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ABSTRACT 

AlphaFold2 uses artificial intelligence to predict the detailed three-dimensional shape of proteins 

using information from their amino acids. Because it is very accurate and efficient, plus it benefits 

many biochemistry research areas, protein structure modeling should be featured in undergraduate 

biochemistry courses. An instructional example was produced to present AlphaFold2 to students in 

an advanced biochemistry laboratory. This module focused on helping students build the models of 

proteins produced by the genome of the recent global outbreak, for which there were no published, 

experimental structures. We sought to assess how the module changed student knowledge in 

biochemistry and to make it possible for educators at all bioinformatics levels to add AlphaFold2-

based exercises into their classes. 
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INTRODUCTION 

Structural biology is a key topic included in most biochemistry books used in lecture courses. Protein 

structure helps researchers with drug development, engineering proteins, designing medicines and 

using protein structure in biotechnology. Most often, scientists use X-ray crystallography, nuclear 

magnetic resonance or, in recent years, cryo-electron microscopy to investigate protein structures [1-

3]. Previous studies report that these techniques are commonly applied, but instruction on them is 

mostly offered for graduate students. The complexity and length demanded for these results make 

them unfit for a single short module or class. Advances in computing changed the way DNA 

sequences were assembled from data acquired by running them through gels and there is now a push 

to use computers to address the problem of figuring out protein shapes. Since 1994, the protein-

prediction methods are regularly reviewed during the Critical Assessment of Structure Prediction 

(CASP) competition [5]. In 2020, during CASP14, the field made its major first step as the AI 

company DeepMind’s AlphaFold2 predicted the structure of proteins with >90% accuracy [5,6]. 

Despite previous barriers, AlphaFold2 successfully predicts almost perfect structures for proteins with 

sequences similar to those known, as well as for those whose sequences don’t resemble any that have 

been observed [6]. This detailed the key part played by machine learning in a worldwide, free-design 

approach [7] which did not require a prior reference as the plan for developing models. AlphaFold2 

has clearly had a big and ongoing impact on biochemical research. In the last few years, it has helped 

to study systems that exceeded the abilities of traditional experiments, including the cytoplasmic ring 

within the nuclear pore complex [8]. What’s more, virtual screening in drug discovery at 

pharmaceutical companies can use the structural models generated by AlphaFold2. Nonetheless, we 
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should review the obtained models carefully before reaching firm conclusions [9]. We developed a 

teaching module to train students in a senior-level biochemistry laboratory course on the Beta Fold 

protein structure software AlphaFold2. AlphaFold2 makes a great bioinformatics teaching tool since 

anyone can use it just by clicking. It executes using a script that handles all tasks for generating a 3D 

protein model, so only minor customization and little programming knowledge are needed. 

Interpreting the results from AlphaFold2 helps students apply important ideas about protein folding 

and structure they have already learned. All these features show that AlphaFold2 can be successfully 

included in a biochemistry curriculum at the undergraduate level. The AlphaFold2 module was 

delivered to 64 undergraduate students during two 3-hour class sessions. Standardized CLASS Field 

questions from the Colorado Learning Attitudes about Science Survey (CLASS) were used for both 

students and instructors to assess the module. Educational studies have used the CLASS method for 

analyzing student views about physics, chemistry, biology and computer science courses [10–13]. As 

an example of AlphaFold2’s uniqueness, the scientists used recent sequences from COVID-19 virus 

(isolate ON563414.3) to generate 3D protein models. Students needed to look at the predicted 

structures with qualitative and quantitative measures. Lastly, they used a worksheet (S1 File) to review 

their structures and assign functions to them depending on domain homology found in the NCBI 

Conserved Domain Database [14]. 

 

METHODS 

Ethics Statement 

Approval for student and expert surveys was given by the Institutional Review Board under protocol 

IRB2023-0423M. Every effort was made to keep the survey anonymous for all participants. No name 

or contact information was obtained from the respondents and only non-involved teaching assistants 

gave the surveys. Any participant was able to leave the study by true-or-false during the data collection 

period and their responses would be excluded from the dataset. 

 

Building of the AlphaFold2 Modul 

Senior students in biochemistry and genetics, along with some juniors, take the Biochemical 

Techniques I course as a 15-week spring semester class. This course covers two sections of 64 students 

who meet together twice per week for sessions lasting 2 hours and 50 minutes. The experiments in 

the course focus on how charge changes the activity and structure of ribonuclease Sa [21–24]. Upon 

designing their experiment, students change part of the protein’s sequence to alter the charge at 

physiological pH, induce the mutant’s expression, purify it via chromatography, verify purity on a gel 

and confirm the mutated protein with tandem mass spectrometry. Subsequently, performance and 

stability are checked and molecular modeling is completed using ChimeraX. All through the semester, 

students save their discoveries in a style similar to scientific articles. Normally, during the final 3 to 

4 weeks of the course, expert lecturers are brought in to discuss present topics in biochemical research. 

We all had two class periods in the last four weeks to try out AlphaFold2 ourselves. There were 

different goals for these two sessions (Fig 1A). In the first session, students were introduced to 

AlphaFold2, including the basics of protein structure, its role in life science, methods of studying 

protein structure, the early years of protein structure predictions through CASP events every two years 

and how to use bioinformatics scripts and file formats in computing all of this on the university’s 

HPRC cluster [25]. At the second meeting, one week apart, we looked at the proper ways to assess 

model confidence using common measures from the field of protein structure prediction. Tags showed 

students how to download their results and look at 3D structures with the open-source software 

ChimeraX [26]. Before this module, students finished a molecular modeling activity where they 

downloaded ribonuclease Sa from the PDB and looked at the structure using ChimeraX. We changed 

the previous activity, adding a new worksheet (S1 File) designed for beginners which explores basic 

ChimeraX controls and also teaches how to analyze bond lengths and view a protein’s surface. They 

were given the additional assignment to use CD-BLAST [14] and a selection of alignment tools to 

guess the tasks of their assigned proteins. 
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Estimation of the shapes of viral proteins 

During this research, the viral genome contained 190 genes and matching amino acid sequences were 

obtained from GenBank at NCBI (ON563414.3). Unique protein sequences were allotted to the 

students during the simulation. To create the 3D structures, students applied AlphaFold2 (v2.1.1) to 

their asigned proteins. Since we found default parameters to be inappropriate, all input for AlphaFold2 

was provided manually when running S3. I ran a complete database search (—db_preset = full_db) 

and chose the monomer_ptm model (—model = monomer_ptm) to measure the errors of the 

calculated alignments during the prediction. All the prediction jobs were hosted and ran using the 

university’s HPRC cluster. AlphaFold2 generally runs its last steps faster with NVIDIA GPUs, but 

since only four nodes met its demands, every job was assigned to CPU nodes and took much longer. 

Each job was given 24 CPU cores, 160 GB RAM and a limit of 24 hours before it was cut off by the 

job scheduler. Most predictions are finished in around 4 hours. Students downloaded the model that 

received the highest rank for analysis during module session two. 

 

Studying how far the analysis goes and the number of times each genome is sequenced 

Every student evaluated their model confidence by observing three key metrics produced by 

AlphaFold2. Graphs for these metrics were created by using a custom script. With the help of the 

AlphaFold2 wrapper script, a search of many metagenome databases is conducted to create a multiple 

sequence alignment of the target which makes the predicted structure more accurate than the 

experimental results [6,27]. We counted and measured the percentage of similar homologous 

sequences found in the “features.pkl” file from the AlphaFold2 output. The scripts were modified to 

function with Google Colab Jupyter notebooks, so students don’t have to configure their own software 

environments (S4 File). Heatmap graphs are created by this script to represent the relation between 

residue indices on the x-axis and homologous sequence counts on the y-axis (Fig 3B, 3F and 3J). 

Homologous identity for each amino acid is color-coded from no similarity at the bottom of one to 

identical at the top. The values come from the intensive search process used during MSA generation 

[28]. The number of matching sequences per amino acid is also pulled out with a black line and more 

homologous sequences suggest better and more confident predictions. Research beforehand suggests 

that if a model has 100 or more homologous sequences at a residue, it is considered a “good” model 

[29]. Our assessment of the data (Fig 3) indicates that often, where there are less than 30 homologues, 

we can notice structural ambiguities and gene-based inconsistencies. 

 

pLDDT values are used to analyze the confidence of the local model. 

Many scientists prefer the LDDT, since it compares models without having to use an original structure 

and gives a measure of the errors between the models and the predicted one [30]. The stepwise method 

for calculating LDDT is hard, but its role as a measure of suitable local structure was explained to 

students in the initial module lesson. Confidence in the local 3D placement of atoms is indicated by 

pLDDT—the greater the pLDDT, the more accurate the model is like the actual structure found in 

experiments. The value is stored in result_model_#ptm_pred#.pkl for every model in each 

AlphaFold2 run and you can plot it using alphaPICKLE [31]. The average pLDDT for every residue 

is displayed in the scatterplots (Fig 3C, 3G, 3K) and is further highlighted by color to help see the 

results more clearly. According to EMBL-EBI’s AlphaFold2 database, regions with a pLDDT >90 

are accurate, those between 70 and 90 are accurate for the main chain, regions with a pLDDT between 

50 and 70 are not precise for side chains and <50 means it is a disordered area with nothing to interpret 

[6,32]. Regions with structural disorder could be areas where biomolecules change shape and cannot 

be identified using most laboratory techniques or they could simply be areas where the body can flex 

or shift physiologically. 

 

Looking at the Expected Errors for the Both Individual and Stack Relative Models 

In addition, the placement of different amino acid residues compared to the reference data in the entire 

model must be carefully examined. By bringing together the model and its copy, AlphaFold2 sees 
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how well the residues correspond based on C⍺, N and C atoms to measure pAE [32]. Low pAE 

measurements show that the ordering of residues in space is well supported. Multi-domain proteins 

or protein complexes, when modeled by AlphaFold2, benefit especially from the improved accuracy 

of LDDT as a metric. AlphaPICKLE can pull out information and plot key values found in the output 

folder of AlphaFold2 predictions. Be sure to set the parameter in the model to “monomer_ptm” in 

order to calculate pAE. 

 

RESULTS 

Table 1. Survey statements organized by CLASS category. 

Statement Numbers CLASS Category 

1, 3, 7, 9, 11, 13, 15, 21 Personal Interest & Engagement 

3, 9, 11, 14, 17, 23, 29 Real-World Relevance 

4, 6, 20, 30 Problem Solving: Integration & Use 

8, 19 Problem Solving: Approaches 

10, 14, 19, 22, 25, 27, 30 Problem Solving: Persistence & Effort 

16, 25 Problem Solving: Logical Reasoning 

12, 18, 23, 26, 28, 31 Conceptual Understanding 

5, 22, 24, 26 Uncategorized 

 

Figure.1 CLASS Category Distribution of Survey StatementsColorado Learning Attitudes 

about Science Survey (CLASS) statement categorization 

 
 

To conduct this study, statements from the CLASS-BIO instrument were chosen and adjusted so that 

the survey was applicable to biochemistry. The data was divided into several groups to review 

engagement and how students handle biochemistry. The ratings in Personal Interest & Engagement 

show how much students are interested in biochemistry. In those concepts, we check if students 

believe the information is connected to and useful in real-world and current problems. Through 

“Problem Solving: Integration & Use,” students work on using different topics to solve recently 

introduced biochemical problems. This section is followed by “Approaches to Problem Solving,” 

discussing strategies used by students to deal with task they have never encountered before. In order 

to solve problems well, students have to be determined and work hard and the “Problem Solving: 

Persistence & Effort” section shows their progress. In “Problem Solving: Logical Reasoning,” the 

skills necessary to use logical reasoning when doing science are examined. Under “Conceptual 

Understanding,” students are evaluated on their connections among various concepts and how much 

knowledge from biochem they can retrieve from memory. A small number of statements are not tied 

to a specific meaning, allowing students to interpret them differently. By using this method, teachers 

can discover how each student understands and learns about biochemistry. 
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DISCUSSION 

Because biochemical research now depends on bioinformatics, educators should include up-to-date 

educational modules for undergraduate students. We developed AlphaFold2 as a module that can be 

easily integrated into a biochemistry lab or classroom, even if the instructor lacks thorough 

bioinformatics skills. AlphaFold2 was picked because the method is open and accessible and its 

results can be seen in 3D and interpreted using typical biochemical knowledge of protein function. 

We building a module consisting of two sections on protein structure prediction, showing students 

how to browse the Protein Data Bank, predict the structure of any unknown protein and analyze its 

quality using sequence homology, pLDDT and predicted aligned error (pAE). According to the 

responses, about 64 students seemed interested and enthusiastic about discovering this new method 

in biochemistry. A comparison of surveys gathered before and after the module, as well as expert 

analysis with modified CLASS questions, suggested that learning about a pressing global health topic 

improved how students understood and applied their classroom lessons to practical use. Students 

examined protein structural prediction and how to use AlphaFold2 to look at possible 3D structures 

using three confidence measures. Most senior students did not say they were eager to take advanced 

bioinformatics courses right away, but they recognized its value in biochemical research and saw how 

it could be helpful to them in the future. Even though engagement was great, the effect on students’ 

decisions about which courses to take could be modest, given that many of them are close to finishing 

their studies. In future, bioinformatics course surveys should look at how long it takes students to 

finish their studies. Based on this pilot study, we believe changes could improve both students’ 

learning and their enjoyment. Letting each student predict a larger number of protein structures might 

improve their ability to remember which is generally supported by repetition [19]. With the structure-

related data ranging from standard to more abstract, extra time spent analyzing various data and 

playing with models should help students feel more comfortable. If the module ran for a longer time, 

students could perform additional work such as running simulations to analyze protein binding and 

resemble how drug discovery is done today. We suggest InterPro [20] could be a better choice than 

the NCBI Conserved Domain tool [14] for functional annotation in the next iterations. This upper-

level course is intended to connect and reinforce what you learned in Biochemistry Lecture by 

teaching you procedures you can practice yourself. The students spend around 11 weeks modifying, 

testing, cleansing and examining their ribonuclease Sa using methods developed by the department’s 

professors. The last few weeks in the course cover more topics and prepare students for final reviews. 

Nothing needed to be changed in our course content because the material added came from 

supplementary resources. Yet, instructors who are aware of tight schedules might use the module to 

investigate proteins previously studied in the lab, by modeling their 3D structures with AlphaFold2 

or accounting for ligands binding with the AlphaFold2 multimer model. For those educators missing 

high-performance computing clusters, we urge you to try ColabFold [18] which allows you to access 

AlphaFold2 on Google Cloud for free. Unlike other tools, ColabFold uses a more efficient search to 

generate predictions in around 30 minutes to an hour, created by our experience. Although AA3D is 

faster, those running the software should know it can be interrupted in some cases, especially when 

dealing with proteins that are too long or highly similar to other proteins. We suggest using ColabFold 

on a few sample proteins before students start their projects. Users of these tools can get small, simple 

protein structure predictions in roughly one hour and get analysis reports on MSA, pLDDT and pAE. 

Results can be directly downloaded to the cloud by students for future review. 

 

CONCLUSION 

The integration of AlphaFold2 into the undergraduate biochemistry curriculum represents a 

significant step towards aligning educational practices with the evolving landscape of biochemical 

research. This pilot module demonstrated that even students with limited bioinformatics experience 

can successfully engage with advanced protein structure prediction tools, enhancing their 

understanding of protein folding, structure, and function. The use of real-world, contemporary viral 

protein sequences provided a meaningful context that reinforced the relevance of bioinformatics in 
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addressing current scientific challenges. Although the immediate impact on students’ intentions to 

pursue further bioinformatics coursework was limited, likely due to their proximity to graduation, the 

overwhelmingly positive engagement suggests that such modules can stimulate interest and 

appreciation for computational approaches in biochemistry. Recommendations to expand the module, 

including increasing the number of proteins analyzed and incorporating additional computational 

analyses like molecular docking, promise to deepen student learning and retention. Additionally, free 

and accessible platforms such as ColabFold lower barriers for implementation across diverse 

educational settings, democratizing access to cutting-edge bioinformatics tools. Overall, 

incorporating AlphaFold2-based instruction equips students with valuable skills and perspectives that 

will be essential in modern biochemical research, preparing them to contribute effectively to a field 

increasingly reliant on computational methodologies. 
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