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ABSTRACT 

For therapy and monitoring, it is crucial to provide prognostic information at the time of cancer 

diagnosis. Even while factors including cancer staging, histopathological evaluation, genetic 

characteristics, and clinical variables might offer helpful prognostic clues, risk stratification still has 

to be improved. All these data generate defined patterns and those patterns can be examined with the 

help of Machine Learning and Deep Learning. The most promising algorithm for this use case is 

artificial neural networks. Decision trees might be used to the best extent as they provide an adequate 

balance of speed and accuracy. An ideal approach would be through the effective combination of ANN 

and Random Forests. Ensembling models would also be able to boost the performance of the system. 

The metrics and scores for the project must be in-scope of the development and at the same time 

extendable. 
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                      INTRODUCTION 

Prognostic information plays a crucial role in 

oncology clinical management decisions, 

including treatment and monitoring. The widely 

used "TNM" cancer staging method by the 

American Joint Committee on Cancer  

(AJCC) assesses primary tumor size/extent (T), 

lymph node metastasis (N), and the absence of 

distant metastases (M), and is commonly 

utilized for this purpose. The TNM staging 

approach has been investigated and is effective, 

but there is still potential for improvement when 

 it comes to various circumstances and data, such 

as clinical variables [1,2], genetic data [3,4], 

histomorphologic data, etc. The development of 

forecasting techniques that take into account 

features such as tumor grade is underway [5]. 

This is because tumor histopathology can use 

computer-assisted image analysis to discover 

intricate and potentially novel tumor traits that 

are important for patient survival, thus enhancing 

patient outcome prediction. Deep learning has 

recently been demonstrated to be extremely 

accurate at object recognition [6] and disease 

diagnosis from medical images [7,8].
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Deep learning models have been shown in earlier 

studies to perform equally well as human 

specialists in pathology on diagnostic tasks like 

tumor detection and histological grading [8–10]. 

Deep learning-based approaches offer a 

significant advantage over earlier methods that 

rely on manually constructed features, such as 

core size/shape, as they do not require any prior 

assumptions or a large number of well-known 

characteristics. These approaches have the ability 

to automatically learn predictive features without 

relying on a predefined set of variables. 

However, a limitation of deep learning is that it 

often requires large annotated datasets to 

effectively train the models. In the context of 

histopathology, these models are commonly 

trained on millions of small image fields 

extracted from digitized whole-slide images 

(WSI) of pathology slides, which are annotated 

with specific features of interest to pathologists. 

These photos have thorough handwritten 

annotations that identify particular features of 

interest to pathologists. The use of expert input 

has two significant disadvantages. First off, these 

annotations are time-consuming for specialists, 

taking hundreds to thousands of hours to 

complete each relevant predictive assignment. 

This constrains our capacity to quickly expand to 

new applications, such as various malignancies 

and histological features. Examples of these 

annotations include identifying the locations of 

metastatic tumors and designating the correct 

tumor grade for each region (such as a gland) 

within the sample [8–10]. The generated image 

patches for each category of interest can then be 

made using these annotated regions. Second, 

annotation directly enforces the correlation 

between newly acquired morphological 

characteristics and recognized annotated 

patterns. This can be particularly challenging 

when prognostic labels are currently unknown or 

there is a desire to learn new prognostic features. 

It focuses on direct learning of morphological 

features relevant to survival without relying on 

expert commentary on subjects or areas of 

interest. Such an approach gives the machine 

learning model one "global" tag per slide or case. 

For example B. Sample mutational status or 

patient clinical result, for instance. Due to the 

scale of these pictures (about 100,000 by 100,000 

pixels at maximum resolution) and the fact that 

survival-related morphological features can 

theoretically appear anywhere in WSI, it is 

difficult to predict clinical outcomes using WSI. 

It's because we believe it to be achievable. The 

fabric displayed is a very challenging challenge. 

A challenging 'weakly supervised' learning 

problem is created by the large amount of visual 

data, morphological variation, and unidentified 

patterns of discrimination.  

The Cancer Genome Atlas (TCGA), the biggest 

publicly accessible database to our knowledge of 

digitized WSIs combined with clinical and 

genetic information, has been the source of data 

for a number of earlier studies employing 

machine learning and WSIs to solve the survival 

prediction challenge [11–17]. These earlier 

studies focused on learning known histologic 

features [17], employed feature-engineering 

techniques [13,16], made use of annotated 

regions of interest [12,18,19], used feature-

engineering approaches, and/or created models 

that directly predict survival for a specific cancer 

type. By creating an end-to-end deep learning 

system (DLS) to predict patient survival directly 

across a range of cancer types and training it on 

whole-slide histopathology pictures without the 

use of expert annotations or known elements of 

interest, we expand on and extend earlier work. 

We evaluate a convolutional neural network that 

is directly optimized to extract prognostic 

characteristics from raw image data, an image 

subsampling technique, and multiple loss 

functions to solve the issue of right-censored 

patient outcomes. 

For 10 cancer types from the TCGA, we assessed 

our DLS's capacity to enhance risk stratification 

in comparison to the baseline data of TNM stage, 

age, and sex. For several cancer types, we saw 

enhanced risk stratification based on model 

predictions, but it was difficult to assess effect 

sizes due to the TCGA's sparse case and clinical 

event data (350–1000 cases and 60–300 

occurrences per cancer type). The findings 

presented here demonstrate the viability of 

creating low-supervision deep learning models to 

predict patient prognosis from whole-slide 

images across a variety of cancer types, but more 

study is required to fully understand and support 

the potential of these deep learning applications. 
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Proposed system architecture 

We have used artificial neural networks and 

random forest algorithms to a great extent along 

with XGBoost algorithm.  

 

Artificial Neural Networks (ANN) 

At least three interconnected layers make up an 

artificial neural network. Neurons in the input 

layer make up the first layer. These neurons 

communicate with lower layers, which then 

communicate with the terminal output layer with 

the final output data. 

All internal layers are concealed and created by 

entities that convert the information that is passed 

from layer to layer in an adaptive manner. The 

ability of each layer to serve as both an input 

layer and an output layer enables the ANN to 

comprehend increasingly intricate objects. These 

deeper levels are referred to as neural layers 

collectively. 

By allocating weights to the acquired data in 

accordance with the underlying architecture of 

the ANN, neural layer units attempt to learn 

about the data. These rules enable the unit to 

generate a transformed outcome and deliver it as 

the output for the following layer. 

Backpropagation, a technique used by another 

learning rule set, enables the ANN to modify its 

output results in order to correct for faults. Every 

time an output during the supervised training 

phase is labelled as erroneous, backpropagation 

sends data backward. According to the amount of 

mistake each weight accounts for, it is updated. 

To account for the discrepancy between the 

expected and actual results, we use this 

inaccuracy to modify the unit connection weights 

of the ANN. ANNs "learn" how to reduce the 

likelihood of mistakes and undesired outcomes 

over time. 

 

Random Forest Algorithm 

Random Forest is a widely used machine learning 

algorithm that falls under the category of 

supervised learning. It can be applied to various 

machine learning problems, including 

classification and regression tasks. The key 

concept behind Random Forest is ensemble 

learning, which involves combining multiple 

classifiers to tackle challenging problems and 

improve model performance. 

Random Forest works by constructing a 

collection of decision trees, each trained on a 

different subset of the input dataset. These 

decision trees are then used to make predictions, 

and their results are averaged to obtain the final 

predicted outcome. This ensemble approach 

helps to improve the accuracy and robustness of 

the model by reducing the risk of overfitting and 

increasing the generalization capability. 

In classification tasks, Random Forest can predict 

the class labels of input samples based on the 

majority vote of the decision trees, while in 

regression tasks, it can estimate the numerical 

values based on the average prediction of the 

decision trees. Random Forest is known for its 

ability to handle high-dimensional data, noisy 

datasets, and complex interactions among 

variables, making it a popular choice in many 

machine learning applications. 

 

XGBoost 

XGBoost, short for Extreme Gradient Boosting, 

is a distributed gradient boosting library that has 

been specifically optimized for fast and scalable 

machine learning model training. It is an 

ensemble learning technique that combines the 

predictions of multiple weak models to create a 

stronger prediction. XGBoost has gained 

widespread popularity due to its ability to handle 

large datasets and deliver state-of-the-art 

performance in various machine learning tasks 

such as classification and regression. 

One of the key features of XGBoost is its 

effective handling of missing values, which 

allows it to handle real-world data with missing 

values without requiring extensive pre-

processing. This makes it a practical choice for 

dealing with real-world datasets that often 

contain missing information. 

Another notable characteristic of XGBoost is its 

integrated parallel processing capability, which 

enables it to train models on large datasets 

quickly. This makes it well-suited for big data 

scenarios where computational efficiency is 

crucial. 
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Overall, XGBoost has become a popular choice 

among machine learning practitioners and 

researchers due to its ability to handle large 

datasets, handle missing values effectively, and 

deliver high performance in various machine 

learning tasks, making it a powerful tool in the 

field of machine learning. 

 

Decision Tree Algorithm 

A decision tree is a supervised learning method 

commonly used for solving both classification 

and regression problems. It is a tree-structured 

classifier, where internal nodes represent features 

of the dataset, branches represent the decision-

making process, and each leaf node represents 

the classification or regression result. 

There are two types of nodes in a decision tree: 

decision nodes and leaf nodes. Decision nodes 

are used to make decisions and have multiple 

branches, while leaf nodes represent the final 

results of the decisions and do not have any 

further branches. 

The features of the given dataset are used to 

perform tests or make decisions at the decision 

nodes, leading to different branches and 

ultimately reaching the leaf nodes that provide 

the classification or regression results. The 

decision tree can be visualized as a graphical 

representation of all possible paths to a decision 

or solution based on predefined conditions. 

The name "decision tree" comes from its tree-like 

structure, starting from the root node and 

branching out to subsequent nodes, resembling 

the branches of a tree. Decision trees are widely 

used in machine learning and data mining due to 

their interpretability, ease of use, and ability to 

handle both categorical and numerical data. 

 

FIG 1: Decision Tree for Cancer Prediction 

METHODOLOGY 

Hematoxylin and eosin (H&E) stained specimens 

with digitized full-slide photos can be seen on the 

Genomic Data Commons Data Portal 

(http://gdc.cancer.gov) thanks to TCGA [20]. 

Images from frozen specimens as well as 

formalin-fixed paraffin-embedded (FFPE) 

diagnostic slide images were included. Early 

research and variations in the proportion of FFPE 

pictures available for various cancer types (i.e., 

TCGA studies) led to the adoption of cryo-WSI 

and FFPE as subject-level training and prediction 

methods for each patient. There were 1–10 slides 

in each case (median: 2). Clinical information, 

including an approximation of disease-specific 

survival, was sourced from Genomic Data 

Commons and the TCGA Pan-Cancer Clinical 

Data Resource [21]. We chose the 10 studies with 

the highest number of patients and survival 

events from among the TCGA trials with 

available cancer-stage data. Only serous 

cystadenocarcinoma (OV) of the ovary was 

staged clinically; pathological staging data were 

not available but were included anyway due to a 

large number of occurrences noted. Cutaneous 

melanoma (SKCM) was disregarded because it 

was not restricted to initial tumors that had not 

been treated [14, 22]. Thyroid cancer (THCA) 

was ruled out because it manifested in only 14 out 

of 479 instances. Only instances lacking disease-

specific survival were omitted from model 

creation (training and adjustment), whereas cases 

with missing illness stage, age, sex, or disease-

specific survival data were excluded from 

evaluation. Comparison of the values observed 

and expected cancer prognosis. 

 

FIG 2: Predicted vs Observed values Cancer 

Prediction 
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Multiple convolutional neural networks (CNN) 

modules with shared weights and an average 

pooling layer that combines the visual 

information calculated by these modules make up 

the core components of our deep learning system, 

or DLS. (Fig. 1). Our CNN has layers of depth 

wise separable convolutional layers, which was 

similar to the CNN design used by MobileNet 

[23]. By using a random grid search, the number 

of slices and slice size were matched in each 

research (see S2 table and S1 method). We 

selected this architecture family because it has 

fewer parameters than other cutting-edge CNN 

architectures, accelerates training, and lowers the 

possibility of overfitting. Each CNN module used 

a different set of randomly chosen image spots 

from the slide as input, so that if numerous 

locations were sampled, at least one was likely to 

influence the outcome. In particular, the 

likelihood of n patches not sampling an 

informative patch drops exponentially with n if 

the frequency of informative patches on a slide is 

p.  

Even for modest levels of n, (1-p)n decreases to 

zero. In light of the weak marker nature of 

survival prediction in huge images and the 

unknown locations of information regions within 

an image or image set, our approach overcomes 

this issue. Of course, this method can be 

expanded to include numerous slides for each 

situation. To further guarantee that informative 

patches were chosen across training iterations, n 

patches were randomly selected for each training 

iteration.  

To train the DLS, we experimented with three 

distinct loss functions. The truncated cross-

entropy described below, which is used for 

training the final model, has been found through 

preliminary trials (tested with melody splitting) 

to produce the best results. 

On Cox's partial probability, the first-loss 

function under test was built [24]. In addition to 

being used to train neural networks, it may also 

be modified to fit the Cox proportional hazards 

model: 

   
For the i-th example, Ti represents the time of the 

incident or the time of the most recent follow-up 

examination, Oi the index variable for whether 

the event was observed, Xi the whole set of slide 

images, and f(Xi) the DLS risk score. To address 

bound event times in our approach, we adopted 

Breslow's [25] estimate. The loss of specific 

examples is, in theory, a function of every case in 

the training data. Instead of analyzing the whole 

training set, we evaluated small batches (n 128) 

of samples in order to approximation the loss at 

each optimization step. The exponential lower 

bound of the coincidence index served as the 

second loss function [26]. A typical performance 

indicator for survival models is the concordance 

index, which measures how likely it is for a 

randomly chosen pair of subjects to be 

appropriately ranked by the model with regard to 

event time. Raykar et al. [27] provided the 

following differential lower bound that can be 

used for model optimization despite the 

coincidence index itself not being differentiable. 

 

 
If Tj > Ti and E is the collection of pairs of 

occurrences (i,j) where the i-th event is observed. 

We approximate this lower bound on the 

coincidence index at each phase of the 

optimization process, analogous to Cox partial 

probabilities. An illustration of using a short 

batch (n 128) as opposed to the whole training 

data set. In order to train survival prediction 

models using right-censored data, the final loss 

function, censored cross-entropy, is an extension 

of the regular cross-entropy loss used for 

classification models. By discretizing time into 

intervals and training a model to predict discrete 

time intervals in which events occur rather than 

continuous event times or risk scores Did, 

survival prediction can be modelled as a 

classification problem as opposed to a regression 

or ranking problem.  

The standard cross-entropy for the observed 

event example was determined. However, it is 

unclear when the events in the censored example 

take place. In order to maximize the log-

likelihood that the event occurred during or after 

the censoring interval, we employ the knowledge 

that the event did not occur prior to the censoring 
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time.  This is how the whole loss function may be 

expressed: 

 

 

FIG 3: Algorithmic performance for Cancer 

Prediction 

 

FIG 4: Correlation Heat map for Cancer 

Prediction 

 

RESULTS AND DISCUSSION 

The output of a deep learning-based risk score 

can be used as a continuous feature in survival 

analysis. In this study, cases were divided into 

risk quartiles using the risk ratings obtained from 

the deep learning system (DLS) to identify low 

and high risk groups. To ensure that the 

distribution of cancer types within each risk 

group was similar, binning was done separately 

for each type of cancer. 

A log rank test was performed to compare the 

Kaplan-Meier (KM) survival curves for the high 

and low risk groups, and a statistically significant 

result of p<0.001 was obtained. This indicates 

that there is a significant difference in survival 

between the high and low risk groups based on 

the DLS risk ratings. 

Furthermore, the researchers investigated 

whether the DLS could further stratify patients' 

risk within each stage, considering the 

established prognostic significance of stage in 

cancer. The resulting KM curves showed that, 

except for stage I and stage IV cancers, the DLS 

was able to further sub-stratify patients into low 

and high risk groups for stage II (p<0.05) and 

stage III cancers (p<0.001). This suggests that the 

DLS may provide additional prognostic 

information within these specific cancer stages, 

which could potentially aid in clinical 

management decisions for patients with stage II 

and stage III cancers 

 

FIG 5: Parametric tree representation for Cancer 

Prediction features 

 

LIMITATIONS 

Our study has some significant limits, despite the 

fact that we have demonstrated promising 

outcomes for challenging deep learning 

circumstances. The test data set for each cancer 

type includes about 250 cases and about 100 

disease-specific data sets, despite using 

information for 10 cancer kinds from the largest 

publicly accessible data set (TCGA). Wide 

confidence intervals were produced as a result of 

the inclusion of survival events, highlighting the 

significance of statistical conclusions (and of 

disclosing confidence intervals for model 

performance, if reported in this field). As a result, 

our work serves as a proof-of-concept 

investigation to improve techniques and gain a 

deeper comprehension of the viability of direct 

prediction by lax surveillance of clinical 
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outcomes. Despite the fact that the model learned 

prognostic signals, these findings still need to be 

developed further on larger datasets in order to 

further enhance predictions, more precisely 

estimate effect sizes, and show therapeutic 

utility. and it is necessary to verify. Second, only 

TCGA datasets are used in our methodology and 

analysis. The tumor purity in each image is 

higher in TCGA cases and there are often fewer 

photos [14]. In real-world clinical settings, where 

tumor purity may be more varied, sectioning 

techniques may differ, and typically numerous 

slides are available in each instance, the random 

"patch sampling" approach outlined here may 

therefore prove effective. I'm not yet certain if it 

is. These findings do not account for a potential 

confounding effect of patient treatment 

variations, despite the fact that baseline 

characteristics were employed and all patients in 

these studies were treatment-naive at the time of 

tissue sample. Despite potential treatment 

differences, risk stratification reveals expected 

patterns. 

 

 

FIG 6: True Positive Rate v/s False Positive Rate 

 

Finally, this report lacks specific molecular data 

from his TCGA and might need larger datasets 

and cancer-type-specific molecular analyses. 
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