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Abstract 

Background: Deep learning has been a revolution in the medical imaging sector, as it has offered 

improved accuracy and reproducibility of identifying diseases and their follow-ups. Pneumonia is one 

of the most widespread morbid and mortal diseases in the world that has radiographic similarities 

between bacterial and viral etiologies, making it difficult to diagnose. 

Objective: This study aimed to compare the two deep learning models, ResNet-50, which is a 

convolutional neural network, and ViT-B/16, which is a transformer-based model in classifying 

images of chest X-rays based on bacterial pneumonia, viral pneumonia, and normal ones and also 

establishing the interpretability of their predictions. 

Methods: A sdataset of X-rays of the chest containing bacterial, viral and normal X-rays was used. 

During preprocessing, normalization and augmentation was performed. ResNet-50 and ViT-B/16 

models were trained, optimized and validated with stratified folds. Evaluation metrics included 

accuracy, F1-score, sensitivity, specificity, and AUC. Explainability was assessed using Grad-CAM 

to visualize clinically relevant regions. 

Results: ResNet-50 achieved an accuracy of 87.2% with a macro F1-score of 0.86, while ViT-B/16 

outperformed with an accuracy of 90.1% and a macro F1-score of 0.88. Bacterial pneumonia and 

normal classes were reliably detected, whereas viral pneumonia remained the most challenging 

category. Grad-CAM confirmed that both models focused on lung regions corresponding to 

pathological abnormalities, with ViT-B/16 demonstrating broader contextual attention. 

Conclusion: Transformer-based deep learning architectures provide superior performance and 

interpretability compared to traditional CNNs, underscoring their potential to enhance disease 

detection and monitoring in medical imaging. 
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1. Introduction 

Medical imaging plays a key role in healthcare today, providing non-invasive tools for detecting, 

diagnosing and monitoring many diseases. X-rays, CT, MRI, histopathology slides etc modalities have 

evolved in terms of diagnostic speed, diagnostic accuracy yet with the high rate of increase in imaging 

data, radiologists have become overwhelmed and there is the problem of interpreter variability and 

risk of diagnostics. In order to resolve these limitations, artificial intelligence (AI) or deep learning 

(DL) has been extensively applied to the analysis of medical images, and it has provided opportunities 

to enhance disease detection and monitoring [1]. Machine learning, in particular, neural network 

architectures are applied in DL to learn hierarchical representations of data automatically without 

manually-constructed features. This is the capability that has made it be specifically applied in the 

medical imaging where it is important to be able to capture more complex space and contextual 

relationships [2]. Convolutional neural networks (CNNs) have been widely used in solving such 

problems as segmentation and classification and have shown decent results in modalities such as MRI, 

CT and X-rays [3]. Indicatively, CNN based systems have performed better in tumor segmentation, 

lesion detection and organ classification [4] as proved to be superior to many other conventional 

methods. 

DL has revolutionary healthcare impacts. Many architectures like ResNet, DenseNet, EfficientNet 

have increased the scalability and accuracy and are now able to analyze large data sets with an 

accuracy that is now strictly clinically relevant [5]. Besides the CNNs, the transformer-based models, 

which were first introduced in the natural language processing community, are now being sought after 

in the medical imaging community too. The concept of the Vision Transformers (ViTs) is that these 

transformers consider the long-range dependences, thus the analysis of the complex patterns and 

subtle abnormalities that CNNs might miss is quite appropriate [6]. Along with diagnosis, DL may 

also help with other general clinical applications such as real-time monitoring and prognosis 

forecasting. In particular, IoT-based systems are being designed with the addition of DL that will be 

used to monitor patients more efficiently in order to make timely interventions [7]. The fusion and 

transfer learning of multimodal data is also under research in an attempt to combine imaging data with 

electronic health records and genetic data towards the creation of customized medicine [8]. 

In spite of such advances, there are still challenges. The availability of large annotated medical 

datasets is one of the biggest challenges since expert labeling is time-consuming and likely to be 

affected by inter-observer variability [9]. The other one is a lack of generalizability: models that have 

been trained on data of one single institution might not be effective on different populations or imaging 

protocols [10]. Moreover, it is also said that DL models tend to be black boxes having low 

interpretability which is a concern when it comes to clinical adoption [11]. This has prompted 

increased attention to explainable AI approaches that explain how models come up with the 

predictions as well as making sure that the results agree with clinical reasoning [12]. The detection of 

pneumonia using chest X-rays is a good example to test these opportunities and challenges. 

Pneumonia has been a major health challenge of the world particularly among the most vulnerable 

groups which include children and the elderly. Radiographic features such as opacities and 

consolidations are very important in the diagnosis of pneumonia, but it is usually challenging to 

differentiate between bacterial and viral pneumonia because of the similarity of features. This problem 

of diagnosis highlights the necessity to have a powerful DL model that could detect and enhance 

subtype differentiation automation [13]. 

There are larger questions of generalizability to other imaging tasks with the use of DL to classify 

pneumonia. The experience learned with chest radiography may be applied to other related fields like 

in MRI based tumor imaging, CT nodule identification, and grading cancer based on histopathology. 

The cross-modality promise points to the fact that DL is a disruptive technology in terms of improving 

the quality of diagnosis and workflow itself, as it can be used to improve the quality of diagnostic 

results as well as workflow efficiency. Here, the current paper explores the problem of pneumonia 

detection through the deep learning methods. Two state-of-the-art ResNet-50, as a CNN-based method 

and ViT-B/16, as a transformer-based method were tested in classifying the chest X-rays as bacterial 

pneumonia, viral pneumonia and normal. The research does not focus on the evaluation of 
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performance only but also on its interpretability, with the help of Gradient-weighted Class Activation 

Mapping (Grad-CAM), confirming the correspondence between predictions and clinically relevant 

lung areas. The specific objectives of this study are: 

1. To evaluate and compare the performance of ResNet-50 and ViT-B/16 in classifying chest X-rays 

into bacterial pneumonia, viral pneumonia, and normal categories. 

2. To analyze class-specific strengths and limitations, particularly in detecting viral pneumonia, 

which poses diagnostic challenges due to overlapping features. 

3. To incorporate and assess explainability methods (Grad-CAM) to validate the clinical plausibility 

of predictions and enhance interpretability. 

 

Methodology 

2.1 Overall Framework 

The research article is based on the systematic experimental research design, which presupposes the 

systematic investigation of the effectiveness and viability of the deep learning models in the sphere 

of medical imaging. The first step in the pipeline involves the selection of a clinically relevant dataset 

and then proceeds to preprocessing steps, which are supposed to ensure consistency of samples and 

facilitate generalization. The deep learning models, the convolutional model and the transformer-

based model are subsequently trained and optimized on the dataset. The models are trained and 

optimized and validation strategies are introduced in order to monitor the learning process and avoid 

overfitting. In this case, however, the assessment stage is conducted in a systemic manner according 

to multiple performance indicators, which ensures global and class-based accuracy. Finally, the 

decision-making process of the models is explained using explainability methods, which is highly 

critical to clinical trust and adoption. This is a complete end-to-end workflow that provides the right 

balance between technical rigor and clinical applicability Figure 1. 

 
Figure 1: Workflow for Deep Learning-Based Chest X-ray Pneumonia Classification 
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2.2 Dataset 

The data in this paper is the Chest X-ray Pneumonia Dataset on Kaggle [14], which consists of 5,216 

chest radiographs altogether. These images are classified into three different diagnostic categories as: 

Bacterial Pneumonia (2,530 images), Viral Pneumonia (1,345 images), and Normal or healthy 

controls (1,341 images). The data is then organized into training, validation, and test folds where each 

has subfolders of the different classes to facilitate the supervised learning. Each of the pictures is in 

the JPEG format and depicts either anterior and posterior respectively of the chest radiographs, which 

are the most frequent projections in clinical practice. The presence of bacterial and viral subtypes of 

pneumonia is a valuable addition to clinical practice since it is crucial to identify the difference 

between the two since it affects treatment choices, especially in the use of antibiotics. The equal 

population of both viral and regular classes, as well as the greater size of a bacterial sub-population, 

reflect the actual distribution of diseases in the real world and are a powerful resource to train deep 

learning models. 

 

2.3 Preprocessing 

A sequence of preprocessing operations was used to standardize all the samples and prepare the data 

to be used in deep learning models. All the images were downsampled to 224 x 224 pixels, which is 

the resolution that strikes a good balance between computation speed and retention of meaningful 

diagnostic information. Intensities of pixels were clustered to the (0,1) scale and standardized by 

ImageNet mean and standard deviation values to align with the settings of the pre-trained models. 

Random horizontal flipping and small-angle rotations are data augmentation methods that were used 

on the training images to create variability and mitigate overfitting. Such augmentations model real-

world variability in radiographic imaging, e.g. variability in patient positioning or settings during 

acquisition. Significantly, the validation and test sets were not manipulated in order to make a fair 

evaluation of model performance. 

 

2.4 Models 

Two deep learning models were chosen to possess complementary capabilities in medical image 

analysis. The first one is ResNet-50, a convolutional neural network (CNN) architecture that uses 

residual connections to reduce the vanishing gradient problem to allow deeper and more efficient 

feature extraction. ResNet-50 is a standardized baseline in medical imaging studies, which has the 

potential to learn hierarchical image representation. The second architecture is the Vision Transformer 

(ViT-B/16), a transformer-based architecture that takes images in the form of sequences of patches 

and uses self-attention mechanisms to model long-range dependencies between them. It is a more 

modern paradigm shift in computer vision, and has had state-of-the-art performance in several areas. 

Both models were trained using pre-trained weights of ImageNet, enabling transfer learning to be 

used, substantially decreasing the training time and computational load in favor of using the smaller 

medical dataset. 

 

2.5 Training and Optimization 

The PyTorch framework was used to train the models with the use of the GPU acceleration to make 

them more computationally efficient. The training was performed by AdamW with an initial learning 

rate of 1e-4, batch size of 32 and weight decay of 1e-4. These hyperparameters have been chosen 

according to the best practices in the tasks of image classification. The training procedure involved 

three epochs and balanced convergence and the computational resources available without overfitting 

by terminating the process at a certain stage. This loss operation was chosen because the cross-entropy 

loss operation is rather suitable when there are several classes such as bacterial pneumonia, viral 

pneumonia, and normal cases. Regularization like dropout layers in the network, image-level 

augmentations and early stopping were employed to improve generalization. Along with this mixed-

precision training, the acceleration of computation was used to be fast and accurate. 
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2.6 Validation 

The model validation was a significant phase that guaranteed that there was a vigorous and objective 

evaluation of the model. When no separate validation folder had been successfully specified, a training 

set was stratifiedly split into 80 / 20 (with stratified splitting) to form a validation set. This 

stratification allowed all the three types of diagnostic data to be represented in the validation data 

proportionally. This sub-set was monitored on model performance during every epoch and to be 

applied during tuning of the hyperparameters to avoid overfitting. In order to evaluate it eventually, 

held out test set was employed, which provided an independent measure of the model generalizability. 

The study conducted the internal validation subset of the study and the external test subset to conclude 

that the results obtained were actually the true picture of the behavior of the models with the 

unobservable data in the real world. 

 

2.7 Evaluation Metrics 

Performance was measured by accuracy and macro F1-score and the accuracy and macro F1-score 

was balanced among classes. Confusion matrices were generated to visualize misclassifications, while 

ROC curves and AUC values were reported using a one-vs-rest strategy. Both per-class and micro-

averaged AUC scores were considered to capture discriminative ability. 

 

2.8 Explainability 

Model interpretability was evaluated using Grad-CAM, which generates heatmaps highlighting image 

regions influencing predictions. Visualizations were superimposed on chest X-rays for both ResNet-

50 and ViT-B/16 to confirm focus on clinically relevant lung areas. Representative validation images 

demonstrated that both models localized pathological features effectively, enhancing clinical trust and 

supporting potential adoption. 

 

3. Results 

3.1 Overall Model Performance 

The experimental evaluation demonstrated that both convolutional and transformer-based deep 

learning models achieved strong predictive performance in classifying chest X-rays into bacterial 

pneumonia, viral pneumonia, and normal categories. As indicated in Table 1, ResNet-50 and ViT-B/16 

had a high overall accuracy of 87.2% and 90.1%, respectively, and the macro F1-score of 0.86 and 

0.88, respectively. These results demonstrate the usefulness of deep learning algorithms in medical 

imaging and the benefits of transformer-based architectures. Using global attention, ViT-B/16 could 

more accurately represent contextual dependencies over the lung field than ResNet-50, which lead to 

less misclassification. These findings on the whole give a good indication that transformer-based 

models are more appropriate to handle complex medical imaging tasks than traditional CNNs. 

 

Table 1: Overall performance comparison of ResNet-50 and ViT-B/16 on the validation set. 

Model Accuracy Macro F1 

ResNet-50 0.872 0.86 

ViT-B/16 0.901 0.88 

 

3.2 Class-Specific Performance 

Further comparison of class-specific measures in Table 2 and Table 3 show that bacterial pneumonia 

was the most consistently identified measure. The models, ResNet-50 and ViT-B/16, had a class F1-

score of 0.91 and 0.92, respectively, indicating that both models can detect the high-density, large, 

well-consolidated areas that constitute bacterial pneumonia. Equally, the normal class was categorized 

with a high degree of reliability with F1-scores of 0.88 (ResNet-50) and 0.90 (ViT-B/16). On the 

contrary, both models had viral pneumonia as the most difficult one. ResNet-50 gave 0.79 F1-score 

and ViT-B/16 experienced a slight boost with 0.83. This difficulty is consistent with clinical 

observations, as viral pneumonia often presents with diffuse, subtle infiltrates that overlap with 

bacterial pneumonia, complicating visual discrimination. The improved performance of ViT-B/16 
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suggests that attention-based architectures can better capture these diffuse patterns, although 

challenges in reliably distinguishing viral from bacterial infections persist. 

 

Table 2: Class-wise performance metrics of ResNet-50. 

Class Precision Recall F1-Score 

Bacterial 0.92 0.9 0.91 

Viral 0.78 0.8 0.79 

Normal 0.87 0.89 0.88 

 

Table 3: Class-wise performance metrics of ViT-B/16. 

Class Precision Recall F1-Score 

Bacterial 0.93 0.91 0.92 

Viral 0.82 0.84 0.83 

Normal 0.89 0.91 0.9 

 

3.3 Confusion Matrix and ROC Analysis 

The confusion matrices illustrated in Figures 2 and 3 further supports these findings. Both models 

performed strongly in distinguishing normal lungs and bacterial pneumonia, but occasional 

misclassifications occurred in cases of viral pneumonia. This trend reflects a clinical reality, where 

even expert radiologists may find it challenging to differentiate viral from bacterial pneumonia based 

solely on chest radiographs. 

 
Figure 2: Confusion matrix of ResNet-50. 

 

 
Figure 3: Confusion matrix of ViT-B/16. 
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ROC curve analysis, presented in Figures 4 and 5, demonstrated the high discriminative power of 

both models. ResNet-50 achieved a micro-average AUC of 0.92, while ViT-B/16 achieved 0.94, 

reinforcing the observation that transformer-based architectures can capture more robust features. 

Among individual categories, bacterial pneumonia consistently achieved the highest AUC values, 

reflecting its distinct radiographic presentation, whereas viral pneumonia yielded slightly lower 

AUCs. These results confirm viral pneumonia as the most difficult category to separate and highlight 

the potential of deep learning models to complement human interpretation 

 

 
Figure 4: ROC curves of ResNet-50. 

 

 
Figure 5: ROC curves of ViT-B/16. 

 

3.4 Explainability with Grad-CAM 

Model explainability was assessed using Grad-CAM visualizations, as shown in Figure 5. These 

overlays highlight the image regions that contributed most to the model’s predictions, thereby 

validating whether the models relied on clinically meaningful features. Both ResNet-50 and ViT-B/16 

consistently focused on areas of the lungs that displayed pathological abnormalities. For bacterial 

pneumonia, ResNet-50 often localized dense regions of consolidation, while ViT-B/16 highlighted 

both local and diffuse regions, indicating broader context awareness. For viral pneumonia, ViT-B/16 

demonstrated an advantage by capturing widespread opacities rather than focusing narrowly on 

specific zones. These findings enhance interpretability and provide confidence in the models’ clinical 

plausibility, a crucial step toward their integration into medical workflows. 
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Figure 5: Grad-CAM visualizations for ResNet-50 and ViT-B/16 highlighting lung regions 

associated with pneumonia. 

 

3.5 Visualization of Chest X-ray Predictions 

To provide qualitative insights beyond quantitative metrics, representative examples of correct and 

incorrect predictions are presented in Figure 6. Correctly classified bacterial pneumonia cases 

typically displayed clear, localized consolidations, viral pneumonia cases showed diffuse infiltrates, 

and normal radiographs exhibited no significant abnormalities. These correctly identified cases 

demonstrate the ability of the models to capture distinct radiographic features. 

However, misclassified cases highlight the inherent challenges of pneumonia diagnosis. Viral 

pneumonia was often predicted as bacterial pneumonia, reflecting their overlapping radiographic 

appearance. In some instances, subtle bacterial cases with minimal consolidations were misclassified 

as normal. These examples emphasize the difficulty of relying solely on imaging for pneumonia 

diagnosis and reinforce the need for complementary clinical data. Importantly, they demonstrate the 

added value of integrating visualization tools, as they allow clinicians to understand and verify why 

a model makes specific predictions. 
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Figure 6: Representative chest X-ray predictions. 

 

4. Discussion 

The current research assessed two state of the art deep learning models, ResNet-50 and ViT-B/16, in 

the classification of bacterial, viral and normal chest X-rays. Both models reported high accuracy and 

clinically meaningful discrimination with ViT-B/16 being superior in terms of overall accuracy, F1-

score, and AUC to ResNet-50. These results are consistent with a growing body of literature that 

transformer architectures are more effective to extract global contextual information than CNNs and 

are thus especially appropriate to complex medical imaging problems [15,16]. 

Viral pneumonia classification was one of the factors that proved to be a challenge. Although the 

bacterial pneumonia cases and the normal ones were sufficiently separated, the viral pneumonia cases 

had low F1-scores and AUC values. This is the clinical practice where the viral and bacterial 

pneumonia can overlap the radiography seriously [17]. Although ViT-B/16 in comparison to ResNet-

50 showed better recall and precision, the cases of misclassification were still high, so imaging may 

not be the answer. 

The direction should be taken into multimodal systems that can combine imaging with lab or clinical 

data in order to increase diagnostic accuracy in the future [18]. Explorability was also another 

paramount dimension. Grad-CAM showed that the two models could identify clinically significant 

lung regions. ViT-B /16 was better able to capture subtle or diffuse patterns of disease, being more 

sensitive to diffuse consolidations, whereas ResNet-50 was better at dense ones. This confirms the 

earlier studies that identify explainability as an important feature of trust and clinical adoption [19]. 

Further confirmation that bacterial pneumonia was the least confused and viral pneumonia was the 

most likely to be incorrectly categorized also led to the idea that AI must be used as a decision-support 

tool and not to replace radiologists. 

These strengths and limitations were represented by examples. Properly identified bacteria and viral 

cases bore obvious radiographic features, whereas borderline cases frequently resulted in mistakes 

made, e.g. mild bacterial pneumonia mistaken as normal. These results demonstrate how human 

supervision is important when using AI in clinical practice. The high capabilities of ViT-B/16 in 

technical terms indicate the potential of transformers in activities with distributed features recognition. 
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Both of the models have the potential to support radiologists with the triage, screening, and 

optimization of the workflow, especially in the environments where resources are scarce. 

Nevertheless, it is their restriction in distinguishing viral and bacterial pneumonia that underscores 

the fact that AI should not be used in place of physician knowledge but rather as a complement to it. 

There are a number of constraints that need to be noted. It was also limited to three categories, so no 

other thoracic diseases like TB and COVID-19 were in the dataset, which restricted its 

generalizability. Previous researches demonstrate that a variety of data enhances resilience [20]. 

Interinstitutional validation is also needed to deal with imaging protocol and demographic differences. 

Lastly, although Grad-CAM had a helpful interpretability score, other explainability tools like SHAP 

or Layer-wise Relevance Propagation are worth considering in order to understand more. To conclude, 

ViT-B/16 was more successful than ResNet-50 especially on subtle pathology, but both of them 

performed poorly on viral pneumonia. These findings indicate that multimodal and clinician 

intervention remain important. Deep learning systems have a high potential in improving disease 

detection and monitoring of the chest radiography with increased datasets, external validation, and 

better explainability. 

 

5. Conclusion 

The paper shows that deep learning methods are effective in medical image analysis, and specifically 

in classifying chest X-rays as bacterial pneumonia, viral pneumonia, and normalcy. The outcome of 

the comparison between ResNet-50, which is a convolutional neural network, and ViT-B/16, which is 

a transformer-based neural network, demonstrates the transformative character of deep learning in 

disease detection and monitoring. Both models did well, and ViT-B/16 outperformed the ResNet-50 

in terms of overall accuracy, F1-score, and AUC. This improvement can be linked to the fact that 

transformer architectures are well suited to acquire global contextual information and are thus, best 

suited to medical imaging tasks. The class-specific analysis revealed that bacterial pneumonia and 

normal were identified well, but viral pneumonia is the most challenging class since these classes 

resemble bacterial pneumonia in terms of radiographic appearances. The explainability methods, in 

particular Grad-CAM, revealed that both models were trained on clinically relevant lung regions, with 

ResNet-50 emphasizing local and ViT-B/16 emphasizing more diffuse ones. These insights render the 

models more interpretable and clinical plausible and this is required to win trust and become more 

widely adopted in healthcare settings. Regardless of the positive outcomes, it has weaknesses. The 

information was limited to three variables and it has to be outwardly validated in different institutions 

to claim the generalizability. Future clinical practice research should be based on multimodal research 

of imaging data and clinical and laboratory data and prospective research in clinical settings. In 

summary, deep learning and transformer-based architectures in particular have tremendous potential 

in the future of disease detection and disease monitoring in medical imaging. Such systems can 

support radiologist expertise and enhance patient care outcomes with further refinement, validation 

and integration. 
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