study Gambush et al., (2022), To detect O157:H7 and increase E. coli selectivity, tellurite potassium, cefixime, and vancomycin were also added to the SMAC agar. As a result of mutations, some O157:H7 strains lost their ability to ferment sorbitol, including their capacity to produce -glucuronidase. However, a subgroup of O157:H7 that had the ability to ferment sorbitol lost its ability to move, creating an O157: H-lineage. The technique most commonly used in clinical laboratories when samples identified as O157:H7 are examined is O-antigen determination, which was done in the current study by latex agglutination. When mixed with bacterial growth, these latex granules are coated with antibodies against the O157 antigen, and the O157 STEC bacteria adhere to the latex particle to produce visible agglutination, which indicates a positive result. This was confirmed by_ the previous study by Mohseni (2022).

Serotyping was one of the fundamental methods used in the 1930s to distinguish between various species and subspecies of bacteria based on antigen-antibody responses. Even more sensitive phage typing techniques were later established in the 1950s. These methods have always been used to determine the origin of infections (Uelze *et al.*, 2020).

Genetic detection of the virulence factor The ECVT1 is responsible for Shiga toxin secretion by the PCR technique, which is considered one of the most dangerous and life-threatening strains of hemorrhagic *E. coli* (in addition to the previous methods that were mentioned for the strain O157:H7, whereas another study found that EHEC O157:H7 released the Shiga toxin after taking antibiotics but not subtype O104:H4 (Corogeanu *et al.*, 2012) and another study by Zhang *et al.*, 2021). The death rate in the study (2.38%) resulting from uremic hemolytic

syndrome after renal failure occurred in the end stage of the disease, and the treatment did not work to reduce the severity of the disease but increased its complexity. This is consistent with the study by Harkins et al. (2020) (3%). The death rate increases as the treatment increases toxicity in the blood due to this strain. This is consistent with the study (Mody et al., 2015; Harkins *et al.*, 2020). Rapid detection, identification, and distinction of foodborne pathogens have all been accomplished using polymerase chain reaction techniques. They have been applied to the detection and diagnosis of infectious diseases as well as the diagnosis of hereditary and infectious disorders, genetic fingerprint identification, and DNA cloning. In order to identify common bacterial strains that occur in viable but uncultivable conditions and are frequently missed by the traditional method (Adzitey et al., 2013). Since phenotypic methods are not sufficient for identifying bacterial species, determining the phenotype of these bacterial species may be difficult or impossible in microbiology laboratories (Clark et al., 2013; Hanan, 2022).

CONCLUSIONS

This is a summary of the results of a study: appearance of ECVT1, belonging to the bacterial species enter hemorrhagic *E. coli*, in patients with diabetic foot infection, which appeared in Basra hospitals and some popular clinics. The emergence of a strain O157:H7

Acknowledgments: The College of Science, Biology Department, University of Basrah, Iraq, provided funding for this research. There are no conflicting interests, according to the author.

REFERENCES

- 1. Abd Al-Wahid.Z. H. (2018). Genetic Study of environmental and pathogenic bacterial strains from both water sources and diarrheal patients in Basrah. A Thesis Submitted to the Council of College of Science, University of Basrah in Partial Fulfillment of the Requirements for the Master Degree.
- Abdulrazzaq, K. M., Oain, M. S., Majeed, H. M., & Alhyani, O. H. (2021). Molecular detection of rfbO157, shiga toxins and hemolysin genes for Escherichia coli O157: H7 from canine feces in Tikrit and Mosul cities, Iraq. Iraqi Journal of Veterinary Sciences, 35(2), 325–329. https://doi.org/10.33899/ijvs.2020.126831.1392.
- 3. Adzitey, F., Huda, N., & Ali, G. R. R. (2013).

J Popul Ther Clin Pharmacol Vol 30(13):e346–e353; 13 May 2023.

Molecular techniques for detecting and typing of bacteria, advantages and application to foodborne pathogens isolated from ducks. 3 Biotech, 3(2), 97–107. https://doi.org/10.1007/s13205-012-0074-4

- Albadri, A. T. J. (2021). No TitleCharacterization and Molecular study to detect Multidrug Resistance Bacteria Isolated from Patients with Diabetic Foot Ulcers in Wasit Province. https://doi.org/DOI: 10.13140/RG.2.2.12971.57121
- AL-Shatty, S. sabih george N. A. A.-A. H. S. M. H. (2016). Isolation and identification of *E.coli* o157:H7 bacteria and study the number of total coliform and *E.coli* in fresh beef meat in Basra city. Dhi Qar University Journal, 1, 1–4.
- Antony A.C., Paul M.K., Silvester R., Aneesa P.A., Suresh K., Divya P.S., Paul S., Fathima P.A., Abdulla M.H. (2016). Comparative evaluation of EMB agar and Hicrome E. coli agar for differentiation of green metallic sheen producing non E. coli and typical E. coli colonies from food and environmen- tal samples. Journal of Pure and Applied Microbiology. 10: 2863-2870. [DOI: 10.22207/JPAM.10.4.48]
- 7. Aruoah, M. K. (2021). The role of Zinc and Vitamin C in the improvement of some biochemical parameters in Diabetic foot ulcer patients. In Ministry of Higher Education and Scientific Research University of Baghdad College of Science Department of Biology. A Thesis Submitted to Council of College of Science, University of Baghdad, in Partial Fulfilment of the Requirements for the Degree of Master of Science in Biology / Zoology.
- Batt, C. A. (2019). Escherichia Coli: Escherichia coli. *Encyclopedia of Food Microbiology: Second Edition*, 688–694. https://doi.org/10.1016/B978-0-12-384730-0.00100-
- Braz, V. S., Melchior, K., & Moreira, C. G. (2020). Escherichia coli as a Multifaceted Pathogenic and Versatile Bacterium. *Frontiers in Cellular and Infection Microbiology*, 10(December), 1–9. https://doi.org/10.3389/fcimb.2020.548492.
- Clark, A. E., Kaleta, E. J., Arora, A., & Wolk, D. M. (2013). Matrixassisted laser desorption ionization-time of flight mass spectrometry: a fundamental shift in the routine practice of clinical microbiology. Clinical microbiology reviews, 26(3), 547-603.
- Corogeanu D, Willmes R, Wolke M, Plum G, Utermöhlen O, Krönke M.(2012) Therapeutic concentrations of antibiotics inhibit Shiga toxin release from enterohemorrhagic *E. coli* O104:H4 from the 2011 German outbreak. BMC Microbiol. 12:160
- Divya, P. S., Paul, S., Fathima, P. A., & Abdulla, M. H. (2016). Comparative evaluation of EMB agar and hicrome *E. coli* agar for differentiation

of green metallic sheen producing non *E. coli* and typical *E. Coli* colonies from food and environmental samples. Journal of Pure and Applied Microbiology, 10(4), 2863-2870.

- Downes F. P. and Ito K., (Ed.), 2001, CompendiumRappaport F. and Henigh E., 1952, J. (2015). HiCrome EC O157: H7 Agar. *American Public Health Association*,.
- Gambushe, S. M., Zishiri, O. T., & El Zowalaty, M. E. (2022). Review of Escherichia coli O157:H7 Prevalence, Pathogenicity, Heavy Metal and Antimicrobial Resistance, African Perspective. Infection and Drug Resistance, 15(June), 4645–4673. https://doi.org/10.2147/IDR.S365269
- Gharajalar, S. N., & Sofiani, V. H. (2017). Patterns of efflux pump genes among tetracycline resistance uropathogenic Escherichia coli isolates obtained from human urinary infections. *Jundishapur Journal of Microbiology*, 10(2). https://doi.org/10.5812/jjm.40884
- 16. Hanan A. A.(2022). Molecular Screening of Emergence Resistant Enterococci species among Patients in Al-Basrah, Iraq . A Thesis submitted to The College of Science, University of Basrah In Partial Fulfillment of the Requirements for Degree of Doctor of Philosophy in Biology/ Medical Microbiology.
- 17. Hano, B. K. (2019). Phenotypic and genotypic characterization of extended spectrum-Lactamase producing by clinical Escherichia coli isolation from Baghdad city thesis submitted to the college council of health and medical technology as A partial Fulfilment of the Require Middle Technical University College of Health and Medical Technology/Baghdad.
- Harkins, V. J., McAllister, D. A., & Reynolds, B. C. (2020). Shiga-Toxin E. coli Hemolytic Uremic Syndrome: Review of Management and Longterm Outcome. Current Pediatrics Reports, 8(1), 16–25. https://doi.org/10.1007/s40124-020-00208-7.
- hlad, P., Awati, B., Ramesh, B. K., Patil, N. A., Jaganath Rao, P. K., Tikare, V., Mallinath, K. C., Kharate, A., Suryakanth, P., Paramesh, N. B., & Revappayya, M. (2018). Influence of Age, Sex and Season on the Occurrence of Escherichia coli O157: H7 in Sheep and Goats of Hyderabad-Karnataka Region, India. *International Journal of Current Microbiology and Applied Sciences*, 7(06), 2896–2904. https://doi.org/10.20546/ijcmas.2018.706.341
- Ibrahim, R. A. J. (2018). Study of Some Virulence Factors of Staphylococcus species Isolated from Patients with Diabetic Foot Infections in Basrah City. Ministry of Higher Education and Scientific Research University of Basrah
- 21. Jenkins, C., Perry, N. T., Godbole, G., & Gharbia, S. (2020). Evaluation of chromogenic

J Popul Ther Clin Pharmacol Vol 30(13):e346-e353; 13 May 2023.

This article is distributed under the terms of the Creative Commons Attribution-Non

Commercial 4.0 International License. ©2021 Muslim OT et al.

selective agar (CHROMagar STEC) for the direct detection of Shiga toxin- - producing *Escherichia coli* from faecal specimens. 487–491. https://doi.org/10.1099/jmm.0.001136.

- 22. Kudva, I. T., & Biernbaum, E. N, (2022). from Shiga Toxins. 1–29. https://doi.org/10.3390/toxins14010062
- 23. Mody RK, Gu W, Griffin PM, Jones TF, Rounds J, Shiferaw B,(2015) et al. Post diarrheal hemolytic uremic syndrome in United States children: clinical Spectrum and predictors of inhospital death. J Pediatr. 166:1022–9.
- 24. Mohseni, M., Djawadi, B., & Khazaei, N. (2022). Escherichia coli O157:H7 and Its Effect on Human Health. In (Ed.), Escherichia coli - Old and New Insights [Working Title]. Intech Open. https://doi.org/10.5772/intechopen.101825.
- Naser, L. A., Mahdi, K. H., & Almazini, M. A. (2015). Determination the Effect of ST Enterotoxin Isolated from Enterotoxigenic *Escherichia coli* Strains on Colon Cancer from Diarrhea Patients in Basra Hospitals. International Journal of Innovative Research in Science, Engineering and Technology, 5, 2742– 2756.
- 26. Neema .A. A. (2022). Molecular Investigation of *Escherichia coli* From Cancer Patients with Urinary Tract Infections in Basrah A Thesis Submitted to the Council of the College of Science, University of Basrah in Partial Fulfilment of the Requirements for the Degree of Master of Science (MSc) in Biology Medical Bacteriology.
- Pitocco, D., Spanu, T., Di Leo, M., Vitiello, R., Rizzi, A., Tartaglione, L., Fiori, B., Caputo, S., Tinelli, G., Zaccardi, F., Flex, A., Galli, M., Pontecorvi, A., & Sanguinetti, M. (2019). Diabetic foot infections: A comprehensive overview. European Review for Medical and Pharmacological Sciences, 23(2), 26–37. https://doi.org/10.26355/EURREV_201904_1747 1

- Torti, J. F., Cuervo, P., Nardello, A., & Pizarro, M. (2021). Epidemiology and Characterization of Shiga Toxin-Producing Escherichia Coli of Hemolytic Uremic Syndrome in Argentina. 13(8). https://doi.org/10.7759/cureus.17213.
- 29. Uelze, L., Grützke, J., Borowiak, M., Hammerl, J. A., Juraschek, K., Deneke, C., Tausch, S. H., & Malorny, B. (2020). Typing methods based on whole genome sequencing data. One Health Outlook, 2(1), 1–19. https://doi.org/10.1186/s42522-020-0010-1.
- 30. Use, I. (2020). RIM *E* . *coli* O157 : H7 Latex Test. *Remel Inc.*, 1–2.
- Younis, W., Hassan, S., & Mohamed, H. M. A. (2021). Molecular characterization of Escherichia coli isolated from milk samples with regard to virulence factors and antibiotic resistance. Veterinary World, 14(9), 2410–2418. https://doi.org/10.14202/vetworld.2021.2410-2418.
- 32. Yu, D., Banting, G., & Neumann, N. F. (2021). A review of the taxonomy, genetics, and biology of the genus escherichia and the type species escherichia coli. *Canadian Journal of Microbiology*, 67(8), 553–571. https://doi.org/10.1139/cjm-2020-0508
- 33. Zhang, L., Ni, C., Xu, W., Dai, T.and Yang, D. (2016) Intramacrophage Infection.