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Abstract

Background: Deep learning has been a revolution in the medical imaging sector, as it has offered
improved accuracy and reproducibility of identifying diseases and their follow-ups. Pneumonia is one
of the most widespread morbid and mortal diseases in the world that has radiographic similarities
between bacterial and viral etiologies, making it difficult to diagnose.

Objective: This study aimed to compare the two deep learning models, ResNet-50, which is a
convolutional neural network, and ViT-B/16, which is a transformer-based model in classifying
images of chest X-rays based on bacterial pneumonia, viral pneumonia, and normal ones and also
establishing the interpretability of their predictions.

Methods: A sdataset of X-rays of the chest containing bacterial, viral and normal X-rays was used.
During preprocessing, normalization and augmentation was performed. ResNet-50 and ViT-B/16
models were trained, optimized and validated with stratified folds. Evaluation metrics included
accuracy, F1-score, sensitivity, specificity, and AUC. Explainability was assessed using Grad-CAM
to visualize clinically relevant regions.

Results: ResNet-50 achieved an accuracy of 87.2% with a macro F1-score of 0.86, while ViT-B/16
outperformed with an accuracy of 90.1% and a macro Fl-score of 0.88. Bacterial pneumonia and
normal classes were reliably detected, whereas viral pneumonia remained the most challenging
category. Grad-CAM confirmed that both models focused on lung regions corresponding to
pathological abnormalities, with ViT-B/16 demonstrating broader contextual attention.

Conclusion: Transformer-based deep learning architectures provide superior performance and
interpretability compared to traditional CNNs, underscoring their potential to enhance disease
detection and monitoring in medical imaging.
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1. Introduction

Medical imaging plays a key role in healthcare today, providing non-invasive tools for detecting,
diagnosing and monitoring many diseases. X-rays, CT, MRI, histopathology slides etc modalities have
evolved in terms of diagnostic speed, diagnostic accuracy yet with the high rate of increase in imaging
data, radiologists have become overwhelmed and there is the problem of interpreter variability and
risk of diagnostics. In order to resolve these limitations, artificial intelligence (AI) or deep learning
(DL) has been extensively applied to the analysis of medical images, and it has provided opportunities
to enhance disease detection and monitoring [1]. Machine learning, in particular, neural network
architectures are applied in DL to learn hierarchical representations of data automatically without
manually-constructed features. This is the capability that has made it be specifically applied in the
medical imaging where it is important to be able to capture more complex space and contextual
relationships [2]. Convolutional neural networks (CNNs) have been widely used in solving such
problems as segmentation and classification and have shown decent results in modalities such as MRI,
CT and X-rays [3]. Indicatively, CNN based systems have performed better in tumor segmentation,
lesion detection and organ classification [4] as proved to be superior to many other conventional
methods.

DL has revolutionary healthcare impacts. Many architectures like ResNet, DenseNet, EfficientNet
have increased the scalability and accuracy and are now able to analyze large data sets with an
accuracy that is now strictly clinically relevant [5]. Besides the CNNss, the transformer-based models,
which were first introduced in the natural language processing community, are now being sought after
in the medical imaging community too. The concept of the Vision Transformers (ViTs) is that these
transformers consider the long-range dependences, thus the analysis of the complex patterns and
subtle abnormalities that CNNs might miss is quite appropriate [6]. Along with diagnosis, DL may
also help with other general clinical applications such as real-time monitoring and prognosis
forecasting. In particular, IoT-based systems are being designed with the addition of DL that will be
used to monitor patients more efficiently in order to make timely interventions [7]. The fusion and
transfer learning of multimodal data is also under research in an attempt to combine imaging data with
electronic health records and genetic data towards the creation of customized medicine [8].

In spite of such advances, there are still challenges. The availability of large annotated medical
datasets is one of the biggest challenges since expert labeling is time-consuming and likely to be
affected by inter-observer variability [9]. The other one is a lack of generalizability: models that have
been trained on data of one single institution might not be effective on different populations or imaging
protocols [10]. Moreover, it is also said that DL models tend to be black boxes having low
interpretability which is a concern when it comes to clinical adoption [11]. This has prompted
increased attention to explainable Al approaches that explain how models come up with the
predictions as well as making sure that the results agree with clinical reasoning [12]. The detection of
pneumonia using chest X-rays is a good example to test these opportunities and challenges.
Pneumonia has been a major health challenge of the world particularly among the most vulnerable
groups which include children and the elderly. Radiographic features such as opacities and
consolidations are very important in the diagnosis of pneumonia, but it is usually challenging to
differentiate between bacterial and viral pneumonia because of the similarity of features. This problem
of diagnosis highlights the necessity to have a powerful DL model that could detect and enhance
subtype differentiation automation [13].

There are larger questions of generalizability to other imaging tasks with the use of DL to classify
pneumonia. The experience learned with chest radiography may be applied to other related fields like
in MRI based tumor imaging, CT nodule identification, and grading cancer based on histopathology.
The cross-modality promise points to the fact that DL is a disruptive technology in terms of improving
the quality of diagnosis and workflow itself, as it can be used to improve the quality of diagnostic
results as well as workflow efficiency. Here, the current paper explores the problem of pneumonia
detection through the deep learning methods. Two state-of-the-art ResNet-50, as a CNN-based method
and ViT-B/16, as a transformer-based method were tested in classifying the chest X-rays as bacterial
pneumonia, viral pneumonia and normal. The research does not focus on the evaluation of
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performance only but also on its interpretability, with the help of Gradient-weighted Class Activation

Mapping (Grad-CAM), confirming the correspondence between predictions and clinically relevant

lung areas. The specific objectives of this study are:

1. To evaluate and compare the performance of ResNet-50 and ViT-B/16 in classifying chest X-rays
into bacterial pneumonia, viral pneumonia, and normal categories.

2. To analyze class-specific strengths and limitations, particularly in detecting viral pneumonia,
which poses diagnostic challenges due to overlapping features.

3. To incorporate and assess explainability methods (Grad-CAM) to validate the clinical plausibility
of predictions and enhance interpretability.

Methodology

2.1 Overall Framework

The research article is based on the systematic experimental research design, which presupposes the
systematic investigation of the effectiveness and viability of the deep learning models in the sphere
of medical imaging. The first step in the pipeline involves the selection of a clinically relevant dataset
and then proceeds to preprocessing steps, which are supposed to ensure consistency of samples and
facilitate generalization. The deep learning models, the convolutional model and the transformer-
based model are subsequently trained and optimized on the dataset. The models are trained and
optimized and validation strategies are introduced in order to monitor the learning process and avoid
overfitting. In this case, however, the assessment stage is conducted in a systemic manner according
to multiple performance indicators, which ensures global and class-based accuracy. Finally, the
decision-making process of the models is explained using explainability methods, which is highly
critical to clinical trust and adoption. This is a complete end-to-end workflow that provides the right
balance between technical rigor and clinical applicability Figure 1.
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Figure 1: Workflow for Deep Learning-Based Chest X-ray Pneumonia Classification
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2.2 Dataset

The data in this paper is the Chest X-ray Pneumonia Dataset on Kaggle [14], which consists of 5,216
chest radiographs altogether. These images are classified into three different diagnostic categories as:
Bacterial Pneumonia (2,530 images), Viral Pneumonia (1,345 images), and Normal or healthy
controls (1,341 images). The data is then organized into training, validation, and test folds where each
has subfolders of the different classes to facilitate the supervised learning. Each of the pictures is in
the JPEG format and depicts either anterior and posterior respectively of the chest radiographs, which
are the most frequent projections in clinical practice. The presence of bacterial and viral subtypes of
pneumonia is a valuable addition to clinical practice since it is crucial to identify the difference
between the two since it affects treatment choices, especially in the use of antibiotics. The equal
population of both viral and regular classes, as well as the greater size of a bacterial sub-population,
reflect the actual distribution of diseases in the real world and are a powerful resource to train deep
learning models.

2.3 Preprocessing

A sequence of preprocessing operations was used to standardize all the samples and prepare the data
to be used in deep learning models. All the images were downsampled to 224 x 224 pixels, which is
the resolution that strikes a good balance between computation speed and retention of meaningful
diagnostic information. Intensities of pixels were clustered to the (0,1) scale and standardized by
ImageNet mean and standard deviation values to align with the settings of the pre-trained models.
Random horizontal flipping and small-angle rotations are data augmentation methods that were used
on the training images to create variability and mitigate overfitting. Such augmentations model real-
world variability in radiographic imaging, e.g. variability in patient positioning or settings during
acquisition. Significantly, the validation and test sets were not manipulated in order to make a fair
evaluation of model performance.

2.4 Models

Two deep learning models were chosen to possess complementary capabilities in medical image
analysis. The first one is ResNet-50, a convolutional neural network (CNN) architecture that uses
residual connections to reduce the vanishing gradient problem to allow deeper and more efficient
feature extraction. ResNet-50 is a standardized baseline in medical imaging studies, which has the
potential to learn hierarchical image representation. The second architecture is the Vision Transformer
(ViT-B/16), a transformer-based architecture that takes images in the form of sequences of patches
and uses self-attention mechanisms to model long-range dependencies between them. It is a more
modern paradigm shift in computer vision, and has had state-of-the-art performance in several areas.
Both models were trained using pre-trained weights of ImageNet, enabling transfer learning to be
used, substantially decreasing the training time and computational load in favor of using the smaller
medical dataset.

2.5 Training and Optimization

The PyTorch framework was used to train the models with the use of the GPU acceleration to make
them more computationally efficient. The training was performed by AdamW with an initial learning
rate of le-4, batch size of 32 and weight decay of 1e-4. These hyperparameters have been chosen
according to the best practices in the tasks of image classification. The training procedure involved
three epochs and balanced convergence and the computational resources available without overfitting
by terminating the process at a certain stage. This loss operation was chosen because the cross-entropy
loss operation is rather suitable when there are several classes such as bacterial pneumonia, viral
pneumonia, and normal cases. Regularization like dropout layers in the network, image-level
augmentations and early stopping were employed to improve generalization. Along with this mixed-
precision training, the acceleration of computation was used to be fast and accurate.
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2.6 Validation

The model validation was a significant phase that guaranteed that there was a vigorous and objective
evaluation of the model. When no separate validation folder had been successfully specified, a training
set was stratifiedly split into 80 / 20 (with stratified splitting) to form a validation set. This
stratification allowed all the three types of diagnostic data to be represented in the validation data
proportionally. This sub-set was monitored on model performance during every epoch and to be
applied during tuning of the hyperparameters to avoid overfitting. In order to evaluate it eventually,
held out test set was employed, which provided an independent measure of the model generalizability.
The study conducted the internal validation subset of the study and the external test subset to conclude
that the results obtained were actually the true picture of the behavior of the models with the
unobservable data in the real world.

2.7 Evaluation Metrics

Performance was measured by accuracy and macro F1-score and the accuracy and macro F1-score
was balanced among classes. Confusion matrices were generated to visualize misclassifications, while
ROC curves and AUC values were reported using a one-vs-rest strategy. Both per-class and micro-
averaged AUC scores were considered to capture discriminative ability.

2.8 Explainability

Model interpretability was evaluated using Grad-CAM, which generates heatmaps highlighting image
regions influencing predictions. Visualizations were superimposed on chest X-rays for both ResNet-
50 and ViT-B/16 to confirm focus on clinically relevant lung areas. Representative validation images
demonstrated that both models localized pathological features effectively, enhancing clinical trust and
supporting potential adoption.

3. Results

3.1 Overall Model Performance

The experimental evaluation demonstrated that both convolutional and transformer-based deep
learning models achieved strong predictive performance in classifying chest X-rays into bacterial
pneumonia, viral pneumonia, and normal categories. As indicated in Table 1, ResNet-50 and ViT-B/16
had a high overall accuracy of 87.2% and 90.1%, respectively, and the macro F1-score of 0.86 and
0.88, respectively. These results demonstrate the usefulness of deep learning algorithms in medical
imaging and the benefits of transformer-based architectures. Using global attention, ViT-B/16 could
more accurately represent contextual dependencies over the lung field than ResNet-50, which lead to
less misclassification. These findings on the whole give a good indication that transformer-based
models are more appropriate to handle complex medical imaging tasks than traditional CNNss.

Table 1: Overall performance comparison of ResNet-50 and ViT-B/16 on the validation set.

Model Accuracy Macro F1
ResNet-50 0.872 0.86
ViT-B/16 0.901 0.88

3.2 Class-Specific Performance

Further comparison of class-specific measures in Table 2 and Table 3 show that bacterial pneumonia
was the most consistently identified measure. The models, ResNet-50 and ViT-B/16, had a class F1-
score of 0.91 and 0.92, respectively, indicating that both models can detect the high-density, large,
well-consolidated areas that constitute bacterial pneumonia. Equally, the normal class was categorized
with a high degree of reliability with F1-scores of 0.88 (ResNet-50) and 0.90 (ViT-B/16). On the
contrary, both models had viral pneumonia as the most difficult one. ResNet-50 gave 0.79 F1-score
and ViT-B/16 experienced a slight boost with 0.83. This difficulty is consistent with clinical
observations, as viral pneumonia often presents with diffuse, subtle infiltrates that overlap with
bacterial pneumonia, complicating visual discrimination. The improved performance of ViT-B/16
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suggests that attention-based architectures can better capture these diffuse patterns, although
challenges in reliably distinguishing viral from bacterial infections persist.

Table 2: Class-wise performance metrics of ResNet-50.

Class Precision Recall F1-Score
Bacterial 0.92 0.9 0.91
Viral 0.78 0.8 0.79
Normal 0.87 0.89 0.88

Table 3: Class-wise performance metrics of ViT-B/16.

Class Precision Recall F1-Score
Bacterial 0.93 0.91 0.92
Viral 0.82 0.84 0.83
Normal 0.89 0.91 0.9

3.3 Confusion Matrix and ROC Analysis

The confusion matrices illustrated in Figures 2 and 3 further supports these findings. Both models
performed strongly in distinguishing normal lungs and bacterial pneumonia, but occasional
misclassifications occurred in cases of viral pneumonia. This trend reflects a clinical reality, where
even expert radiologists may find it challenging to differentiate viral from bacterial pneumonia based
solely on chest radiographs.
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ROC curve analysis, presented in Figures 4 and 5, demonstrated the high discriminative power of
both models. ResNet-50 achieved a micro-average AUC of 0.92, while ViT-B/16 achieved 0.94,
reinforcing the observation that transformer-based architectures can capture more robust features.
Among individual categories, bacterial pneumonia consistently achieved the highest AUC values,
reflecting its distinct radiographic presentation, whereas viral pneumonia yielded slightly lower
AUC:s. These results confirm viral pneumonia as the most difficult category to separate and highlight
the potential of deep learning models to complement human interpretation
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Figure 5: ROC curves of ViT-B/16.

3.4 Explainability with Grad-CAM

Model explainability was assessed using Grad-CAM visualizations, as shown in Figure 5. These
overlays highlight the image regions that contributed most to the model’s predictions, thereby
validating whether the models relied on clinically meaningful features. Both ResNet-50 and ViT-B/16
consistently focused on areas of the lungs that displayed pathological abnormalities. For bacterial
pneumonia, ResNet-50 often localized dense regions of consolidation, while ViT-B/16 highlighted
both local and diffuse regions, indicating broader context awareness. For viral pneumonia, ViT-B/16
demonstrated an advantage by capturing widespread opacities rather than focusing narrowly on
specific zones. These findings enhance interpretability and provide confidence in the models’ clinical
plausibility, a crucial step toward their integration into medical workflows.
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Figure 5: Grad-CAM visualizations for ResNet-50 and ViT-B/16 highlighting lung regions
associated with pneumonia.

3.5 Visualization of Chest X-ray Predictions

To provide qualitative insights beyond quantitative metrics, representative examples of correct and
incorrect predictions are presented in Figure 6. Correctly classified bacterial pneumonia cases
typically displayed clear, localized consolidations, viral pneumonia cases showed diffuse infiltrates,
and normal radiographs exhibited no significant abnormalities. These correctly identified cases
demonstrate the ability of the models to capture distinct radiographic features.

However, misclassified cases highlight the inherent challenges of pneumonia diagnosis. Viral
pneumonia was often predicted as bacterial pneumonia, reflecting their overlapping radiographic
appearance. In some instances, subtle bacterial cases with minimal consolidations were misclassified
as normal. These examples emphasize the difficulty of relying solely on imaging for pneumonia
diagnosis and reinforce the need for complementary clinical data. Importantly, they demonstrate the
added value of integrating visualization tools, as they allow clinicians to understand and verify why
a model makes specific predictions.
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Figure 6: Representative chest X-ray predictions.

4. Discussion

The current research assessed two state of the art deep learning models, ResNet-50 and ViT-B/16, in
the classification of bacterial, viral and normal chest X-rays. Both models reported high accuracy and
clinically meaningful discrimination with ViT-B/16 being superior in terms of overall accuracy, F1-
score, and AUC to ResNet-50. These results are consistent with a growing body of literature that
transformer architectures are more effective to extract global contextual information than CNNs and
are thus especially appropriate to complex medical imaging problems [15,16].

Viral pneumonia classification was one of the factors that proved to be a challenge. Although the
bacterial pneumonia cases and the normal ones were sufficiently separated, the viral pneumonia cases
had low Fl-scores and AUC values. This is the clinical practice where the viral and bacterial
pneumonia can overlap the radiography seriously [17]. Although ViT-B/16 in comparison to ResNet-
50 showed better recall and precision, the cases of misclassification were still high, so imaging may
not be the answer.

The direction should be taken into multimodal systems that can combine imaging with lab or clinical
data in order to increase diagnostic accuracy in the future [18]. Explorability was also another
paramount dimension. Grad-CAM showed that the two models could identify clinically significant
lung regions. ViT-B /16 was better able to capture subtle or diffuse patterns of disease, being more
sensitive to diffuse consolidations, whereas ResNet-50 was better at dense ones. This confirms the
earlier studies that identify explainability as an important feature of trust and clinical adoption [19].
Further confirmation that bacterial pneumonia was the least confused and viral pneumonia was the
most likely to be incorrectly categorized also led to the idea that Al must be used as a decision-support
tool and not to replace radiologists.

These strengths and limitations were represented by examples. Properly identified bacteria and viral
cases bore obvious radiographic features, whereas borderline cases frequently resulted in mistakes
made, e.g. mild bacterial pneumonia mistaken as normal. These results demonstrate how human
supervision is important when using Al in clinical practice. The high capabilities of ViT-B/16 in
technical terms indicate the potential of transformers in activities with distributed features recognition.
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Both of the models have the potential to support radiologists with the triage, screening, and
optimization of the workflow, especially in the environments where resources are scarce.
Nevertheless, it is their restriction in distinguishing viral and bacterial pneumonia that underscores
the fact that Al should not be used in place of physician knowledge but rather as a complement to it.
There are a number of constraints that need to be noted. It was also limited to three categories, so no
other thoracic diseases like TB and COVID-19 were in the dataset, which restricted its
generalizability. Previous researches demonstrate that a variety of data enhances resilience [20].
Interinstitutional validation is also needed to deal with imaging protocol and demographic differences.
Lastly, although Grad-CAM had a helpful interpretability score, other explainability tools like SHAP
or Layer-wise Relevance Propagation are worth considering in order to understand more. To conclude,
ViT-B/16 was more successful than ResNet-50 especially on subtle pathology, but both of them
performed poorly on viral pneumonia. These findings indicate that multimodal and clinician
intervention remain important. Deep learning systems have a high potential in improving disease
detection and monitoring of the chest radiography with increased datasets, external validation, and
better explainability.

5. Conclusion

The paper shows that deep learning methods are effective in medical image analysis, and specifically
in classifying chest X-rays as bacterial pneumonia, viral pneumonia, and normalcy. The outcome of
the comparison between ResNet-50, which is a convolutional neural network, and ViT-B/16, which is
a transformer-based neural network, demonstrates the transformative character of deep learning in
disease detection and monitoring. Both models did well, and ViT-B/16 outperformed the ResNet-50
in terms of overall accuracy, F1-score, and AUC. This improvement can be linked to the fact that
transformer architectures are well suited to acquire global contextual information and are thus, best
suited to medical imaging tasks. The class-specific analysis revealed that bacterial pneumonia and
normal were identified well, but viral pneumonia is the most challenging class since these classes
resemble bacterial pneumonia in terms of radiographic appearances. The explainability methods, in
particular Grad-CAM, revealed that both models were trained on clinically relevant lung regions, with
ResNet-50 emphasizing local and ViT-B/16 emphasizing more diffuse ones. These insights render the
models more interpretable and clinical plausible and this is required to win trust and become more
widely adopted in healthcare settings. Regardless of the positive outcomes, it has weaknesses. The
information was limited to three variables and it has to be outwardly validated in different institutions
to claim the generalizability. Future clinical practice research should be based on multimodal research
of imaging data and clinical and laboratory data and prospective research in clinical settings. In
summary, deep learning and transformer-based architectures in particular have tremendous potential
in the future of disease detection and disease monitoring in medical imaging. Such systems can
support radiologist expertise and enhance patient care outcomes with further refinement, validation
and integration.
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