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Abstract:

Alzheimer’s disease (AD) is a complex, multifactorial neurodegenerative disorder characterized by
amyloid-f aggregation, tau hyperphosphorylation, oxidative stress, mitochondrial dysfunction, and
neuroinflammation. The failure of single-target therapies has shifted attention toward multi-target
directed ligands (MTDLs), which aim to modulate multiple pathological pathways simultaneously.
A critical challenge in developing and evaluating MTDLs lies in quantifying their degree of
polypharmacology—how effectively a compound engages multiple targets with therapeutic
relevance. Scoring functions and composite indices have emerged as promising approaches to
measure and compare polypharmacological profiles. These methods integrate binding affinity data,
pharmacokinetic parameters, and network-based interactions into numerical descriptors that capture
both the breadth and balance of target modulation. Computational scoring functions, such as docking-
based affinity predictions and machine learning models, allow rapid in silico assessment of
polypharmacological potential. Meanwhile, composite indices combine multiple criteria—efficacy,
selectivity, drug-likeness, and safety—to provide holistic evaluations of candidate molecules. In the
context of AD, such metrics can guide the rational design and prioritization of MTDLs targeting
cholinesterases, NMDA receptors, monoamine oxidases, and amyloidogenic proteins. Furthermore,
polypharmacology scoring can help predict off-target liabilities and optimize therapeutic windows.
This review highlights the methodological advances in quantifying polypharmacology, discusses
their application in AD drug discovery, and proposes future perspectives on integrating systems
biology, network pharmacology, and artificial intelligence for more precise evaluation of MTDLs.
By refining these scoring strategies, researchers can accelerate the identification of safe and effective
multi-target therapeutics, offering renewed hope in the battle against Alzheimer’s disease.

Keywords: Alzheimer’s disease, multi-target directed ligands (MTDLs), Polypharmacology, Scoring
functions, Composite indices, Network pharmacology, Drug discovery, Computational modeling,
Neurodegeneration, Artificial intelligence
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Introduction:

1. Alzheimer’s Disease as a multifactorial neurodegenerative disorder:

1.1 Definition & overview:

Alzheimer’s disease is the most common cause of dementia, accounting for 60%-80% of cases.

It is progressive and irreversible, leading to cognitive decline, memory loss, and behavioral changes.
AD is considered multifactorial because it arises from a combination of genetics, environmental, and
lifestyle factors, rather than a single case. ("

1.2 Key Pathological Features:

» Amyloid-beta plaques:

Origin: these plaques form when a protein called amyloid precursor protein (APP) is abnormally
cleaved by enzymes called beta-secretase and gemma-secretase.

Aggregation: these peptides are sticky and tend to clump together outside neurons, forming insoluble
plaques in the brain.

Location: plaques typically start accumulating in the neocortex and eventually spread to deeper brain
regions like the hippocampus.

» Neurofibrillary tangles:

Composition: NFTs are twisted made up of a protein called tau, which normally helps stabilize
microtubes inside neurons.

Pathology: In Alzheimer’s tau becomes hyperphosphorylated - meaning chemically altered in a way
that causes it to detach from microtubes and clamp together into insoluble filaments.

Location: These tangles from inside neurons, especially in areas critical for memory and cognition
like the hippocampus and cerebral cortex. ¢

» Chronic neuroinflammation:

Amyloid-beta plaques and tau tangles act as irritants, activating the brain’s immune cells.

Microglia (the brain’s resident immune cell) becomes overactive and releases pro-inflammatory
cytokines.

Astrocytes also contribute by amplifying the inflammatory signals.

Peripheral immune cells (like T cells and monocytes) may infiltrate the brain due to leaky blood-
brain barriers, worsening the inflammation. ¢

» Synaptic dysfunction:

Synapses are the junctions were neurons exchanges information via neurotransmitters.

In AD, these synapses lose their structural integrity and functional efficiency, leading to impairment
to impaired signal transmission.

This dysfunction precedes neuronal death, making it a critical early target for understanding and
treating Alzheimer’s. ("

1.3 Multifactorial Etiology:

» Genetic factors:

APOE e4 allele: strongest known genetic risk factor.

Other genes involved in proteostasis, lipid metabolism, and immune response also play roles.

» Molecular & cellular mechanisms:

Oxidative stress, mitochondrial dysfunction, and impaired autophagy contribute to neuronal
damage.”

Imbalance in neurotransmitters like acetylcholine and glutamate affects cognition.

» Environmental & Lifestyle Factors:

Diet, physical activity, education level, and social engagement influence risk.

Exposure to toxins, head trauma, and vascular issues also contribute. &%

2. Limitations of single-target drug design in AD treatment:

Single-target drug design in Alzheimer’s disease (AD) treatment has faced significant limitations,
largely because AD is a multifactorial disorder—not driven by a single cause, but by a complex
interplay of genetic, molecular, and environmental factors.(?
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+ Limitations of single-target drug design in AD: (112

A. Oversimplification of Disease Mechanisms

AD involves multiple pathological processes: amyloid-3 accumulation, tau hyperphosphorylation,
neuroinflammation, oxidative stress, synaptic dysfunction, and vascular issues.

Targeting just one pathway (e.g., amyloid-fB) ignores the interconnected nature of these
mechanisms.

B. Limited Clinical Efficacy

Drugs like Aducanumab and Lecanemab, which target amyloid-3, have shown modest cognitive
benefits at best.

Many single-target drugs fail in late-stage clinical trials, despite promising early results.

C. Disease Heterogeneity

AD patients differ in genetic background, biomarker profiles, and disease progression.

A drug that works for one subgroup may be ineffective or harmful for others.

D. Timing Sensitivity

Single-target drugs often work best in early stages, but AD is usually diagnosed after significant
damage has occurred.

Once tau tangles and neuroinflammation are established, targeting amyloid alone may be too late.
E. Compensatory Mechanisms

The brain can adapt or compensate when one pathway is blocked.

This can lead to drug resistance or activation of alternative harmful pathways.

F. Side Effects and Safety Concerns

High specificity can lead to off-target effects or immune reactions, especially with monoclonal
antibodies.

Example: Amyloid-targeting drugs have been associated with ARIA (amyloid-related imaging
abnormalities), including brain swelling and bleeding.

+ Real-World Evidence®

Drug Name Target Outcome Limitation
Aducanumab Amyloid-p Approved with ARIA risk, modest
limited benefit cognitive impact
Semagacestat y-secretase Failed in Phase III Worsened cognition
Tau inhibitors Tau protein Still in early trials Limited efficacy so
far

3. Multi-Target-Directed Ligands (MTDLs)1415

MTDLs are single chemical entities designed to simultaneously interact with multiple biological
targets involved in a disease. Unlike traditional drugs that hit one target, MTDLs aim to tackle several
pathological pathways at once-a perfect match for complex diseases like AD.

+ Examples of MTDL Strategies in AD

MTDL Type Targets Potential Benefits

Dual inhibitors Acetylcholinesterase + B-secretase Boost cognition + reduce amyloid load
Hybrid molecules Antioxidant + metal chelator Protect neurons + regulate metal ions
Multi-receptor modulators | NMDA + serotonin receptors Improve mood + reduce excitotoxicity

+ Principles of MTDLs:

Pharmacophore fusion: Combining active sites of two drugs into one molecule.

Linker-based hybrids: Connecting two pharmacophores with a flexible linker.

Fragment-based design: Assembling small bioactive fragments targeting different sites.

Poly pharmacology and its relevance in AD

Poly pharmacology refers to the design or use of single therapeutic agents that act on multiple
biological targets simultaneously. In contrast to traditional "one drug—one target" approaches, Poly
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pharmacology embraces the complexity of diseases—especially multifactorial ones like
Alzheimer’s—by aiming to modulate several pathways with a single molecule.

% Major molecular targets in AD{16:17

1. AP aggregation

AP peptides are short fragments derived from the cleavage of amyloid precursor protein (APP) by
enzymes [-secretase and y-secretase.

Among these, AB42 is especially prone to misfolding and aggregation due to its hydrophobic nature.
These peptides aggregate into oligomers, then fibrils, and finally form extracellular amyloid plaques
in the brain.

2. Tau phosphorylation

Tau is a microtubule-associated protein that helps stabilize the internal skeleton of neurons.
Phosphorylation is the addition of phosphate groups to tau by enzymes called kinases (e.g., GSK-3p3,
CDK5).

In healthy neurons, tau is normally phosphorylated to regulate its function.

In AD, tau becomes hyperphosphorylated meaning it has too many phosphate groups, which causes
it to detach from microtubules and misfold.

3. Acetylcholinesterase (AChE)

Function: AChE breaks down acetylcholine (ACh), a neurotransmitter essential for learning,
memory, and attention.

Location: Found in synaptic clefts of cholinergic neurons, especially in the hippocampus and cerebral
cortex.

Mechanism: It hydrolyzes acetylcholine into choline and acetate, terminating the signal between
neurons.

4. NMDA receptor

Type: Ionotropic glutamate receptor.

Function: Mediates excitatory neurotransmission by allowing calcium (Ca*"), sodium (Na*), and
potassium (K*) ions to flow across the neuronal membrane.

Activation: Requires both glutamate and glycine (or D-serine) as co-agonists, and membrane
depolarization to remove a magnesium block.

5. Oxidative stress pathways

Amyloid-f aggregation: Promotes ROS production and mitochondrial dysfunction.

Tau hyperphosphorylation: Disrupts microtubule stability and contributes to oxidative damage.
Mitochondrial dysfunction: Impaired energy production increases ROS leakage.
Neuroinflammation: Activated microglia release ROS and pro-inflammatory cytokines.

6. Inflammatory pathways (e.g., TNF-a)

Inflammatory pathways are cell signaling networks that regulate the body’s response to injury,
infection, or stress.

Microglia: The brain’s resident immune cells.

Astrocytes: Support cells that also modulate inflammation.

Cytokines: Small proteins like TNF-a, IL-1p, and IL-6 that mediate immune responses.

4. Scoring Functions in Poly pharmacology%1%

Scoring functions estimate the binding affinity between a ligand and its target by evaluating:
Strength of interactions (e.g., hydrogen bonds, van der Waals forces)

Shape complementarity

Electrostatic compatibility
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Desolvation and entropy effects
e Types of scoring functions:

Type Description Pros Cons

Force-field based Uses physics-based | Accurate for detailed | Computationally
equations to model | energy calculations intensive
atomic interactions

Empirical Combines weighted | Fast and interpretable May oversimplify
terms from complex interactions
experimental data (e.g.,
hydrogen bonds,
hydrophobicity)

Knowledge-based Derived from statistical | Captures real-world | Depends on quality of
analysis of known | binding trends structural database
protein-ligand
complexes

Machine learning-based | Uses Al to learn patterns | Can model nonlinear | Requires extensive
from large datasets relationships training  data  and

validation

¢ Role of molecular docking:

Ligands are positioned in the binding site of the target protein.

Each pose is scored using a scoring function.

The best-scoring poses are ranked to identify top candidates for experimental validation.
5. Composite Indices for Poly pharmacological Profiling??

Composite indices are numerical or weighted scoring systems that integrate multiple individual
parameters into a single, unified metric. They are widely used in fields like computational drug
design, economics, public health, and machine learning to simplify complex, multidimensional data
into a form that’s easier to interpret, compare, and rank.

» Key Features of Composite Indices:

Multi-parameter integration: Combine diverse metrics (e.g., binding affinities, toxicity scores,
ADME properties) into one score.

Weighting: Assign relative importance to each parameter based on context or desired outcomes.
Normalization: Standardize inputs (e.g., Z-scores, min-max scaling) to ensure comparability.
Aggregation: Use mathematical formulas (e.g., weighted sums, geometric means) to compute the
final index.

> Application in Drug Design (e.g., MTDLs for Alzheimer’s):

Rank compounds based on overall performance across multiple targets.

Balance efficacy and safety by integrating binding scores with toxicity and off-target risks.
Guide optimization by highlighting trade-offs (e.g., strong AChE inhibition vs. hERG liability).

» Examples of composite indices:
1. Poly pharmacology Index (PPI)
pose: Quantifies how evenly and effectively a compound engages multiple therapeutic targets.

where Zi is the normalized binding score for target ii, and n is the number of targets.
Interpretation: Higher PPI suggests broader and balanced multi-target activity.
Use case: Prioritizing MTDLs that avoid dominance by a single target.
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2. Multi-Target Activity Score (MTAS)
Purpose: Aggreg ates binding affinities across selected targets into a weighted score.

where SiS i is the b1nding score (e.g., docking score or predicted pKdpK d) and wiw _i is the weight
for target ii.

Interpretation: Reflects both potency and therapeutic priority.

Use case: Ranking compounds based on strategic target engagement (e.g., BACE1 > AChE > GSK-

3p).

3. Weighted Binding Affinity Score
Purpose: Integrates binding strengths with safety and pharmacokinetic filters.

WBAS — Zwl (— AGumas) - Zp Ry

ji=1

where AGbind,i is the binding free energy for target i, and Rj are risk scores (e.g., hERG, CYP
inhibition).

Interpretation: Balances efficacy with safety.

Use case: Filtering high-affinity compounds that also meet toxicity thresholds.

4. Selectivity Index

Purpose: Measures how much more a compound binds to desired targets vs. off-targets.
Avg on-target score

Selectivity Index =

Avg off-target score
Interpretation: Higher values indicate better specificity.
Use case: Avoiding promiscuous compounds that may cause side effects.

6. Integration of In Silico and Experimental Data?!22.23)

Integration of in silico and experimental data refers to the strategic combination of computational
predictions with laboratory-based validation to enhance drug discovery, development, and biomedical
research. This approach leverages the strengths of both domains to create a more efficient, accurate,
and cost-effective workflow.

Role of molecular docking:

Simulates how a ligand fits into the binding site of a target protein.

Predicts binding orientation (pose) and binding strength (affinity) using scoring functions.

Role of molecular dynamics:

Simulates atomic-level motion of molecules over time.

Reveals conformational changes, binding stability, and interaction dynamics.

Role of QSAR model:

Uses statistical or machine learning models to correlate chemical structure with biological activity.
Predicts potency, selectivity, or ADME properties based on molecular descriptors.

7. Challenges and Limitations®¥

Quantifying Poly pharmacology—especially for multi-target-directed ligands (MTDLs) in
Alzheimer’s disease (AD)—is a powerful but complex endeavor. While scoring functions and
composite indices offer structured ways to evaluate multi-target engagement, they come with
significant challenges and limitations that must be carefully managed.
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1. Target Diversity and Mechanistic Complexity

AD involves diverse targets: AChE, BACE1, GSK-3B, NMDA receptors, tau, Af, MAO-B, and
inflammatory mediators.

Each target has distinct binding sites, structural dynamics, and pharmacological roles.

Scoring functions may not be equally accurate across all targets.

2. Scoring Function Bias

Many scoring functions are optimized for single-target binding.

They may overestimate affinity for rigid pockets (e.g., AChE) and underperform for flexible or
allosteric sites (e.g., NMDA receptor).

Lack of standardization across scoring platforms leads to inconsistent rankings.

3. Composite Index Construction

Choosing appropriate weights for each target is subjective and context dependent.

Normalization across targets with different scoring scales can distort results.

Composite scores may mask critical trade-offs, such as strong binding to one target but poor
selectivity.

4. Protein Flexibility and Dynamics

Most docking tools assume rigid receptors, ignoring conformational changes.

MD simulations help but are computationally expensive and hard to scale across multiple targets.
5. Off-Target and Safety Profiling

Poly pharmacology increases the risk of off-target effects (e.g., hERG inhibition, CYP interactions).
Composite indices often lack integrated safety penalties, leading to false positives.

6. Data Quality and Validation

QSAR models and scoring functions rely on high-quality experimental data.

Sparse or noisy datasets can lead to overfitting and poor generalization.

Experimental validation of multi-target predictions is resource intensive.

8. Future Prospective ®®

The future of quantifying Poly pharmacology in Alzheimer’s disease (AD) multi-target-directed
ligands (MTDLs) is likely to be shaped by advances in computational modeling, artificial intelligence
(AI), and systems biology. Emerging deep learning and multi-task learning frameworks are expected
to improve the accuracy of scoring functions by simultaneously predicting binding affinities across
multiple AD-relevant targets, surpassing the limitations of conventional docking-based approaches.
Likewise, network pharmacology and systems biology will enable the incorporation of pathway-level
and target connectivity metrics, allowing for a more holistic evaluation of drug action within the
complex AD interactome. Composite indices may also evolve from static affinity-based models to
dynamic frameworks that integrate molecular dynamics simulations and free energy calculations,
capturing allosteric modulation and protein flexibility. In parallel, the integration of multi-omics data,
including genomics, transcriptomics, proteomics, and metabolomics, will pave the way for patient-
specific Poly pharmacology profiling, supporting the design of precision MTDLs tailored to
individual molecular signatures. Another critical direction will be the coupling of Poly pharmacology
scoring with ADMET assessments to ensure that compounds demonstrate not only multi-target
efficacy but also optimal pharmacokinetic and safety properties. Equally important is the
establishment of standardized, reproducible composite scoring frameworks and benchmarking
datasets, which will enhance the reliability of in silico predictions and enable cross-study
comparisons. Finally, the future of this field will depend on the integration of computational indices
with clinical and real-world trial data, where machine learning models can be continuously refined to
bridge the gap between predictive scoring and therapeutic success. Collectively, these innovations
hold promise for advancing MTDL development from a theoretical concept toward clinically viable,
personalized therapeutic strategies for Alzheimer’s disease.

9. Conclusion
Alzheimer’s disease remains a highly complex and multifactorial disorder, where single-target
approaches have largely failed to provide meaningful clinical benefits. Multi-target-directed ligands
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(MTDLs) represent a promising paradigm by simultaneously modulating multiple pathological
pathways, yet their rational design requires robust strategies to quantify Poly pharmacology. Scoring
functions and composite indices provide valuable frameworks to evaluate multi-target interactions,
rank ligand efficacy, and balance selectivity with safety. While conventional affinity-based scoring
has laid the foundation, emerging composite indices offer more holistic insights by integrating
binding potency, target relevance, and system-level interactions. However, challenges such as the
lack of standardization, insufficient integration of ADMET properties, and limited validation against
experimental and clinical outcomes continue to restrict progress. Future efforts should focus on Al-
driven scoring, network pharmacology, and multi-omics integration to refine Poly pharmacology
quantification and enable patient-specific drug profiling. Ultimately, the development of
standardized, clinically validated indices will be essential to accelerate the discovery of effective,
safe, and personalized MTDLs for Alzheimer’s disease therapy.
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