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ABSTRACT 

Many studies have found toxic effects on the body and mental state at near and long-term parameters 

in end-stage renal disease (ESRD) patients of neuronal integrity. Consequently, studying chemical 

molecules that cause tissue damage to neurons is essential for understanding the mechanism of toxicity 

and available treatment prospects. Which includes some parameters of myelin basic protein (MBP), 

ionized calcium-binding adaptor molecule 1 IBA1, calcium-binding protein B (S100B), Glial fibrillary 

acidic protein (GFAP), neuroepithelial stem cell protein (Nestin), neurofilament light polypeptide 

(NFL),  neuron-specific enolase, T-tau and claudin proteins.  

 The published papers on changes in neuronal damage final products in ESRD patients were reviewed, 

and the explanations obtained from previous research were collected. It is concluded from this review 

that causes an increase in parameters in patients with ESRD lead to neurodegeneration, which leads 

to severe damage to patients health that requires therapeutic intervention to reduce the harmful effects 

of parameters on the health of patients.   
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                            INTRODUCTION 

End-stage renal disease (ESRD) 

End-stage renal disease (ESRD) occurs when 

chronic kidney disease has advanced so far that 

the kidneys no longer work well enough to filter 

wastes and fluids from the blood, resulting in 

dangerous levels of buildup within the body [1]. 

ESRD is the loss of kidney function with this 

condition is irreversible. The two most common 

causes of ESRD are hypertension (high blood 

pressure) and diabetes [2]. There is also an 

increased risk for the condition if mother, father 

or sibling has kidney failure. There is a wide 

range of symptoms for ESRD, which can often 

be confused as indications of other medical 

conditions [3]. 

Patients may experience a wide variety of 

symptoms as kidney failure progresses. These 

include fatigue, drowsiness, decrease in urination 

or inability to urinate, dry skin, itchy skin, 

headache, weight loss, nausea, bone pain,  skin 

and nail changes, and easy bruising [4]. Doctors 

can diagnose the disease with blood tests, urine 

tests, kidney ultrasound and kidney biopsy [5]. 

The prevalence rates and the impact of ESRD 

disease vary across the world and between 

different countries. There is evidence that the 

number of patients with ESRD worldwide is 

increasing [6]. Estimates have suggested that the 

prevalence in Japan is higher than 2,000 per 

million population  



e409 

Review on the neuron damage parameters in patients with end-stage renal disease 

                  J Popul Ther Clin Pharmacol Vol 30(7):e408–e420; 03 April 2023. 

This article is distributed under the terms of the Creative Commons Attribution-Non  

                         Commercial 4.0 International License. ©2021 Muslim OT et al. 

 

 

(pmp), while it is approximately 1,500 pmp in the 

United States and 800 pmp in the European 

Union [7]. The mean prevalence of ESRD in the 

Middle East was estimated (in 2009) to be lower, 

at 430 pmp [8]. However, a Saudi report 

estimated the prevalence of ESRD in the KSA in 

2015 to be 1,100 pmp [9].  ESRD patients 

experience a multitude of mental and  physio-

somatic symptoms, including depression, 

anxiety, fatigue, fibromyalgia-like symptoms, 

muscular pain, insomnia, headache, and 

cognitive impairments[10].  Each nephron in a 

normal kidney contributes to the total GFR. The 

decline of kidney function is gradual 

and initially may present asymptomatically. The 

natural history of renal failure depends on the 

etiology of the disease but ultimately involves 

early homeostatic mechanisms involving  

hyperfiltration of the nephrons [11, 12]. The 

kidney maintains GFR, despite progressive 

destruction of nephrons, because the remaining 

normal nephrons develop hyperfiltration and 

compensatory hypertrophy. As a result, the 

patient with mild renal impairment can show 

normal creatinine values, and the disease can go 

undetected for some time [13]. 

 

Neuron damage parameters 

Neurons A types of cell that receives and sends 

messages from the body to the brain and back to 

the body. The messages are sent by a weak 

electrical current. Also called nerve cell [14]. 

Although neurons are the longest-living cells in 

the body, large numbers of them die during 

migration and differentiation [15]. The lives of 

some neurons can take strange turns. Some 

diseases of the brain are the result of the 

unnatural deaths of neurons [16]. 

Physical damage to the brain and the spinal cord 

can also kill or disable neurons [17]. Damage to 

the brain caused by shaking or hitting the head, 

or because of a stroke, can kill neurons 

immediately or slowly, starving them of the 

oxygen and nutrients they need to survive [18]. 

During a multiple sclerosis attack, the immune 

system triggers inflammation along the nerves 

and at the glial cells. Oligodendrocytes are 

damaged, and myelin is damaged and stripped 

away from the axon. This process is called 

demyelination. Messages that pass along a 

demyelinated nerve become delayed or blocked 

[19]. 

    

METHODS 

A literature search was performed using PubMed, 

Scopus, Medline, Embase, and the Cochrane 

database systematic reviews. Keywords used as 

search terms were End Stage Renal Diseases”, 

“Dialysis”, “Hemodialysis”, “Depression”, 

“Cytokines”, “Neuron damage, “Chronic Kidney 

Diseases”, “Myelin”, “ Ionized calcium-binding 

adaptor molecule 1”, “Calcium-binding protein 

B”, “Glial fibrillary acidic protein”, 

“Neuroepithelial stem cell protein”, 

“Neurofilament light polypeptide”,  “neuron-

specific enolase”,“T-tau”,and “claudin proteins”.  

In our analysis, we did not place any restrictions 

on how long the evaluation may take. The 

database only includes articles written in English. 

To be included, research have to have examined 

the link between ESRD and one of the 

parameters. 

Some parameters lead to neuron damage, which 

can be detailed in this research. 

 

1. Myelin basic protein (MBP) 

The classic isoforms of myelin basic protein 

(MBP) range in nominal molecular mass from 14 

to 21.5 kDa, and are essential to maintaining the 

structural integrity of the myelin sheath of the 

central nervous system (CNS) [20]. In addition to 

forming compacted myelin internodes by 

membrane adhesion, the protein potentially 

participates in dynamic processes such as 

cytoskeletal turnover at leading edges of 

membrane ruffles and processes, and mediated 

signaling pathways during myelin formation. 

This MBP variant is structurally polymorphic, 

being an exemplary intrinsically-disordered 

protein  [21]. 

The structure of MBP is best described as 

collections of dynamic conformational 

ensembles with only weak tertiary interactions  

the nature of which depend on the environment 

[22]. 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/intrinsically-disordered-proteins
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/intrinsically-disordered-proteins
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/conformational-ensembles
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/conformational-ensembles
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Increased  degradation of myelin is believed to be 

an important step that leads to  multiple sclerosis 

pathology [23]. Transmigration of leukocytes 

across the vasculature, and a compromised Blood 

Brain Barrier participate in the 

neuroinflammation of multiple sclerosis [24]. 

MBP is present in multiple sclerosis tissue and 

chemokines and cytokines are essential to 

inflammation and the developing lesion, the 

inflammatory role of MBP in mediating the 

pathogenesis of multiple sclerosis in ESRD [25].  

ESRD is a major issue in healthcare and can also 

cause peripheral nerve damage. A hallmark of  

myelinated fibers is saltatory nerve conduction, 

which enables faster and more efficient 

propagation of signals as compared with 

unmyelinated axons of the same diameter [26]. 

As expected from its major role in mammalian 

nervous system physiology, myelination defects 

in humans usually have significant neurological 

manifestations  [27]. Diseases of myelin 

represent a large, heterogeneous group with 

regard to clinical characteristics, 

pathophysiology, and etiology [28]. Hereditary 

and acquired pathologies can be distinguished, of 

which inflammatory, infectious, toxic, and 

metabolic are the most prevalent in the ESRD  

[27].  Increased MBP causes high myelin basic 

protein was MS is the most common cause for 

this, but other causes may  bleeding of the central 

nervous system, central nervous system trauma 

and certain brain diseases [29].   

MBP promotes myelin membrane stacking and 

the formation of the major dense line, which is 

disturbed in demyelinating conditions, including 

MS and demyelinating neuropathies [30]. 

Not have any research about decreased MBP in 

ESRD patients. 

 

2. Ionized calcium binding adaptor molecule 1 

(IBA1) 

Ionized calcium-binding adapter molecule 1 

(Iba1) is a 147-amino acid calcium-binding 

protein that is expressed in microglial 

macrophage. Also called allograft inflammatory 

factor 1 (AIF1), is a well-established marker for 

microglia/macrophages. It is a 17-kDa EF hand 

calcium binding protein and it is upregulated 

during the activation of microglia/macrophages. 

The protein is localized in the cytoplasm and 

nucleus of cells. Iba1 in the cytoplasm has actin-

crosslinking activity [31] and is critically 

involved in certain aspects of motility-associated 

rearrangement of the actin cytoskeleton, such as 

in membrane ruffling and in the building of 

phagocytic cups, an early step of phagocytosis 

[32]. No reports are available on the role of Iba1 

in the nucleus. Because studies of Iba1 have 

focused on its role in microglia, little has been 

published regarding the types of cell expressing 

Iba1 outside the CNS. 

IBA1 was also detected as a potential factor 

which contribute to apoptosis and inflammation  

in kidney diseases leading to ESRD [33]. In 

kidney infiltrations of activated macrophage 

(Iba1) into tissues increased significantly with 

age [34]. 

It has been reported that the expression of Iba-1 

is increased in activated microglia [35], 

suggesting that the increased expression of Iba-1 

can be used as a marker for microglial activation. 

Organic osmolytes and brain water changes in 

acute kidney injury [36]. Increased plasma urea 

leads to increased astrocyte and neuronal urea 

concentrations, microglia have also been 

extensively studied for their harmful roles in 

neurodegenerative diseases, such as Alzheimer's 

disease, Parkinson's disease, multiple sclerosis, 

as well as cardiac diseases, glaucoma, and viral 

and bacterial infections [37, 38]. Other study 

found that increased microglia that one of the 

strongest genetic risk factors for Alzheimer's 

disease, cannot metabolize lipids normally [39]. 

Increased Iba-1 become activated following 

exposure to pathogen-associated molecular 

patterns and/or endogenous damage-associated 

molecular patterns and removal of the immune-

suppressive signals [40]. Activated microglia can 

acquire different phenotypes depending on cues 

in its surrounding environment [41]. 

Not have any research about decreased MBP in 

ESRD patients. 

      

3. Calcium-binding protein B (S100B)  

Calcium binding protein B (S100B) is a protein 

present in high concentrations in astroglial and 

oligodendroglial cells in the CNS ; a release of 
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S100β by these cells may represent glial response 

to inflammation, ischemia, and metabolic stress 

[42]. The secretion of S100β could also be seen 

as a terminal event of the inflammatory pathway 

that underlies delirium development and 

propagation. An interruption of the blood–brain 

barrier secondary to inflammation may result in a 

communication between leukocytes and 

astrocytes, leading to subsequent activation of 

astrocytes, with release of S100β manifesting 

clinically as delirium [43, 44]. 

This pathway highlights the relationship between 

stress-induced cytokines and astrocytes [45]. S-

100B level was found to be increased in patients 

undergoing hemodialysis. The kidneys normally 

metabolize  S-100B ; therefore in renal failure, 

serum levels may be expected to be higher due to 

decreased renal clearance [46]. Considering the 

relationship between ESRD  and cerebrovascular 

disorders in  patients, increasing levels of serum 

S-100B  may be associated with neurological 

tissue injury[47]. The also evaluated the 

hemodialysis effect and found that  serum S-

100B  level was higher in post-hemodialysis 

compared to pre-hemodialysis [48]. As 

neurochemical markers, serum S-100B can be 

useful for early diagnosis of brain damage, the 

purpose of  study was to determine serum S-100B 

level in patients undergoing hemodialysis to 

compare these values with the control group [49]. 

Serum S100B levels were associated with 

depressive symptoms in ESRD [50].  Another 

factor contributing to higher levels following 

hemodialysis could be the insufficient 

permeability of the synthetic hollow-fiber 

membrane to the S100B protein that could result 

in ineffective removal. investigating the effect of 

dialysis on serum S-100B  level in the literature 

[51].  Some studies no effect sex was observed on 

serum concentrations of S100B [52]. Assuming 

cerebrospinal fluid S100B as a marker of 

development, glial activation or even brain 

damage, investigations regarding the sex 

dependence of its concentration may be useful in 

gaining an understanding of sex variations in the 

behaviour and the pathological course of, as well 

as susceptibility to, many brain disorders [53]. 

One of the study reinforce the sex effect on 

synaptic plasticity and suggest a sex dependence 

of neural communication mediated by 

extracellular S100B without restricting the 

influence of astrocytes on the developmental 

phase [54]. 

 Not have any research about decreased MBP in 

ESRD patients. 

 

4. Glial fibrillary acidic protein (GFAP) 

Glial fibrillary acidic protein (GFAP) is a protein 

that is encoded by the GFAP gene in humans 

[55]. It is a type III intermediate filament (IF) 

protein that is expressed by numerous cell types 

of the CNS , including astrocytes and ependymal 

cells during development [56]. GFAP has also 

been found to be expressed in glomeruli and 

peritubular fibroblasts taken from kidneys [57]. 

GFAP is thought to help to maintain astrocyte 

mechanical strength [58] as well as the shape of 

cells, but its exact function remains poorly 

understood, despite the number of studies using 

it as a cell marker [59]. The initial GFAP dimers 

combine to make staggered tetramers, which are 

the basic subunits of an intermediate filament. 

Since rod domains alone  do not form filaments, 

the non-helical head and tail domains are 

necessary for filament formation [60]. 

There are multiple disorders associated with 

improper GFAP regulation, and injury can cause 

glial cells to react in detrimental ways [61]. 

increase in brain soluble inflammatory mediators 

was accompanied by cellular signs of 

inflammation a marker for activated glial cells 

during brain inflammation [62]. Compared with 

ESRD had increased GFAP expression in 

astrocytes in both the cerebral cortex and the 

corpus callosum [63]. GFAP and showed no 

dependence on renal clearance. Further support 

was  found for an association with others renal 

function [64]. GFAP levels could reflect neuronal 

damage in obese of ESRD [65]. GFAP  

circulating levels have been described in the 

context of traumatic brain injury [66]. Increased 

GFAP has been shown to alter with changing 

hormone levels [67]. Sex steroids were found 

particularly effective to elicit alterations in both 

the amount and immunoreactivity of GFAP [68]. 

some studies finding indicate a sexual 

dimorphism caused by different levels of GFAP 

in the intact male and female [69]. The 

biomarkers IL-6 and GFAP are well known in the 

https://en.wikipedia.org/wiki/Protein
https://en.wikipedia.org/wiki/Gene
https://en.wikipedia.org/wiki/Intermediate_filament#Type_III
https://en.wikipedia.org/wiki/Central_nervous_system
https://en.wikipedia.org/wiki/Astrocyte
https://en.wikipedia.org/wiki/Ependymal_cell
https://en.wikipedia.org/wiki/Ependymal_cell
https://en.wikipedia.org/wiki/Glomeruli
https://en.wikipedia.org/wiki/Nephron
https://en.wikipedia.org/wiki/Fibroblasts
https://en.wikipedia.org/wiki/Astrocyte
https://en.wikipedia.org/wiki/Mechanical_strength
https://en.wikipedia.org/wiki/Cell_marker
https://en.wikipedia.org/wiki/Tetrameric_protein
https://en.wikipedia.org/wiki/Intermediate_filament
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clinical setting for their usability in traumatic 

brain injury prediction [70]. Relationship 

between GFAP tension and albumin 

concentration, showed the parabolic correlation 

of the experimental concentrations and the linear 

correlation in the pathophysiologic ranges [71]. 

Albumin enters brain across blood-brain barrier 

by molecular diffusion, it is found at a low 

concentration. it is found at a low concentration 

albumin was demonstrated to be identical to 

GFAP [72], as GFAP is a specific CNS protein in 

particular of glial cells [73]. In the spinal cord, 

astrocytes are activated following peripheral 

inflammation or the nerve injury and may 

manifest as increased expression of astrocytic 

markers such as GFAP [74].  Not have any 

research about decreased GFAP in ESRD 

patients. 

 

5. Neuroepithelial stem cell protein (Nestin) 

Nestin is a type VI intermediate filament (IF) 

protein [75]. These intermediate filament 

proteins are expressed mostly in nerve cells 

where they are implicated in the radial growth of 

the axon. Seven genes encode for the heavy (NF-

H), medium (NF-M) and light neurofilament 

(NF-L) proteins, nestin in nerve cells, synemin α 

and synemin β  in muscle cells, and syncoilin 

(also in muscle cells) [76]. Nestin expression in 

embryonic and adult kidney has been reported 

[77]. In immature glomeruli, Nestin is expressed 

in the progenitors of glomerular endothelial cells. 

Nestin is also transiently expressed by epithelial 

cells of immature proximal tubules in the 

newborn kidney [77, 78]. Upon differentiation, 

nestin becomes downregulated and is replaced by 

tissue-specific intermediate filament proteins. 

During neuro- and gliogenesis, nestin is replaced 

by cell type-specific intermediate filaments, e.g. 

neurofilaments and GFAP [79]. 

Increased Nestin cells is also under research in 

preclinical models of disease, especially 

neurodegenerative diseases and bone marrow 

malignancies (Baez-Jurado, Hidalgo-Lanussa et 

al. 2019).  Nestin was re-expressed in tubular 

cells in adult kidney. Some interstitial 

myofibroblasts also expressed Nestin. Nestin 

expression in tubulointerstitium is correlated 

with interstitial fibrosis. Also demonstrated that 

increased Nestin expression is associated with 

phenotypic changes of renal cells induced by 

hypoxia [80]. Nestin has recently received 

attention as a marker for detecting newly formed 

endothelial cells. Nestin is an angiogenesis 

marker of proliferating endothelial cells in 

colorectal cancer tissue [81]. 

A large body of evidence points to Nestin as a 

unique intermediate filament that accompanies 

self-renewal capacity in several subsets of stem 

cells and progenitors, particularly those of the 

neural and mesenchymal lineages [82]. The roles 

of Nestin in cancer cells have not been clarified 

fully, although Nestin correlates with growth, 

migration, invasion, and metastasis of some 

cancers. Nestin is also highly expressed in 

proliferating vascular endothelial cells in cancer 

tissues and metastatic [83]. Nestin of the neural 

tube give rise to two major classes of glial cells, 

astrocytes and oligodendrocytes, which 

structurally and functionally support the neurons 

and their axons in the CNS [21]. 

Not have any research about decreased Nestin in 

ESRD patients. 

 

6.  Neurofilament light polypeptide (NFL) 

Neurofilament light polypeptide (NFL), also 

known as neurofilament light chain, is a 

neurofilament protein that in humans is encoded 

by the NEFL gene [84]. Neurofilament light 

chain is a biomarker that can be measured with 

immunoassays in cerebrospinal fluid and plasma 

and reflects axonal damage in a wide variety of 

neurological disorders. It is a useful marker for 

disease monitoring in amyotrophic lateral 

sclerosis, MS Alzheimer's disease [85], and more 

recently Huntington's disease. Higher numbers 

have been associated with increased mortality 

[86]. NF are constantly released from axons 

reflecting normal aging. However, during axonal 

damage, NF are released in larger quantities into 

the extracellular space, the cerebrospinal fluid 

(CSF), and eventually into the blood  [87].  

 Neurofilament light protein is the smallest of 

three subunits that make up neurofilaments, 

which are major components of the neuronal 

cytoskeleton. NfL is released from damaged 

neurons [88]. 

https://en.wikipedia.org/wiki/Intermediate_filament
https://en.wikipedia.org/wiki/Neurofilament
https://en.wikipedia.org/wiki/Protein
https://en.wikipedia.org/wiki/Biomarker
https://en.wikipedia.org/wiki/Amyotrophic_lateral_sclerosis
https://en.wikipedia.org/wiki/Amyotrophic_lateral_sclerosis
https://en.wikipedia.org/wiki/Multiple_sclerosis
https://en.wikipedia.org/wiki/Alzheimer%27s_disease
https://en.wikipedia.org/wiki/Huntington%27s_disease
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Evidence of accelerated age-related increase in 

NFL levels in children with CKD to lead ESRD 

Some the study of two different populations 

showed a positive correlation between blood 

NFL, indicating that blood NFL level may be 

partially influenced by renal function [89]. 

Studies have shown that myelinated neuron 

damage is common among patients with ESRD 

because of altered blood perfusion [90]. 

Demonstrated that increased NFL levels are 

associated with relevant variables of kidney 

function and brain structure. That decreased 

kidney function may be linked to abnormal 

neuronal integrity in patients with pediatric CKD 

that lead to ESRD [91].  NFL, which is the main 

component of the cytoskeleton of myelinated 

neuron axons, is released from the damaged 

axons. NFL expression reflects subcortical 

neuronal damage and white matter damage [92]. 

Patients with ESRD who had cognitive 

impairment had marginally higher plasma NFL 

concentrations. NFL concentration was not 

correlated with the biochemical parameters 

ESRD impacts plasma NFL levels and their 

accuracy in reflecting neurodegeneration [93]. 

The NFL is sensitive to detect the neuroaxonal 

damage, but it is not highly specific as 

overlapping levels exist among different 

neurodegenerative diseases except lateral 

sclerosis [94]. The axons within white matter are 

vulnerable during ultrafiltration, and axon 

damage might explain the increase in plasma 

NFL. Additionally, sympathetic hyperactivity is 

a common phenomenon in patients with ESRD 

[95]. The hypothesized NFL to be positively 

correlated with pro-inflammatory markers ( IL-6) 

and to be negatively correlated with the anti-

inflammatory IL-10 [96]. The study  tested the 

additional hypothesis NFL levels would be 

associated with symptom severity in 

psychopathological domains known to be related 

to structural brain alterations such as depressive 

and negative symptoms and cognitive 

dysfunction [97]. That NFL would be a better 

biomarker for spinal cord degeneration than 

GFAP, since axonal rather than glial 

degeneration is the pathological hallmark of 

myelopathy [98]. A positive correlation was 

evident between plasma NFL and fasting 

glucose. Plasma NFL levels were not correlated 

with fasting insulin and insulin resistance. 

Plasma NFL levels were significantly different 

across the diabetes groups [99].       

Not have any research about decreased NFL in 

ESRD patients.  

 

7. Neuron-specific enolase 

Enolase is a crucial catabolic enzyme that 

converts 2-phosphoglycerate to 

phosphoenolpyruvate in the glycolytic pathway 

for ATP production [100]. NSE is a cytosolic 

protein that participates in axonal transport. Its 

expression levels can fluctuate depending on 

energy demand within a cell. Furthermore, when 

axons are injured, NSE is upregulated to maintain 

homeostasis; based on its cellular origin and 

function, NSE is believed to be a surrogate 

marker of neuronal damage. NSE selectively 

labels injured axons in the patients, while, NSE 

is nearly undetectable in non-injured axons from 

control subjects [101]. 

NSE is largely confined to neurons, however, 

baseline serum levels (10 ng/ml) originate from 

red blood cells[102]. Sudden increases in serum 

NSE have been reported after various types of 

neurological damage including ESRD [103], 

ischemic stroke [104], and cerebral hemorrhage 

[105]. Recent investigations have suggested that 

following TBI elevated serum levels of NSE may 

be influenced by the glymphatic system rather 

than BBB injury. Previous studies have shown 

that animals with intact glymphatic function 

exhibit significant increases in serum NSE after 

experimental traumatic brain injury (TBI), while 

those with glymphatic suppression failed to 

display a similar increase [106]. Interestingly, 

both control and glymphatic suppressed animals 

experienced equivalent BBB dysfunction  TBI, 

supporting the hypothesis that NSE reaches the 

bloodstream via the glymphatic system [101]. 

Previous research has shown that long-term 

neurological impairment is more common in 

athletes who sustain repetitive TBI [107]. 

Interestingly, given that the half-life of serum 

NSE is 24–48 h with peak serum levels occurring 

within 6-h post-TBI, these findings also suggest 

sustained release of NSE into the peripheral 
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circulation after repetitive TBI, even in the 

absence of recent head trauma [108].  

Not have any research about decreased NSE in 

ESRD patients.  

 

8. T-tau  

The microtubule binding protein Tau is 

predominantly expressed by neurons and 

preferentially localized within axons  [100]. Tau 

facilitates axonal trafficking and neuronal 

signaling by binding tubulin subunits, stabilizing 

microtubular networks, and crosslinking 

microtubule bundles to establish neuronal 

viscoelastic properties [101]. Viscoelasticity in 

the brain enables stretching and retraction against 

mechanical forces due to the flexibility of 

microtubule bundles. Unlike focal brain injury, 

which is typically caused by a direct impact to the 

head resulting in cerebral contusions and 

hematomas [101], diffuse brain injury is caused 

by inertial forces (e.g., stretch, twist, and 

retraction) that occur during rapid head rotation 

[102].  

Tau appears to mediate the viscoelastic response 

to these forces; however, inertial stress beyond 

threshold limits can disrupt microtubule 

networks, leading to diffuse axonal injury (DAI) 

[109]. A recent study by Ahmadzadeh et al. 

evaluated Tau viscoelasticity in the context of 

mechanical strain, by applying high and low 

strain rates to a micromechanical model of axonal 

microtubules cross-linked by Tau proteins. 

Interestingly, at lower strain rates, mechanical 

forces were mitigated by extension of the Tau 

proteins, which allowed microtubules to slide 

relative to one another without damaging axonal 

structure. Conversely, higher strain rates 

disrupted Tau and transferred the mechanical 

load directly to microtubule bundles, resulting in 

breakdown and dissociation of the axonal 

microtubule network [110]. These findings not 

only support the hypothesis that axonal injury 

depends on the magnitude and severity of TBI, 

but also that Tau serves as a cytoskeletal shock-

absorber and a potential biomarker for DAI in 

response to mechanical loading in the brain 

[111]. 

Abnormally phosphorylated Tau is subject to 

proteolytic cleavage by at least six different 

proteases,  some of which generate neurotrophic 

fragments beneficial to neurons, and others that 

produce neurotoxic species resistant to 

proteasomal/autophagosomal degradation [112]. 

Ca2+ activated calpains and thrombins can 

cleave Tau at multiple sites, generating a variety 

of fragments. However, whether these Tau 

cleavage products are neuro-protective or 

degenerative remains unclear [113]. Puromycin-

sensitive aminopeptidase (PSA) and high 

temperature requirement serine protease A1 

(HTRA1) are proteases that assist in clearing 

soluble Tau through proteolytic degradation. 

Cathepsins are lysosomal proteases that can be 

released into the cytoplasm under pathological 

conditions and produce Tau fragments highly 

susceptible to abnormal phosphorylation [114]. 

Neurotoxic Tau fragments can aggregate to form 

insoluble neurofibrillary tangles. Recent studies 

have demonstrated that these tangles do not 

necessarily activate apoptotic mechanisms [112], 

but rather induce cellular dysfunction by creating 

a chronic energy deficit at the mitochondrial 

level, where N-terminal fragments consisting of 

Tau amino acids 22–46 enter the mitochondria 

and interfere with the production of ATP [115].  

Not have any research about decreased Tau in 

ESRD patients 

 

9. Claudin proteins 

Claudins are a family of proteins which, along 

with occludin, are the most important 

components of the tight junctions (zonulae 

occludentes) [116]. Tight junctions establish the 

paracellular barrier that controls the flow of 

molecules in the intercellular space between the 

cells of an epithelium . They have four 

transmembrane domains, with the N-terminus 

and the C-terminus in the cytoplasm [117]. 

Claudins are small (20–24/27 kilodalton (kDa)). 

Transmembrane proteins which are found in 

many organisms, ranging from nematodes to 

human beings. They all have a very similar 

structure. Claudins span the cellular membrane 4 

times, with the N-terminal end and the C-

terminal end both located in the cytoplasm, and 

https://en.wikipedia.org/wiki/Protein
https://en.wikipedia.org/wiki/Occludin
https://en.wikipedia.org/wiki/Tight_junction
https://en.wikipedia.org/wiki/Tight_junction
https://en.wikipedia.org/wiki/Tight_junction
https://en.wikipedia.org/wiki/Paracellular
https://en.wikipedia.org/wiki/Epithelium
https://en.wikipedia.org/wiki/N-terminus
https://en.wikipedia.org/wiki/Atomic_mass_unit
https://en.wikipedia.org/wiki/Transmembrane_protein
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https://en.wikipedia.org/wiki/Nematode
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https://en.wikipedia.org/wiki/N-terminal_end
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two extracellular loops which show the highest 

degree of conservation [118].  

Claudins have both cis and trans interactions 

between cell membranes. Cis-interactions is 

when claudins on the same membrane interact, 

one way they interact is by interaction is when 

claudins of neighboring cells interact through 

their extracellular loops. Cis-interactions is also 

known as side-to-side interactions and trans-

interactions is also known as head-to-head 

interactions [119].  

Since their discovery, literature regarding the 

status of claudins in various cancers is constantly 

expanding, and in  contrast to the general thought 

that claudins expression would decrease during 

tumorigenesis as tight junctions are lost during 

cellular transformation, claudins expression 

seems to change in a tissue specific manner. Tan 

et al. [120] have shown that the expression and 

distribution of claudin- 1 is associated with cell 

dissociation status in pancreatic cancer cells 

through mitogen-activated protein kinase 2 

activation. By contrast, claudin-7 has been found 

to be decreased in invasive ductal carcinomas, 

head and neck cancer and metastatic breast 

cancer [121]. On the other hand, Claudin-3 and -

4 are frequently elevated in various cancers 

including pancreatic ductal adenocarcinoma, 

prostate, uterine, ovarian cancer  and breast 

cancer while hepatocellular and renal carcinomas 

expressed lower levels of claudins-4 and -5 

[122]. While, lower expression of claudin-2 was 

also seen in breast and prostatic carcinomas, 

expressions of claudin-1 and claudin-7 that were 

undetectable in normal cervical squamous 

epithelium increased in the cervical neoplasia 

[123]. Intriguingly, recent studies have shown 

that expression of certain claudins especially 

claudin-1 and claudin-4 increases during 

metastasis and genetic inhibition of their 

expression has profound effect on the metastatic 

abilities of cancer cells though in a tissue specific 

fashion [124]. 

Irrespective of the diverse source of cancer 

growth and/or heterogeneity among cancer 

patients regarding the cancer originated from the 

same tissue source, it is well accepted that 

Epithelial to Mesenchymal Transition (EMT) is a  

cellular event central to the initiation and 

progression of tumorigenesis. Although their 

differentiated properties vary, they are composed 

principally of epithelial cells with similar basic 

features including polarity and barrier function. 

Cell adhesion weakens or is lost during the 

process of EMT or as dedifferentiation of 

epithelial cells [125]. A critical role of E-

cadherin, principal constituent of adherens 

junction, in the regulation of EMT is known, 

however it does not help understand the 

diversity/heterogeneity among the cancers [126].  

Most claudins are expressed in the renal tubule. 

Each segment and cell expresses multiple 

isoforms. It is widely believed that the specific 

set of claudins expressed by each nephron 

segment determines the unique paracellular 

permeability properties of that segment [127]. In 

addition, the glomerulus also expresses claudins. 

Parietal epithelial cells express claudin-1. Mature 

podocytes form slit diaphragms, which are a 

specialized form of intercellular junction, but 

tight junctions are also present during fetal 

development and reappear during podocyte 

injury . Claudin-5 and -6 have both been detected 

in podocytes [128].  

The role of claudins in the genetic predisposition 

to other kidney diseases, as well as in the 

pathogenesis of acquired kidney diseases, 

remains largely unexplored [129]. Given the 

importance of claudins in the development and 

maintenance of polarized epithelia, renal tubule 

transport function, and potentially in glomerular 

epithelial cell function, they will probably be 

found to be involved in many different disease 

processes within the kidney [130]. 

 

CONCLUSION  

Parameters on ESRD patients leads to an increase 

in toxic neurons in the end-products, which 

increases the risk of poor psychological state and 

cognitive difficulties. Therefore, therapeutic 

intervention is necessary to reduce the negative 

effects of damaged neurons, including 

hemodialysis and screening necessary to estimate 

the elevation of parameters. 
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