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Abstract: 

Alzheimer’s disease (AD) is a complex, multifactorial neurodegenerative disorder characterized by 

amyloid-β aggregation, tau hyperphosphorylation, oxidative stress, mitochondrial dysfunction, and 

neuroinflammation. The failure of single-target therapies has shifted attention toward multi-target 

directed ligands (MTDLs), which aim to modulate multiple pathological pathways simultaneously. 

A critical challenge in developing and evaluating MTDLs lies in quantifying their degree of 

polypharmacology—how effectively a compound engages multiple targets with therapeutic 

relevance. Scoring functions and composite indices have emerged as promising approaches to 

measure and compare polypharmacological profiles. These methods integrate binding affinity data, 

pharmacokinetic parameters, and network-based interactions into numerical descriptors that capture 

both the breadth and balance of target modulation. Computational scoring functions, such as docking-

based affinity predictions and machine learning models, allow rapid in silico assessment of 

polypharmacological potential. Meanwhile, composite indices combine multiple criteria—efficacy, 

selectivity, drug-likeness, and safety—to provide holistic evaluations of candidate molecules. In the 

context of AD, such metrics can guide the rational design and prioritization of MTDLs targeting 

cholinesterases, NMDA receptors, monoamine oxidases, and amyloidogenic proteins. Furthermore, 

polypharmacology scoring can help predict off-target liabilities and optimize therapeutic windows. 

This review highlights the methodological advances in quantifying polypharmacology, discusses 

their application in AD drug discovery, and proposes future perspectives on integrating systems 

biology, network pharmacology, and artificial intelligence for more precise evaluation of MTDLs. 

By refining these scoring strategies, researchers can accelerate the identification of safe and effective 

multi-target therapeutics, offering renewed hope in the battle against Alzheimer’s disease. 
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Introduction: 

1. Alzheimer’s Disease as a multifactorial neurodegenerative disorder: 

1.1 Definition & overview: 

Alzheimer’s disease is the most common cause of dementia, accounting for 60%-80% of cases. 

It is progressive and irreversible, leading to cognitive decline, memory loss, and behavioral changes. 

AD is considered multifactorial because it arises from a combination of genetics, environmental, and 

lifestyle factors, rather than a single case. (1) 

 

1.2 Key Pathological Features: 

➢ Amyloid-beta plaques: 

Origin: these plaques form when a protein called amyloid precursor protein (APP) is abnormally 

cleaved by enzymes called beta-secretase and gemma-secretase. 

Aggregation: these peptides are sticky and tend to clump together outside neurons, forming insoluble 

plaques in the brain. 

Location: plaques typically start accumulating in the neocortex and eventually spread to deeper brain 

regions like the hippocampus. (2) 

➢ Neurofibrillary tangles: 

Composition: NFTs are twisted made up of a protein called tau, which normally helps stabilize 

microtubes inside neurons. 

Pathology: In Alzheimer’s tau becomes hyperphosphorylated - meaning chemically altered in a way 

that causes it to detach from microtubes and clamp together into insoluble filaments. 

Location: These tangles from inside neurons, especially in areas critical for memory and cognition 

like the hippocampus and cerebral cortex. (3,4) 

➢ Chronic neuroinflammation: 

Amyloid-beta plaques and tau tangles act as irritants, activating the brain’s immune cells. 

Microglia (the brain’s resident immune cell) becomes overactive and releases pro-inflammatory 

cytokines. 

Astrocytes also contribute by amplifying the inflammatory signals. 

Peripheral immune cells (like T cells and monocytes) may infiltrate the brain due to leaky blood-

brain barriers, worsening the inflammation. (5,6) 

➢ Synaptic dysfunction: 

Synapses are the junctions were neurons exchanges information via neurotransmitters. 

In AD, these synapses lose their structural integrity and functional efficiency, leading to impairment 

to impaired signal transmission. 

This dysfunction precedes neuronal death, making it a critical early target for understanding and 

treating Alzheimer’s. (7) 

 

1.3 Multifactorial Etiology: 

➢ Genetic factors: 

APOE e4 allele: strongest known genetic risk factor. 

Other genes involved in proteostasis, lipid metabolism, and immune response also play roles. 

➢ Molecular & cellular mechanisms: 

Oxidative stress, mitochondrial dysfunction, and impaired autophagy contribute to neuronal 

damage.(7) 

Imbalance in neurotransmitters like acetylcholine and glutamate affects cognition. 

➢ Environmental & Lifestyle Factors: 

Diet, physical activity, education level, and social engagement influence risk. 

Exposure to toxins, head trauma, and vascular issues also contribute. (8,9) 

2. Limitations of single-target drug design in AD treatment: 

Single-target drug design in Alzheimer’s disease (AD) treatment has faced significant limitations, 

largely because AD is a multifactorial disorder—not driven by a single cause, but by a complex 

interplay of genetic, molecular, and environmental factors.(10) 
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 Limitations of single-target drug design in AD: (11,12) 

A. Oversimplification of Disease Mechanisms 

AD involves multiple pathological processes: amyloid-β accumulation, tau hyperphosphorylation, 

neuroinflammation, oxidative stress, synaptic dysfunction, and vascular issues. 

Targeting just one pathway (e.g., amyloid-β) ignores the interconnected nature of these 

mechanisms. 

B. Limited Clinical Efficacy 

Drugs like Aducanumab and Lecanemab, which target amyloid-β, have shown modest cognitive 

benefits at best. 

Many single-target drugs fail in late-stage clinical trials, despite promising early results. 

C. Disease Heterogeneity 

AD patients differ in genetic background, biomarker profiles, and disease progression. 

A drug that works for one subgroup may be ineffective or harmful for others. 

D. Timing Sensitivity 

Single-target drugs often work best in early stages, but AD is usually diagnosed after significant 

damage has occurred. 

Once tau tangles and neuroinflammation are established, targeting amyloid alone may be too late. 

E. Compensatory Mechanisms 

The brain can adapt or compensate when one pathway is blocked. 

This can lead to drug resistance or activation of alternative harmful pathways. 

F. Side Effects and Safety Concerns 

High specificity can lead to off-target effects or immune reactions, especially with monoclonal 

antibodies. 

Example: Amyloid-targeting drugs have been associated with ARIA (amyloid-related imaging 

abnormalities), including brain swelling and bleeding. 

 

 Real-World Evidence(13) 

Drug Name Target Outcome Limitation 

Aducanumab Amyloid-β Approved with 

limited benefit 

ARIA risk, modest 

cognitive impact 

Semagacestat γ-secretase Failed in Phase III Worsened cognition 

Tau inhibitors Tau protein Still in early trials Limited efficacy so 

far 

 

3. Multi-Target-Directed Ligands (MTDLs)(14,15) 

MTDLs are single chemical entities designed to simultaneously interact with multiple biological 

targets involved in a disease. Unlike traditional drugs that hit one target, MTDLs aim to tackle several 

pathological pathways at once-a perfect match for complex diseases like AD. 

 

 Examples of MTDL Strategies in AD 
MTDL Type Targets Potential Benefits 

Dual inhibitors Acetylcholinesterase + β-secretase Boost cognition + reduce amyloid load 

Hybrid molecules Antioxidant + metal chelator Protect neurons + regulate metal ions 

Multi-receptor modulators NMDA + serotonin receptors Improve mood + reduce excitotoxicity 

 

 Principles of MTDLs: 

Pharmacophore fusion: Combining active sites of two drugs into one molecule. 

Linker-based hybrids: Connecting two pharmacophores with a flexible linker. 

Fragment-based design: Assembling small bioactive fragments targeting different sites. 

Poly pharmacology and its relevance in AD 

Poly pharmacology refers to the design or use of single therapeutic agents that act on multiple 

biological targets simultaneously. In contrast to traditional "one drug–one target" approaches, Poly 
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pharmacology embraces the complexity of diseases—especially multifactorial ones like 

Alzheimer’s—by aiming to modulate several pathways with a single molecule. 

 

❖ Major molecular targets in AD(16,17) 

1. Aβ aggregation 

Aβ peptides are short fragments derived from the cleavage of amyloid precursor protein (APP) by 

enzymes β-secretase and γ-secretase. 

Among these, Aβ42 is especially prone to misfolding and aggregation due to its hydrophobic nature. 

These peptides aggregate into oligomers, then fibrils, and finally form extracellular amyloid plaques 

in the brain. 

 

2. Tau phosphorylation 

Tau is a microtubule-associated protein that helps stabilize the internal skeleton of neurons. 

Phosphorylation is the addition of phosphate groups to tau by enzymes called kinases (e.g., GSK-3β, 

CDK5). 

In healthy neurons, tau is normally phosphorylated to regulate its function. 

In AD, tau becomes hyperphosphorylated meaning it has too many phosphate groups, which causes 

it to detach from microtubules and misfold. 

 

3. Acetylcholinesterase (AChE) 

Function: AChE breaks down acetylcholine (ACh), a neurotransmitter essential for learning, 

memory, and attention. 

Location: Found in synaptic clefts of cholinergic neurons, especially in the hippocampus and cerebral 

cortex. 

Mechanism: It hydrolyzes acetylcholine into choline and acetate, terminating the signal between 

neurons. 

 

4. NMDA receptor 

Type: Ionotropic glutamate receptor. 

Function: Mediates excitatory neurotransmission by allowing calcium (Ca²⁺), sodium (Na⁺), and 

potassium (K⁺) ions to flow across the neuronal membrane. 

Activation: Requires both glutamate and glycine (or D-serine) as co-agonists, and membrane 

depolarization to remove a magnesium block. 

 

5. Oxidative stress pathways 

Amyloid-β aggregation: Promotes ROS production and mitochondrial dysfunction. 

Tau hyperphosphorylation: Disrupts microtubule stability and contributes to oxidative damage. 

Mitochondrial dysfunction: Impaired energy production increases ROS leakage. 

Neuroinflammation: Activated microglia release ROS and pro-inflammatory cytokines. 

 

6. Inflammatory pathways (e.g., TNF-α) 

Inflammatory pathways are cell signaling networks that regulate the body’s response to injury, 

infection, or stress. 

Microglia: The brain’s resident immune cells. 

Astrocytes: Support cells that also modulate inflammation. 

Cytokines: Small proteins like TNF-α, IL-1β, and IL-6 that mediate immune responses. 

 

4. Scoring Functions in Poly pharmacology(18,19) 

Scoring functions estimate the binding affinity between a ligand and its target by evaluating: 

Strength of interactions (e.g., hydrogen bonds, van der Waals forces) 

Shape complementarity 

Electrostatic compatibility 
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Desolvation and entropy effects 

• Types of scoring functions: 
Type Description Pros  Cons 

 

Force-field based Uses physics-based 

equations to model 

atomic interactions 

Accurate for detailed 

energy calculations 

Computationally 

intensive 

Empirical Combines weighted 

terms from 

experimental data (e.g., 

hydrogen bonds, 

hydrophobicity) 

Fast and interpretable May oversimplify 

complex interactions 

Knowledge-based Derived from statistical 

analysis of known 

protein-ligand 

complexes 

Captures real-world 

binding trends 

Depends on quality of 

structural database 

Machine learning-based Uses AI to learn patterns 

from large datasets 

Can model nonlinear 

relationships 

Requires extensive 

training data and 

validation 

 

• Role of molecular docking: 

Ligands are positioned in the binding site of the target protein. 

Each pose is scored using a scoring function. 

The best-scoring poses are ranked to identify top candidates for experimental validation. 

 

5. Composite Indices for Poly pharmacological Profiling(20) 

Composite indices are numerical or weighted scoring systems that integrate multiple individual 

parameters into a single, unified metric. They are widely used in fields like computational drug 

design, economics, public health, and machine learning to simplify complex, multidimensional data 

into a form that’s easier to interpret, compare, and rank. 

 

➢ Key Features of Composite Indices: 

Multi-parameter integration: Combine diverse metrics (e.g., binding affinities, toxicity scores, 

ADME properties) into one score. 

Weighting: Assign relative importance to each parameter based on context or desired outcomes. 

Normalization: Standardize inputs (e.g., Z-scores, min-max scaling) to ensure comparability. 

Aggregation: Use mathematical formulas (e.g., weighted sums, geometric means) to compute the 

final index. 

 

➢ Application in Drug Design (e.g., MTDLs for Alzheimer’s): 

Rank compounds based on overall performance across multiple targets. 

Balance efficacy and safety by integrating binding scores with toxicity and off-target risks. 

Guide optimization by highlighting trade-offs (e.g., strong AChE inhibition vs. hERG liability). 

 

➢ Examples of composite indices: 

1. Poly pharmacology Index (PPI) 

Purpose: Quantifies how evenly and effectively a compound engages multiple therapeutic targets. 

 
 

where Zi is the normalized binding score for target ii, and n is the number of targets. 

Interpretation: Higher PPI suggests broader and balanced multi-target activity. 

Use case: Prioritizing MTDLs that avoid dominance by a single target. 
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2. Multi-Target Activity Score (MTAS) 

Purpose: Aggregates binding affinities across selected targets into a weighted score. 

 
where SiS_i is the binding score (e.g., docking score or predicted pKdpK_d) and wiw_i is the weight 

for target ii. 

Interpretation: Reflects both potency and therapeutic priority. 

Use case: Ranking compounds based on strategic target engagement (e.g., BACE1 > AChE > GSK-

3β). 

 

3. Weighted Binding Affinity Score 

Purpose: Integrates binding strengths with safety and pharmacokinetic filters. 

 
where ΔGbind,i is the binding free energy for target i, and Rj are risk scores (e.g., hERG, CYP 

inhibition). 

Interpretation: Balances efficacy with safety. 

Use case: Filtering high-affinity compounds that also meet toxicity thresholds. 

 

4. Selectivity Index 

Purpose: Measures how much more a compound binds to desired targets vs. off-targets. 

 
Interpretation: Higher values indicate better specificity. 

Use case: Avoiding promiscuous compounds that may cause side effects. 

 

6. Integration of In Silico and Experimental Data(21,22,23) 

Integration of in silico and experimental data refers to the strategic combination of computational 

predictions with laboratory-based validation to enhance drug discovery, development, and biomedical 

research. This approach leverages the strengths of both domains to create a more efficient, accurate, 

and cost-effective workflow. 

Role of molecular docking: 

Simulates how a ligand fits into the binding site of a target protein. 

Predicts binding orientation (pose) and binding strength (affinity) using scoring functions. 

Role of molecular dynamics: 

Simulates atomic-level motion of molecules over time. 

Reveals conformational changes, binding stability, and interaction dynamics. 

Role of QSAR model: 

Uses statistical or machine learning models to correlate chemical structure with biological activity. 

Predicts potency, selectivity, or ADME properties based on molecular descriptors. 

 

7. Challenges and Limitations(24) 

Quantifying Poly pharmacology—especially for multi-target-directed ligands (MTDLs) in 

Alzheimer’s disease (AD)—is a powerful but complex endeavor. While scoring functions and 

composite indices offer structured ways to evaluate multi-target engagement, they come with 

significant challenges and limitations that must be carefully managed. 
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1. Target Diversity and Mechanistic Complexity 

AD involves diverse targets: AChE, BACE1, GSK-3β, NMDA receptors, tau, Aβ, MAO-B, and 

inflammatory mediators. 

Each target has distinct binding sites, structural dynamics, and pharmacological roles. 

Scoring functions may not be equally accurate across all targets. 

2. Scoring Function Bias 

Many scoring functions are optimized for single-target binding. 

They may overestimate affinity for rigid pockets (e.g., AChE) and underperform for flexible or 

allosteric sites (e.g., NMDA receptor). 

Lack of standardization across scoring platforms leads to inconsistent rankings. 

3. Composite Index Construction 

Choosing appropriate weights for each target is subjective and context dependent. 

Normalization across targets with different scoring scales can distort results. 

Composite scores may mask critical trade-offs, such as strong binding to one target but poor 

selectivity. 

4. Protein Flexibility and Dynamics 

Most docking tools assume rigid receptors, ignoring conformational changes. 

MD simulations help but are computationally expensive and hard to scale across multiple targets. 

5. Off-Target and Safety Profiling 

Poly pharmacology increases the risk of off-target effects (e.g., hERG inhibition, CYP interactions). 

Composite indices often lack integrated safety penalties, leading to false positives. 

6. Data Quality and Validation 

QSAR models and scoring functions rely on high-quality experimental data. 

Sparse or noisy datasets can lead to overfitting and poor generalization. 

Experimental validation of multi-target predictions is resource intensive. 

8. Future Prospective (25) 

The future of quantifying Poly pharmacology in Alzheimer’s disease (AD) multi-target-directed 

ligands (MTDLs) is likely to be shaped by advances in computational modeling, artificial intelligence 

(AI), and systems biology. Emerging deep learning and multi-task learning frameworks are expected 

to improve the accuracy of scoring functions by simultaneously predicting binding affinities across 

multiple AD-relevant targets, surpassing the limitations of conventional docking-based approaches. 

Likewise, network pharmacology and systems biology will enable the incorporation of pathway-level 

and target connectivity metrics, allowing for a more holistic evaluation of drug action within the 

complex AD interactome. Composite indices may also evolve from static affinity-based models to 

dynamic frameworks that integrate molecular dynamics simulations and free energy calculations, 

capturing allosteric modulation and protein flexibility. In parallel, the integration of multi-omics data, 

including genomics, transcriptomics, proteomics, and metabolomics, will pave the way for patient-

specific Poly pharmacology profiling, supporting the design of precision MTDLs tailored to 

individual molecular signatures. Another critical direction will be the coupling of Poly pharmacology 

scoring with ADMET assessments to ensure that compounds demonstrate not only multi-target 

efficacy but also optimal pharmacokinetic and safety properties. Equally important is the 

establishment of standardized, reproducible composite scoring frameworks and benchmarking 

datasets, which will enhance the reliability of in silico predictions and enable cross-study 

comparisons. Finally, the future of this field will depend on the integration of computational indices 

with clinical and real-world trial data, where machine learning models can be continuously refined to 

bridge the gap between predictive scoring and therapeutic success. Collectively, these innovations 

hold promise for advancing MTDL development from a theoretical concept toward clinically viable, 

personalized therapeutic strategies for Alzheimer’s disease. 

 

9. Conclusion 

Alzheimer’s disease remains a highly complex and multifactorial disorder, where single-target 

approaches have largely failed to provide meaningful clinical benefits. Multi-target-directed ligands 
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(MTDLs) represent a promising paradigm by simultaneously modulating multiple pathological 

pathways, yet their rational design requires robust strategies to quantify Poly pharmacology. Scoring 

functions and composite indices provide valuable frameworks to evaluate multi-target interactions, 

rank ligand efficacy, and balance selectivity with safety. While conventional affinity-based scoring 

has laid the foundation, emerging composite indices offer more holistic insights by integrating 

binding potency, target relevance, and system-level interactions. However, challenges such as the 

lack of standardization, insufficient integration of ADMET properties, and limited validation against 

experimental and clinical outcomes continue to restrict progress. Future efforts should focus on AI-

driven scoring, network pharmacology, and multi-omics integration to refine Poly pharmacology 

quantification and enable patient-specific drug profiling. Ultimately, the development of 

standardized, clinically validated indices will be essential to accelerate the discovery of effective, 

safe, and personalized MTDLs for Alzheimer’s disease therapy. 
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