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Abstract 

Neuroinflammation and neurodegeneration are characteristic of different disorders of the central 

nervous system, such as Alzheimer disease, Parkinson disease, and multiple sclerosis. The 

generation of new therapeutic agents to act on both neuroprotective and anti-inflammatory pathways 

has become an encouraging approach to the treatment of these debilitating conditions. This review 

has given an in-depth analysis of the present state of in silico drug design strategies and preclinical 

evaluation techniques used in the process of discovering dual-acting neuroprotective and anti-

inflammatory molecules. We will talk about such methods of computations as molecular docking, 

pharmacophore modeling, QSAR analysis, and molecular dynamics simulations, as well as the 

preclinical evaluation plans that include in vitro and in vivo models. Recent discoveries in artificial 

intelligence and machine learning in drug discovery are also mentioned. Combination of 

computation and experiment methods has helped in speeding up the discovery of lead compounds 

and some of these have potentials of clinical translation. 

 

Keywords: In silico, drug design, neuroprotection, anti-inflammation, molecular docking, 

preclinical, neuroinflammation 

 
1. Introduction 

The given review offers a clue on the contemporary issues and future trends in the area of the 

development of neuroprotective drugs.Neurodegenerative diseases are a significant global health 

concern, that is, affecting millions of people and causing serious socioeconomic consequences (1). 

These disorders have a complex pathophysiology which can be explained by a series of 

interconnected processes such as oxidative stress, protein aggregation, mitochondrial dysfunction, 

and chronic neuroinflammation (2,3). The conventional single-target methods of therapy have been 
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rather unsuccessful in the clinical trials, which has promoted more attention to the idea of multi-

target therapy, which is capable of providing the simultaneous approach to neuroprotection and 

neuroinflammation (4). 

Computational drug design has transformed the pharmaceutical industry, as it is now possible to 

screen large compound libraries in a short period and to make rational drugs designs (5). In silico 

approaches can provide low-cost alternatives to conventional high-throughput screening, which 

enables researchers to discover and optimize lead compounds and then subject them to costly 

experiments (6). A combination of these computational methods with a properly designed 

preclinical evaluation protocol gives a holistic paradigm of designing new neuroprotective and anti-

inflammatory agents (7). 

The central nervous system is especially challenging when it comes to drug delivery via the blood-

brain barrier (BBB): hence, in the initial phases of drug discovery, computational prediction of BBB 

permeability plays a central role (8). In silico methods can be used to estimate ADMET 

(Absorption, Distribution, Metabolism, Excretion, and Toxicity) properties, which can assist in 

prioritizing compounds with good pharmacokinetic properties (9). This review will help give a 

general report on the existing computational methodologies and preclinical evaluation strategies that 

are being used in the discovery of dual-acting neuroprotective and anti-inflammatory agents. 

 

2. Computational Approaches in Neuroprotective Drug Design 

2.1 Molecular Docking and Virtual Screening 

The technique of molecular docking has become a fundamental aspect of structure-based drug 

design as a method to predict the binding modes and binding affinities of small molecules and target 

proteins (10). Among the enzymes related to the oxidative stress response, inflammatory mediators 

and protein aggregation pathways, the following are the targets in terms of neuroprotective drug 

discovery (11). Screening campaigns using virtual screening technology have been used to identify 

new cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and nuclear factor-kB 

(NF-κB) signalling pathway inducers (12,13). 

Docking predictions are accurate depending on a number of factors such as protein flexibility, 

interactions through water, and the choice of scoring functions (14). Enhanced successes of 

ensemble docking and induced-fit docking in the prediction of flexible targets like amyloid-beta 

aggregation inhibitors have been achieved recently (15). Neuroprotective potential scaffolds have 

been discovered by high-throughput virtual screening of large compound databases, such as ZINC, 

ChEMBL, and PubChem (16). 

 

2.2 Pharmacophore Modeling 

Pharmacophore modeling is the three dimensional structure of chemical properties necessary to the 

activity of the biological molecule (17). The method is especially useful in cases where the 

structural data of the protein of interest are scarce or when creating multi-target active compounds 

(18). There are structure-based and ligand-based pharmacophore models designed to inhibit a 

number of neuroprotective targets such as acetylcholinesterase, monoamine oxidase, and a-

synuclein aggregation inhibitors (19,20). 

The emerging generation of common-feature pharmacophore models facilitates the discovery of 

multi-target actives to nurture the complicated pathophysiology of neurodegenerative diseases (21). 

Pharmacophore modeling is enhanced by machine learning, and it has increased the accuracy of 

prediction during predictions and lowered the rate of false-positives in virtual screening campaigns 

(22). 

 

2.3 Quantitative Structure-Activity Relationship (QSAR) Analysis 

QSAR modeling provides mathematical correlations among the molecular descriptors and biological 

activities, whereby compound properties and lead structures can be predicted (23). The QSAR 

models have been used in the discovery of neuroprotectant drugs in antioxidant activity, BBB 
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permeability, and anti-inflammatory potency (24,25). Correlation of molecular descriptors such as 

topological, constitutional, geometrical, and electronic variables offer a comprehensive insight into 

structure-activity (26). 

QSAR models have been boosted by machine learning algorithms such as random forest, support 

vector machines, and artificial neural networks which facilitate the predictive ability of these models 

(27). Consent QSAR modeling which involves combination of various algorithms has demonstrated 

greater reliability in forecasting neuroprotective profile and toxicity (28). 

 

2.4 Molecular Dynamics Simulations 

Molecular dynamics (MD) simulations are beneficial in detailing the interaction between proteins 

and their ligands, conformational change, and time stability in the binding process (29). This is 

because such simulations are fundamental in the study of the mechanism of action of 

neuroprotective compounds and maximizing their binding affinity (30). MD simulations have been 

widely applied in the inhibition of amyloid-betac aggregation, tau protein, and anti-inflammatory 

enzyme (31,32). 

It is possible to predict binding free energies accurately with the use of free energy perturbation and 

thermodynamic integration techniques, which are used in optimization of leads (33). Very powerful 

acts of sampling, such as replica exchange molecular dynamics and/or metadynamics, have 

provided better exploratory power in the confined space of proteins and ligands (34). 

 

3. Target Identification and Validation 

3.1 Neuroinflammatory Targets 

Neuroinflammation is a key driver in the development of neurodegenerative disease and, therefore, 

anti-inflammatory targets are of interest in therapeutic interventions (35). Some of the important 

targets are microglial activation markers, pro-inflammatory cytokines, and inflammatory signaling 

pathways (36). NF-κB signaling pathway that governs the expression of inflammatory genes have 

been widely used in the discovery of neuroprotective drugs (37). 

The Toll-like receptors (TLRs) (especially TLR4) are key facilitators of neuroinflammation and can 

be used as potential therapeutic targets (38). Computational methods have discovered new 

neuroprotective TLR4 antagonists in preclinical systems (39). Opportunities to intervene may also 

be presented by the complement system, which is activated in the case of neuronal damage (40). 

 

3.2 Oxidative Stress Targets 

Neurodegenerative diseases are characterized by oxidative stress which is the consequence of the 

disproportion between the formation of the reactive oxygen and the antioxidant defense systems 

(41). Its main targets are antioxidant enzymes, including superoxide dismutase, catalase, and 

glutathione peroxidase, and one of the pathways, the nuclear factor erythroid 2-related factor 2 

(Nrf2) (42,43). 

Nrf2-Keap1 pathway controls the appearance of the antioxidant response factors and can be viewed 

as a prospective goal of neuroprotective intervention (44). The existence of new Nrf2 activators and 

Keap1 inhibitors with dual antioxidant and anti-inflammatory effects has been revealed through 

computational screening (45). 

 

3.3 Protein Aggregation Targets 

Protein misfolding and aggregation occurs in a variety of neurodegenerative diseases, including but 

not limited to: Alzheimer disease (amyloid-beta and tau), Parkinson disease (a-synuclein), and 

Huntington disease (huntingtin) (46). These aggregation processes provide therapeutic avenues to 

disease modification by targeting them (47). 

Small molecules which can inhibit protein aggregation, promote disaggregation, and steer 

aggregation to non-toxic pathways have been described using in silico methods (48). Machine 
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learning models have been created to forecast the propensity of aggregation and determine possible 

inhibitors of aggregation (49). 

 

4. In Silico ADMET Prediction 

4.1 Blood-Brain Barrier Permeability 

BBB is a significant drawback in CNS drug delivery, which limits the penetration of numerous 

potentially therapeutic compounds into the brain (50). BBB permeability prediction can be done 

using different computational models which include, but are not limited to: physicochemical 

property-based models, machine learning algorithms or molecular dynamics simulations (51). 

Major molecular descriptors that determine the BBB permeability are molecular weight, 

lipophilicity, polar surface area and the capacity of hydrogen bonding (52). BBB permeability 

prediction models have been developed that have used in vitro BBB model data, such as parallel 

artificial membranes permeability experiments and cell-based models (53). 

 

4.2 Toxicity Prediction 

Timely detection of possible toxicity is important in the development of any drug and patient safety 

(54). The computational toxicology models are used to predict multiple toxicity endpoints, such as 

hepatotoxicity, cardiotoxicity, and neurotoxicity (55). Large databases of regulatory agency and 

pharmaceutical company toxicity data have been used to come up with structure-toxicity 

relationships models (56). 

The toxicity predictions have been enhanced using machine learning techniques such as deep 

learning and ensemble methods (57). Combining the use of several toxicity endpoints with safety 

profiles will allow to assess risk and to better prioritize compounds (58). 

 

4.3 Pharmacokinetic Properties 

ADMET prediction involves absorption, distribution, metabolism, excretion and toxicity 

characteristics that help to define the fate of drugs in the biological systems (59). Pharmacokinetic 

prediction Computational models make use of a quantitative structure-property relationships and 

physiologically based pharmacokinetic modeling (60). 

The oral bioavailability, plasma protein binding, metabolic stability, and clearance is one of the 

critical pharmacokinetic parameters of the neuroprotective drugs (61). Combining the 

pharmacodynamics models with pharmacokinetic modeling can determine the prediction of 

effective doses and dosing regimens (62). 

 

5. Preclinical Evaluation Strategies 

5.1 In Vitro Models 

In vitro models allow the use of controlled experimental conditions to assess the neuroprotective 

and anti-inflammatory effects of new compounds (63). Primary neuronal cultures, immortalised cell 

lines and co-culture systems can be used to evaluate the effects of compounds on neuronal survival, 

oxidative stress, and inflammatory responses (64). 

 
Model System Application Advantages Limitations Reference 

Primary cortical 

neurons 

Neuroprotection assays High physiological 

relevance 

Limited lifespan, 

variability 

(65) 

SH-SY5Y cells Oxidative stress models Standardized, 

reproducible 

Limited neuronal 

characteristics 

(66) 

BV2 microglial cells Neuroinflammation 

studies 

Easy to culture, 

consistent 

Mouse-derived, not 

human 

(67) 

Organotypic slice 

cultures 

Complex tissue 

interactions 

Maintains tissue 

architecture 

Limited throughput (68) 

Blood-brain barrier 

models 

Permeability studies Predictive of in vivo 

transport 

Variable barrier properties (69) 
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Brain slices cultures Organotypic cultures provide the cellular interactions of the brain in vivo with 

the controlled experimental manipulation (70). The models are especially useful in the analysis of 

the impact of compounds on neuronal networks and glial-neuronal interactions (71). More 

physiologically relevant and with increased throughput, advanced in vitro models, such as 

microfluidic models and organ-on-chip models, are offered (72). 

 

5.2 In Vivo Models 

Neurodegeneration and Neuroinflammation animal model is necessary in the assessment of the 

therapeutic potential of new compounds in the complex biological systems (73). They are models 

that summarise the major pathological characteristics of human neurodegenerative diseases and 

allow to evaluate behavioural, histological, and biochemical endpoints (74). 

 

Animal Model Disease Key Features Behavioural Tests Reference 

APP/PS1 

transgenic mice 

Alzheimer's 

disease 

Amyloid plaques, 

memory deficits 

Morris water maze, 

Y-maze 
(75) 

MPTP-induced 

model 
Parkinson's disease 

Dopaminergic neuron 

loss 
Rotarod, pole test (76) 

EAE model Multiple sclerosis 
Immune-mediated 

demyelination 

Clinical scoring, 

rotarod 
(77) 

Stroke models 

(MCAO) 
Ischemic injury Focal brain ischemia 

Neurological deficit 

scores 
(78) 

LPS injection Neuroinflammation Microglial activation 
Open field, elevated 

plus maze 
(79) 

 

The choice of the suitable animal models is determined by the research question and the mechanism 

of action of the test compounds (80). Transgenic models offer understanding of chronic disease 

mechanisms whereas acute injury models offer the evaluation of neuroprotective outcome in 

reaction to particular harm (81). Multimodel systems integration improves the possibility of 

translation potential of preclinical results (82). 

 

5.3 Biomarkers and Endpoints 

The choice of suitable biomarkers and endpoints plays a very important role in measuring the 

effectiveness of the neuroprotective and anti-inflammatory compounds (83). Examples of 

biochemical indicators are oxidative stress parameters, inflammatory mediators, and protein 

aggregation (84). Non-invasive measurement of brain structure and functioning is made available 

through neuroimaging techniques (magnetic resonance imaging and positron emission tomography) 

(85). 

Behavioral tests include the cognitive functioning, motor and neurological impairments (86). This 

combination of various endpoint measures gives a complete assessment of the efficacy of the 

compounds and assists in determining the most promising ones to be taken to clinical development 

(87). 

 

6. Recent Advances and Case Studies 

6.1 Artificial Intelligence in Drug Discovery 

Neuroprotective drug discovery through the use of artificial intelligence (AI) and machine learning 

has led to improved and faster identification and optimization of lead compounds (88). The deep 

learning algorithms have demonstrated great success in the prediction of the properties of 

molecules, discovery of new drug-target interactions, and optimization of the structure of the 

compounds (89). 
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Variational autoencoders and generative adversarial networks are examples of the generative model 

that allows the de novo design of molecules with the intended properties (90). The techniques have 

been used to come up with new neuroprotective agents with high BBB permeability and low toxicity 

(91). Multi-objective drug design problems have been optimized through reinforcement learning 

algorithms on the basis of balancing efficacy, safety, and drug-likeness (92). 

 

6.2 Successful Case Studies 

A number of computational drug discovery packages have discovered neuroprotective compounds 

that have gone further to be developed into clinical (93). Virtual screening has identified the new g-

secretase modulators, which are currently in clinical trials in the management of Alzheimer disease 

(94). 

This has been made possible by structure-based drug design to provide selective phosphodiesterase 

enzyme inhibitors with neuroprotective effects (95). Computational and experimental methods have 

combined to enhance optimization of these compounds leading to the development of better potency 

and selectivity (96). 

The multi-target approach of designing drugs resulted in the emergence of compounds that could be 

used as cholinesterase and antioxidants (97). Such compounds are encouraging in Alzheimer disease 

preclinical models and are a novel disease-modifying therapy (98). 

 

6.3 Challenges in Translation 

Even with the tremendous breakthroughs made in the computational drug discovery, it has been 

challenging to translate promising preclinical drugs to effective clinical therapies (99). The diseases 

of the neurodegenerative system, the species variance between the animal models and the human 

beings, and the impossibility of quantifying clinical endpoints contribute to the high failure rates in 

clinical trials (100). 

Increased predictive animal models such as humanized models and patient-derived systems can be 

developed to enhance the translational performance of preclinical results (101). The combination of 

biomarkers and digital endpoints in clinical trials allows the detection of therapeutic effects to be 

more sensitive (102). 

 

7. Current Challenges and Limitations 

7.1 Computational Challenges 

Although computational drug discovery has greatly improved, it is limited in a number of ways that 

affect the discovery of effective neuroprotective drug (103). Protein flexibility, weaknesses in 

scoring functions, and water molecules and metal ions treatment limit the accuracy of molecular 

docking (104). The accuracy of prediction needs to be improved by improving the sampling 

algorithms and the scoring functions (105). 

Multi-target activity is a complex phenomenon that is difficult to predict because it requires specific 

algorithms (106). Machine learning models are expensive to develop using large and high-quality 

datasets, which are not always available on all the target classes (107). Model performance and 

generalizability are influenced by data quality (experimental variability and standardization 

problems) (108). 

 

7.2 Preclinical Model Limitations 

Neurodegeneration models on animals, though useful, have serious shortcomings in their ability to 

recapitulate the pathophysiology of human diseases (109). Differences in the metabolism, immune 

responses and disease progression in species could cause the translation of preclinical results to 

clinical success to be poor (110). Most of the animal models are acute, which may not be a good 

representation of chronic and progressive nature of human neurodegenerative diseases (111). 
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Extremes of non-standardized protocols and endpoints among the various laboratories make 

preclinical outcomes irregular and curtail meta-analyses (112). It must develop more predictive 

models such as human-based models and enhanced animal models to enhance translation (113). 

 

7.3 Regulatory Considerations 

The neuroprotective drug regulatory process is quite different because neurodegenerative diseases 

have a slow progressive nature and clinical endpoints are hard to quantify (114). The regulatory 

agencies need strong evidence of efficacy and safety, which might be difficult to illustrate with the 

existing biomarkers and clinical assessing tools (115). 

Regulatory approval could also be made easy by the development of qualified biomarkers and 

digital endpoints that can give more sensitive indicators of therapeutic effects (116). The industry, 

academia and regulatory bodies should collaborate to formulate the right guidelines to be used in 

developing neuroprotective drugs (117). 

 

8. Future Directions 

8.1 Emerging Technologies 

Quantum computing in the drug discovery process has the potential of addressing the 

computationally intractable complex problems in molecular computing (118). Quantum algorithms 

have the potential to allow more precise prediction of the molecular properties and protein-ligand 

interactions (119). Quantum machine learning methods could revolutionize the discovery of drugs 

because they can offer unprecedented computing power to solve complex optimization problems 

(120). 

Structural biology, such as cryo-electron microscopy and nuclear magnetic resonance spectroscopy, 

is presenting new knowledge about protein structures and processes that can be applied to 

neurodegeneration (121). Such structural breakthroughs make computation modeling and drug 

designing endeavors more precise (122). 

 

8.2 Personalized Medicine Approaches 

Neuroprotection drugs can be designed based on the principles of precision medicine, and it is 

possible to create a therapy that corresponds to the particularities of a patient (123). Drug response 

and disease progression are genetically determined by the presence of polymorphisms of drug-

metabolizing enzymes and disease susceptibility genes (124). 

Combination of omics data, such as genomics, proteomics, and metabolomics, offers global 

comprehension of disease pathology and drug response (125). Molecular profile subtypes of patients 

can be recognized and used to predict their response to treatment using machine learning methods 

(126). 

 

8.3 Systems-Based Approaches 

The neurodegenerative diseases are complex and need systems-level solutions that involve the 

interactions of various biological pathways and processes (127). Drug discovery technologies based 

on networks are used to identify drugs that will interact with disease-relevant network modules, not 

with individual proteins (128). 

Combining experimental data, at various scales, including the molecular, cellular, and system level, 

with computational models can offer a better understanding of the mechanism of disease and drug 

activity (129). Such solutions could result in the discovery of new treatment methods and 

combination therapies (130). 

 

9. Conclusions 

Combining computational and experimental methods has largely improved neuroprotective drug 

discovery as it has allowed discovering new compounds with neuroprotective and anti-inflammatory 

dual actions. Molecular docking, pharmacophore modeling, QSAR modeling and molecular 
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dynamics simulations are in silico techniques which offer potent tools of rational drug design and 

optimization of compounds. Computational drug discovery has also been improved by the use of 

artificial intelligence and machine learning to increase efficiency and accuracy. 

Although a lot has been achieved, issues still exist in the process of translating promising candidates 

of preclinical experiments to effective clinical therapy. Neurodegenerative diseases have a high 

failure rate during clinical development due to their complexity, constraints of the existing animal 

models and regulatory issues. The future developments in computational techniques, experimental 

models and individualized medicine strategies are promising in conquering these challenges and 

coming up with the correct remedy to neurodegenerative illnesses. 

The existing interdisciplinary approach of computational scientists, medicinal chemists, biologists, 

and clinicians is needed to enhance the sphere and apply scientific findings into therapeutic gains on 

the patient. The combination of new technologies, such as quantum computing, systems biology 

methods, can transform neuroprotective drugs discovery and result in breakthrough treatments of 

devastating neurodegenerative diseases. 
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