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Abstract-  

Background-Insulin resistance, which affects neural transmission and energy metabolism, is one 

metabolic abnormality that is increasingly linked to Alzheimer's disease (AD). Amyloid-beta 

buildup, tau pathology, and neuroinflammation are all exacerbated by disruption of the insulin 

pathways in the brain. The idea of "Type 3 Diabetes" (T3D) was born because of these common 

characteristics. The purpose of this study is to examine the molecular connections between AD and 

insulin resistance and to highlight new treatment approaches. 

Method- 

Using PubMed, Scopus, Web of Science, and the Cochrane Library, a systematic review was carried 

out in compliance with PRISMA standards to find publications that were published between January 

2010 and July 2025. "Diabetes Mellitus," "Insulin Resistance," "Alzheimer Disease," "Nerve 

Degeneration," "Cognitive Dysfunction," and other relevant clinical and biological keywords were 

among the search terms used. The final analysis contained 213 peer-reviewed articles after 

duplicates were eliminated and predetermined inclusion and exclusion criteria were applied.  

Results- 

A major pathogenic factor that has been repeatedly found to affect tau phosphorylation, amyloid-

beta clearance, and brain glucose uptake is insulin resistance. Insulin signaling pathway disruption, 

particularly PI3K/Akt and GLUT4 translocation, has been linked to oxidative stress, 

neuroinflammation, and cognitive impairment. Transcriptomic evidence also demonstrated how 

non-coding RNA’s, such as MEG3 and MALAT1, regulate insulin sensitivity and glucose 

homeostasis, connecting metabolic imbalance to neural dysfunction.  

Conclusion-The idea of T3D is supported by the fact that insulin resistance and impaired glucose 

metabolism are key factors in the onset and progression of AD. There is encouraging 

neuroprotective potential when these pathways are targeted. Validating these therapies in extensive 

clinical trials should be the main goal of future research. 
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INTRODUCTION 

Over 400 million people worldwide suffer from diabetes mellitus (DM), an endocrine condition [1, 2]. 

The term "Type 3 Diabetes" (T3D) was coined in recent years when researchers discovered a strong 

connection between metabolic dysregulation and neurodegenerative disorders [3]. This phrase draws 

attention to a possible link between the onset of Alzheimer's disease (AD), insulin resistance, and 

poor glucose metabolism [4]. Investigating this connection is essential because it could lead to novel 

methods for the diagnosis, prevention, and treatment of both illnesses. 

The main energy source for the human brain is glucose, and insulin is essential for controlling this 

process [5, 6]. Amyloid-beta (Aβ) plaques, neurofibrillary tangles, and chronic inflammation are some 

of the alterations linked to Alzheimer's disease that can occur when insulin transmission in the brain 

is interfered with [7].  

At the same time, the metabolic imbalances seen in diabetes, such as high blood sugar, oxidative 

stress, and the production of harmful AGE’s, or advanced glycation end products, are similar to the 

processes that lead to brain dysfunction [8,9]. These overlapping pathways raise the possibility that 

T3D is a distinct type of Alzheimer's disease caused by metabolic abnormalities rather than merely a 

metaphor. People with diabetes are more likely to acquire AD, and people with AD frequently have 

symptoms of impaired glucose metabolism, according to population studies [4, 10].  

This two-way link indicates to deeper, common biology between the two conditions. However, the 

fundamental mechanisms remain poorly understood. Whether diabetes directly contributes to the 

pathophysiology of AD or if both conditions are caused by similar molecular and metabolic 

pathways is still unknown. Although earlier studies have made strides in identifying possible 

connections, the results are frequently dispersed, and there isn't a thorough synthesis that combines 

transcriptomic, clinical, and genetic information from many investigations. This draws attention to a 

significant gap in the literature. Consequently, a comprehensive review is necessary to compile 

existing knowledge, elucidate mechanistic overlaps, and evaluate emerging therapeutic strategies 

targeting this intersection. 

In order to address the concept of T3D, this systematic review synthesizes the available data on the 

molecular and metabolic connections between insulin resistance and AD. In particular, it looks at 

the roles that neuroinflammation, oxidative stress, and neuronal energy deficits play in AD 

pathogenesis, as well as how impaired insulin signaling, disrupted glucose metabolism, and 

regulatory non-coding RNAs contribute to this process. Additionally, it assesses the therapeutic 

potential of agents that target these shared mechanisms. Finally, this article aims to provide an 

integrated understanding of T3D as a bridge between metabolic dysfunction and neurodegeneration, 

as well as to direct future research directions and clinical interventions. 
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 Scheme 1 A schematic illustration of multiple pathological mechanisms contributing to Alzheimer's  

complaint progression is shown in Scheme 1( as a graphical  epitome). Multiple pathological 

mechanisms contribute to Alzheimer’s  complaint progression. The figure illustrates the major 

pathological processes involved in announcement, including microglial activation, synaptic 

dysfunction, mitochondrial dysfunction, insulin resistance, neurofibrillary  distraction( NFTs)  

conformation, neuronal degeneration, inflammation, and amyloid- β( Aβ) deposit  

  

Study selection process 

867 potentially  material studies were  set up in the database after a  primary hunt. The remaining 

442 titles and  objectifications were examined in  agreement with destined eligibility criteria after 

425  indistinguishable  papers were  excluded. The studies were chosen because they examined the 

molecular mechanisms that connect Alzheimer's  complaint( also known as type 3 diabetes) to 

insulin resistance and metabolic dysfunction, with an emphasis on cellular  relations, molecular 

pathways, and their neurobiological counteraccusations . We  barred case reports, conference  

objectifications,non-peer-reviewed  papers,non-English studies, those that only  concentrated on 

clinical  issues without mechanistic  disquisition, and  papers with  inadequate data. Eventually, we 

included only original  exploration, reviews, meta- analyses, cohort, cross-sectional, and clinical 

trial  papers published in peer- reviewed journals, written in English, with clear methodological 

details, and conducted on humans or beast models( Fig. 1). 

 

 
PRISMA flow diagram for the selection of included studies 

Type 3 diabetes  frequence in populations worldwide 

 

Type 3 diabetes epidemiological  substantiation  According to a recent meta- analysis, people with 

Type 2 diabetes( T2D) are 59 more likely than people without diabetes to develop  madness( 10). 81 

cases, or 24.4, had cognitive impairment in across-sectional descriptive study of 332 diabetes cases 

at Holy Family Hospital in Pakistan[11]. In a  analogous  tone, Mexican cases with type 2 diabetes 

were  doubly as likely to  witness  madness as those without the  complaint[12]. About 68 of diabetes  

individualities in Lebanon displayed symptoms of implicit cognitive impairment[13]( Table 1). 
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Disparities in age and gender  

Dementia is largely caused by aging, and diabetes significantly exacerbates nerve damage, raising 

the chance of dementia [10]. The mental Compared to men, women with diabetes are more likely to 

experience disability [19]. However, compared to males, diabetic women demonstrated a considerably 

lower frequency of cognitive impairment and outperformed men on tests of cognitive function, 

especially memory [20]. In terms of age, dementia affects up to 24% of people over 75 and 16% of 

people with diabetes over 65 [21].  

 

Ethnic and genetic influences on prevalence 

In an ADVANCE trial of 11,140 individuals with T2D from 20 countries, Participants of Asian 

ethnicity had greater chances of dementia or cognitive deterioration than non-Asians [22]. Similarly, 

ethnic-specific R192H polymorphism in PAX4 has been associated with attention-specific cognitive 

impairment in Chinese individuals with diabetes [23].  

 

Table 2 provides an overview of the pathophysiology and molecular processes of type 3 diabetes. 

 

 
 

Insulin resistance and glucose metabolism in the brain 

Reduced neuronal survival and PI3K/Akt signalling Reduced insulin receptor (IR) sensitivity in 

insulin-resistant conditions leads to diminished Akt phosphorylation and decreased PI3K activation 
[34]. Tau hyperphosphorylation and neurofibrillary tangles (NFTs) are encouraged by this 

malfunction, which causes glycogen synthase kinase-3 beta (GSK-3β) to be dephosphorylated and 

activated [35, 36]. Additionally, Akt failure can hinder the suppression of FOXO1 (forkhead box O1), 

which lowers cell survival and increases apoptosis [37]. (Fig. 2).  
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Disruption of the insulin signaling pathway is observed in neurodegenerative disorders. Insulin 

attaches to its receptor, which triggers the activation of insulin receptor substrates (IRS1/2) and the 

PI3K-Akt pathway. When this pathway is dysregulated, it results in downstream consequences such 

as the inhibition of mTORC1 and activation of GSK-3β, which contribute to the 

hyperphosphorylation of tau and the formation of neurofibrillary tangles (NFTs). The dysregulation 

of FOXO1 leads to apoptosis and compromises the integrity of the blood-brain barrier (BBB), while 

the dysfunction of PGC1-α disrupts mitochondrial biogenesis due to decreased activity of NRF1/2 

and TFAM. Additionally, the presence of inflammatory cytokines (TNF-α, IL-1β), Aβ oligomers, 

and JNK activation further intensifies neuronal injury, demonstrating a complex mechanism of 

neurodegeneration. Black arrows illustrate pathways of activation, while red lines denote inhibition. 

 

Cognitive decline and GLUT4 dysfunction  

Disrupted PI3K/Akt signaling impairs glucose transporter type 4 (GLUT4) translocation in insulin r

esistance [38].Neurons experience an energy crisis as a result of this drop in glucose uptake, which lo

wers ATP synthesis and ultimately results in a failure to maintain ion gradients and neurotransmitter 

release [39, 40] (Fig. 3). 
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Insulin-mediated glucose uptake pathway and its impairment in insulin resistance. Insulin resistance 

inhibits this process, resulting in reduced GLUT4 membrane translocation and decreased glycolysis, 

which in turn leads to reduced pyruvate and ATP production. The downstream effects include 

impaired synthesis of neurotransmitters such as glutamate and GABA, contributing to cellular 

energy deficits and dysfunction. Black arrows denote activation, while red lines represent inhibition. 

For a detailed discussion of its implications in AD pathology 

 

Alternative energy substrates for energy shortfalls 

Neurons adjust to glucose shortages by using different energy substrates, like lactate and ketone bod

ies [41]. Ketone bodies are metabolized more efficiently by neuron, astrocytes, and oligodendrocytes, 

ensuring a more optimal energy supply for brain cells [42].  

Furthermore, astrocytes provide lactate through the astrocyteneuron lactate shuttle (ANLS), which t

urns lactate into a major energy source [43].Astrocytic dysfunction, on the other hand,  decreases lact

ate availability in insulin resistance, further jeopardizing neuronal energy homeostasis [44].Because la

ctate is essential for memory consolidation, decreased lactate transport also impacts synaptic plastici

ty [45]. 

 

Pathology of amyloid-beta in metabolic-dysfunction  

Aβ generation: 

 Involvement of insulin-degrading enzyme (IDE).IDE is involved in the degradation of both insulin 

and Aβ. [46]. IDE is sequestered to break down excess insulin in insulin-resistant conditions, which 

lowers the amount of insulin available for Aβ clearance [47, 48]. As a consequence, Aβ builds up and 

forms extracellular plaques [49] (Fig. 4). According to Benedict et al., rats given large amounts of 

insulin showed a substantial decrease in Aβ clearance. This implies that too much insulin has 

saturated the IR, decreasing its ability to promote Aβ breakdown [50].  

 

 
 

Schematic representation of the molecular  relations. Molecular  relations between insulin singling, 

amyloid- beta( Aβ) aggregation, and the  part of insulin- demeaning enzyme( IDE) in Alzheimer’s  

complaint( announcement) pathogenesis. Insulin binds to IDE,  contending with Aβ for its  

declination  point, leading to increased Aβ accumulation. This imbalance contributes to insulin 

resistance and the  conformation of  poisonous Aβ oligomers, a hallmark of announcement. 

Pioglitazone, a PPARγ agonist, modulates IDE expression through nuclear transcriptional regulation 

involvingco-regulators and RXR, promoting Aβ  concurrence and  upgrading insulin 
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resistance.Through modifying β- secretase( BACE1)  exertion, the PI3K/ Akt pathway also affects 

the  product of Aβ[51]. Insulin resistance interferes with Akt signalling, which causes BACE1 to 

come more phosphorylated and Amyloid precursor protein( APP) to  stick more readily into Aβ[52]( 

Fig. 5).  multitudinous knockout mice models have shown that BACE1 is directly linked to the 

generation of Aβ and has been  considerably delved  for its function in brain amyloidogenesis[53]. 

 

 
 

Metformin-mediated AMPK activation pathway in neuroprotection. These include inhibition of 

neuroinflammation through NF-κB pathway suppression, reduction of Aβ aggregation and toxicity, 

restoration of mitochondrial dynamics through DRP1 and MFN2 phosphorylation, and activation of 

antioxidant responses via NRF2. The pathway also shows metformin’s role in inhibiting mTOR 

signalling and the subsequent caspase cascade, ultimately preventing neuronal apoptosis.  

 

Aggregation of Aβ and its toxicity 

Insulin resistance not only increases production but also causes metal ion dysregulation and oxidativ

e stress, which encourage Aβ aggregation [54, 55].Aβ oxidation brought on by oxidative stress increase

s their propensity to assemble [56].Because iron and copper are catalysts for Aβ oxidation, their dysre

gulation in insulinresistant brains makes this process much worse [57–60]. 

 

NFT production and tau hyperphosphorylation  

GSK-3β's function in Tau pathogenesis  

NFTs are created when tau, a microtubule-associated protein, is hyperphosphorylated in AD [61]. 

Since tau is a key modulator of insulin signaling, it has also been linked to insulin resistance [62]. 

Insulin signaling tightly regulates the activity of GSK-3β, a crucial kinase that causes tau 

phosphorylation [63] (Fig. 2).  

 

Hyperphosphorylated Tau aggregation 

 PHFs, which are subsequently assembled into NFTs, are formed when hyperphosphorylated tau 

aggregates [64]. By enclosing normal tau and other microtubule-associated proteins, these aggregates 

impair neuronal function [65] (Fig. 2). Additionally tau aggregates propagate 

transmitting disease throughout the brain in a prionlike fashion between neurone [66]. 
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Tau disease and oxidative stress  

By increasing tau phosphorylation and aggregation, oxidative stress aggravates tau disease [67]. 

Through oxidative post-translational modifications (PTMs), such carbonylation, reactive oxygen 

species (ROS) alter tau and encourage its aggregation [67]. Acetylation and phosphorylation are also 

seen as important PTMs linked to AD [68]. Both phosphorylation and acetylation can decrease tau's 

affinity for microtubules, which can result in tau aggregation, according to the Kelly et al. article [69].  

 

Oxidative stress and mitochondrial dysfunction: the energy collapse  

Insulin resistance and mitochondrial energy deficiencies: Mitochondria are essential for neuronal 

survival, providing energy through oxidative phosphorylation (OXPHOS) [70]. Insulin resistance 

leads to a reduction in mitochondrial number. 

 

Overproduction of ROS and oxidative stress  

An imbalance between the production and removal of ROS leads to oxidative stress [71]. One 

important ROS that builds up in insulin-resistant conditions is mitochondrial superoxide [72]. A 

mitochondrial antioxidant enzyme called manganese superoxide dismutase (SOD2) is 

downregulated in diabetes, which permits superoxide to react with nitric oxide (NO) to produce 

peroxynitrite [73–75]. According to Olufunmilayo et al., lipoproteins extracted from AD patients can 

stimulate astrocytes to produce more peroxynitrite [76].  

 

This demonstrates how cellular components of the central nervous system (CNS) are involved in the 

intricate relationship between oxidative stress and the development of AD pathogenesis [76].  

 

 
Fig. 4 Schematic representation of the molecular interactions. Molecular interactions between 

insulin signalling, amyloid-beta (Aβ) aggregation, and the role of insulin-degrading enzyme 

(IDE) in Alzheimer’s disease (AD) pathogenesis. Insulin binds to IDE, competing with Aβ for 

its degradation site, leading to increased Aβ accumulation. Pioglitazone, a PPARγ agonist, 

modulates IDE expression through nuclear transcriptional regulation involving co-regulators 

and RXR, promoting Aβ clearance and ameliorating insulin resistance 

 

Neurodegeneration and compromised mitophagy  

The PINK1/Parkin pathway controls mitophagy, which guarantees the elimination of damaged 

mitochondria [77]. Hepatic lipogenesis, inflammation, and insulin resistance have all been 

demonstrated to worsen when Parkin- and PTEN-induced putative kinase 1 (PINK1)-mediated 

mitophagy is inhibited [78]. When mitochondrial depolarisation occurs, PINK1 builds up on damaged 

mitochondria, undergoes autophosphorylation, and phosphorylates Parkin and ubiquitin. This causes 

Parkin to be released from its auto inhibited state, enabling it to move to mitochondria, attach to 
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substrates such as VDAC1 and MFN2 (mitofusin 2), and mediate polyubiquitination of outer 

mitochondrial membrane proteins to attract the autophagic machinery and promote mitophagy [79–81].  

 

Insulin resistance due to neuroinflammation dysfunction  

Glutamate toxicity and astrocyte dysfunction 

Through glutamate uptake via excitatory amino acid transporter 2 (EAAT2), astrocytes play  a 

crucial role in preserving glutamate homeostasis [82]. Extracellular glutamate buildup results from 

decreased EAAT2 expression in insulin resistance, which is caused by compromised Akt signalling 
[83,84]. Excitotoxicity and calcium overload in neurones are brought on by high glutamate levels 

overstimulating NMDA receptors, which in turn causes calpain-mediated proteolysis and death 
[85,86]. Additionally, lactate shuttling to neurone is disrupted by astrocyte insulin resistance. Under 

metabolic stress, neurone use lactate, which is created by astrocytic glycolysis, as an energy 

substrate [87]. Decreased lactate availability accelerates neurodegeneration by compromising synapse 

function and the neural energy supply [88] (Fig. 6).  

 

 
Fig. 5 Metformin- interceded AMPK activation pathway in neuroprotection. 

 

The pathway also shows metformin’s part in inhibiting mTOR signalling and the posterior cascade,  

ultimately  preventing neuronal apoptosis. supplemental-central vulnerable crosstalk supplemental 

inflammation drives neuroinflammation by easing monocyte infiltration into the brain[89]. Insulin 

resistance reduces the expression of occluding and claudin- 5, which compromises the integrity of 

the blood- brain barricade and permits pro  inflammatory monocytes to enter the central nervous 

system[90,91]. The  inflammatory response and microglial activation are heightened when these 

overrunning cells develop into macrophages[92]. habitual inflammation accelerates Aβ aggregation, 

causes tau hyperphosphorylation, and encourages oxidative stress, all of which lead to 

neurodegeneration and cognitive loss[93]( Fig. 7). Transcriptomic understanding of type 3 diabetes 

Regulatory RNAs in glucose metabolism and insulin resistance Longnon- rendering RNAs( 

lncRNAs) and microRNAs( miRNAs) are  samples of nonsupervisory RNAs that have been linked 

as  pivotal contributors to the emergence of insulin resistance and poor glucose metabolism[94]. 

Several studies have demonstrated that lncRNAs play a major part in the development of type 2 

diabetes mellitus( T2DM) by causing insulin resistance and dysregulated glucose homeostasis, 

among other mechanisms[95 – 96].  
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Conclusion 

This  regular review explores T3D as a possible physiological connection between insulin resistance 

and Alzheimer’s complaint(  advertisement). The  disturbance of PI3K/ Akt signaling, GLUT4 

translocation, and oxidative stress contributes to dysfunctions in synapses and neurone. 

supplemental insulin resistance exacerbates central inflammation by compromising the blood- brain 

barricade( BBB) and twiddling microglia. A unique point of this review is the  incorporation of 

transcriptomic data, which underscores the nonsupervisory functions ofnon- rendering RNAs(  

analogous as MEG3, MALAT1, BACE1- AS, 51 A) in impacting insulin perceptivity and amyloid 

pathology.The results indicate that RNA-  predicated biomarkers and antidotes present new 

openings. Interventions showing pledge,  analogous as intranasal insulin, GLP- 1 receptor agonists, 

metformin, pioglitazone, and SGLT2 impediments, cortege  neuroprotective parcels by restoring 

insulin signaling and lowering oxidative stress.  nonetheless, there are ongoing challenges, including 

the absence of standardized individual criteria, inconsistent biomarkers, and limited operation in 

clinical settings.  future  disquisition should emphasize the development of biomarkers, RNA-  

predicated mechanisms, and  evidence on a large scale. Admitting T3D as a unique clinical 

condition could revise the opinion and treatment of Alzheimer’s complaint. 
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