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ABSTRACT

Objectives: The search for potential bioactive compounds for the discovery and development of targeted 
novel antidiabetic drugs is becoming more and more popular among scientists. So, the aim of this research 
is to find the inhibition activity of palmitic acid (PA) and linoleic acid extracted from Ballota saxatilis 
against protein tyrosine phosphatase (PTP: B1, N9 and 11) through simulation using molecular docking.
Methods: Gas chromatography technique (GC) (Chrompack-Packard 438A) and a separation column type 
30-SE with an inner diameter of 0.25 mm and a length of 30 m, were used to describe the biologically active 
chemicals found in B. saxatilis extracts.
Results: The simulation technique gave the binding affinity, hydrogen bonding and the distances between 
the ligand and its corresponding enzyme molecule. Molecular docking revealed that PA had strong binding 
affinities for PTP1B (−7.8) and PTP9 (−7.9) but had weaker affinities for PTP11 [up to (−7.4)]. α-Linoleic 
Acid (ALA) produced close results of binding activity against PTP1B (−6.2) and PTP9 (−6.1) and lower 
binding activity reacted with PTP11. However, the ligand ALA could form hydrogen bonding beside other 
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INTRODUCTION

The superfamily of protein tyrosine phospha-
tases’ (PTPs) prototype PTP 1B has been connected 
to several signaling pathways.1 PTPs may provide a 
new class of therapeutic targets since certain par-
ticular PTPs, including PTPN1, PTPN2, PTPN9, 
PTPN11, PTPRF, PTPRS, and DUSP9, are linked to 
the inhibition of insulin signaling and cause insulin 
resistance that is important for the onset of type-2 
diabetes.2 The conserved intracellular energy sensor 
known as AMP-activated protein kinase (AMPK) 
controls the metabolism of glucose and lipids. When 
activated, AMPK promotes glucose uptake and lipid 
oxidation in skeletal muscle and adipose tissues.3

The widely used hypoglycemic medications 
metformin and thiazolidinedione increase AMPK 
activity, showing that AMPK is a marker for an 
anti-diabetic effect.4 PTP, non-receptor type 1 
(PTPN1, also known as PTP1B), which is connected 
to the negative regulation of insulin action, raises the 
possibility that inhibiting PTPN1 might be a thera-
peutic approach for the management of type 2 diabe-
tes.5 PTP1B, a non-receptor protein phosphatase that 
phosphorylates tyrosine, is regarded as a key nega-
tive regulator of both insulin- and leptin- simulated 
signal transduction. Previous research has shown 
that the absence of PTP1B can increase insulin sen-
sitivity, improve glycemic management, and protect 
against the obesity-inducing effects of high-fat diets.6

Additionally, treating diabetic mice with 
PTP1B antisense oligonucleotides might lower 
PTP1B expression levels, regulate blood sugar 
levels, and ultimately improve insulin sensitivity.7 
PTP1B inhibitors may improve insulin and leptin 
sensitivity and function as efficient treatments for 
type II diabetes, insulin resistance, and obesity, 
according to some research.8 Gene-targeting exper-
iments in mice have identified PTP1B as a crucial 
physiological regulator of metabolism by attenuat-
ing insulin, leptin, and growth hormone signaling, 
making it a promising therapeutic target for type II 
diabetes and obesity.9

It appears that PTP1B function is not necessary 
for embryonic development. The two main  metabolic 
disorders in industrialized societies –  diabetes and 
obesity – are resistant in PTP1B-deficient animals, 
nevertheless.10 It should come as no surprise that 
the pharmaceutical industry holds PTP1B in high 
esteem as a target for the therapy of these illnesses.11

Both PTP, non-receptor type 9 (PTPN9, also 
known as PTP-MEG2) and PTP, non-receptor 
type 11 (PTPN11, also known as SHP-2), were iden-
tified as promising anti-diabetic targets, and chebu-
linic acid was shown to be their targeted inhibitor.12 
The use of inhibitors against PTPN1, PTPN9 or 
PTPN11 is regarded as an effective method for treat-
ing type 2 diabetes since it has been demonstrated 
that they enhance insulin sensitivity and the PTP 
association with insulin resistance.13

interactions with PTP1B, PTPN9 and PTPN11. The other ligand PA formed mainly hydrophobic inter-
actions with the three enzymes. Only one hydrogen bond existed between ligand PA and the amino acid 
Lys260 located at PTPN11.
Conclusion: The extract of the herb B. saxatilis could be applied by researchers, and pharmaceutical com-
panies around the world for the inhibition of PTP1B, PTPN9 and PTPN11. These compounds may control 
diabetes with fewer side effects than conventional antidiabetic medications.

Keywords: Inhibiting protein tyrosine phosphatases, diabetes, phytochemical, phytomedicine, drug 
development
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Free fatty acids (FFAs) that play a significant 
role in insulin control and beta-cell activity include 
palmitic acid (PA), which has been demonstrated 
to stimulate mTOR signaling in rat hepatocytes.14 
Increased saturated FFA concentrations influence 
insulin biosynthesis secretion, cell content, and also 
cause cell stress. This, in turn, causes lipotoxic-
ity, which may cause cell function to be lost, and 
plays a direct role in the pathophysiology of T2D.15 
FFAs affect the control of insulin via binding to 
their primary receptor, FFA receptor 1 (FFAR1), 
also known as GPR40.16 G-protein coupled recep-
tor FFAR1, which primarily expresses in pancreatic 
beta-cells, has seven transmembrane domains.17 
Different medium- and long-chain (C12–C22) 
FFAs activate cells, causing a rise in intracellular 
calcium levels and the stimulation of insulin secre-
tion, which increases the insulinotropic capability 
of glucose and amplifies glucose-stimulated insulin 
secretion (GSIS). However, it is still unknown how 
exactly FFAR1 works.18,19

Insulin secretion, insulin resistance, and glu-
cose absorption have all been identified as the 
mechanisms of action underpinning the reported 
anti-diabetic benefits. Although there are several 
distinct groups of polyphenols for the treatment of 
diabetes that have not been completely researched, 
the quest for novel therapeutic targets continues to 
be difficult. Overall, this research sought to deter-
mine the total fatty acid content of Ballota sax-
atilis extracts and to assert potential antidiabetic 
properties using an in silico approach by simu-
lating the interactions of linolenic and PAs with 
target cell signaling proteins involved in the onset 
of diabetes.

MATERIAL AND METHODS

B. saxatilis leave was purchased from the 
neighborhood market in Baghdad Province, Iraq, for 
the extraction of biologically active chemicals. The 
plant was thoroughly cleansed of any other herbs, 
washed, and then gently dried on paper towels. In 

the meantime, dried plant blooms were harvested 
using paper bags and stored for roughly 30 days in a 
dark environment at a temperature of 25°C.17

Finely powdered dried leaves were sieved 
through a 0.4-mm mesh panel after being pounded 
into powder. According to the aforementioned pro-
cedure, alfalfa aqueous extracts were made using 
water, ethanol, and other ingredients. A sample of 
500 g of dried alfalfa flower powder was extracted 
with 100 mL of 99% ethanol or water and left 
on a water path that had been heated to 60°C for   
20 minutes. The extract was recovered using a 
vacuum filtering assembly, and the material from 
the extract was dried using a rotary evaporator. The 
finished powder was weighed and kept at 4°C in a 
tight container until use.

Mass Spectrometry Using Gas Chromatography
Using the gas chromatography technique (GC) 

(Chrompack-Packard 438A) and a separation column 
type 30-SE with an inner diameter of 0.25 mm and 
a length of 30 m, according to the method described 
in, the biologically active chemicals were found in 
B. saxatilis extracts.17

Research on Molecular Docking
To determine which ligand molecule and 

the researched PTPs fit together the best, the key 
hypothesis and locking were employed. The crys-
tal structure of the protein was reconstructed by 
RCSB PDB(protein data bank) which provides 
a variety of tools and resources for studying the 
structures of biological macromolecules. File then 
imported into molegro virtual Docker (VMD) the 
visual Molecular Dynamics that utilize a molecular 
modelling and visualization computer program. PA 
and α-Linoleic acid (ALA) were used as ligands and 
described from B. saxatilis. The ligand receptor’s 
binding mechanism did not include water mole-
cules. Water molecules were deleted to prevent their 
additional H-bonding in order to optimize computa-
tion and avoid potential distortion following a dock-
ing procedure.18
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The molecular dynamics of protein with 
ligands showed that ligand PA with higher affin-
ity inserted itself through hydrophobic interac-
tion but without intra-hydrogen bonding with 
protein molecule while, ligand ALA interacted 
via hydrogen bonds with PTP1B protein at gly-
cine 220 with distance 3.22 A and the amino acid 
phenyl alanine 182 with distance 3.17A as shown 
in Figure 2A and B.

Our results indicated the interaction between 
protein molecule and ligand PA (A) and the second 
ligand ALA (B); both ligands interacted with PTPN9 
via different bonds (Table 2 and Figure 3A, B).

Despite the interaction, the molecular 
dynamic of protein PTPN9 with ligands indi-
cated that ligand PA inserted by hydrophobic 
interaction without intra-hydrogen bonding with 
protein  molecule while, ligand ALA interacted 
via  hydrogen bonds at the position of amino acid 
Glu313 with distance 3.17A and the amino acid 
Arg551 with distance 3.07 Å as shown in Figure 4A  
and B.

The third target presented here was PTP11 that 
interacted with both ligands through the forma-
tion of hydrogen bonds at position Lys260 (A) and 
Asp477 (A) Table 3 and via different bonds (Table 3 
and Figure 5A, B).

Molecular dynamics focused on the PTP11 
protein ensured that hydrogen bond would occur 
between the amino acid Lysine 260(A) and ligand 
PA at distance 2.99A while hydrogen bond detected 
at position Asparagine 477(A) with distance 2.96A 
(Figure 6A and B); such finding was very interest-
ing for targeting the protein molecule of PTP11 as a 
third option for diabetes treatment.

Preparation of Biologically Active Chemicals
In the current investigation, various bioactive 

substances were employed. These substances were 
examined in aqueous extracts of dried leave from 
the plant B. saxatilis. Then, the ligands were pro-
duced for docking along with the MVD molecules. 
The 3D ligand structures were created with assis-
tance from UCSF, while the 2D structures were 
taken from the ZINC15 chemical database. In order 
to build ligands, the UCSF Chimera Structure Build 
module was employed (minimizes energy con-
sumption, adds hydrogen atoms, and adds charges 
when needed). The 3D structure of each drug was 
created, saved in pdb format, and then optimized for 
docking utilizing UCSF Chimera tools.

RESULTS

The development of rational structure-based 
medicines frequently makes use of contemporary 
techniques like molecular docking. It is used to 
predict the intensity of the forces at play, evaluate 
the complex interactions between small ligands and 
massive macromolecules, and pinpoint the optimal 
geometric arrangements.

Molecular docking revealed that PA had strong 
binding affinities for PTP1B (−7.8) and PTP9 (−7.9) 
but had weaker affinities for PTP11 [up to (−7.4. 
ALA)]. It produced close results of binding activ-
ity against PTP1B (−6.2) and PTP9 (−6.1) and lower 
binding activity reacted with PTP11 (−5.7) (Table 1).

From stimulation data we recognized that PA 
and ALA could interact through different type of 
linkages with the protein molecule of enzyme 
PTP1B-ChEBI as presented in Figure 1A and B.

TABLE 1. The interaction between the protein tyrosine phosphatase 1 band ligand α-Linoleic acid and 
palmitic acid.

Complex
Binding 
affinity

Interacting 
residues

H-Bond 
interaction Distance

PTP1B-ChEBI_15756 (Palmitic acid) −7.8 – – –
PTP1B_ChEBI_27432 (α-Linoleic acid) −6.2 Gly220(A)

Phe182(A)
O1-N
O2-N

3.22
3.17
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FIG 1. The contact between protein PTP1B and the ligand (A) palmitic acid (B) α-Linoleic acid.

FIG 2. Schematic figure represents molecular dynamic of interaction between the enzyme PTP1B and 
ligands palmitic acid (A) and α-Linoleic acid (B).
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TABLE 2. The interaction between the protein tyrosine phosphatase non-receptor 9 and ligand  
α-Linoleic acid and palmitic acid.
Complex Binding affinity Interacting residues H-Bond interaction Distance
PTPN9_ChEBI_palmitic acid −7.9 – – –
PTPN9_ChEBI- α-Linoleic acid −6.1 Glu313(B)

Arg551(B)
O2-O

O1-NE
3.17
3.07

DISCUSSION

In addition to fat deposition and lipid buildup 
in the belly and visceral compartments, which 
cause age-enhanced insulin resistance or hyper-
insulinemia, insulin resistance has been identified 
as a distinguishing characteristic of the natural 

aging process.20 Activation of the polyol pathway, 
increased production of intracellular AGOs like 
glycated red blood cells, activation of protein kinase 
C isoforms, and excessive activity of the hexose 
amine pathway are all effects of hyperglycemia. 
When these routes are combined, they enhance 
the generation of free radicals such as superoxide, 

FIG 3. The contact between protein PTP9B and the ligand (A) palmitic acid and (B) α-Linoleic acid.
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due to its inhibitory action against the enzyme 
α-glucosidase. While according to earlier research 
by Abdullah et al.24 on diabetic rats, the aqueous 
extract of B. saxatilis may have potential anti- 
hyperglycemic actions. This may be more potent 
than the prior anti-diabetic properties of other 
Ballota genus members like B. nigra and B. undu-
late.25 B. saxatilis was examined for its chemical 
composition using GC-Mass, and it was discovered 
that the extract contained palimitic acid and ALA, 
both of which were designed for in silico studies of 
their effects as antidiabetics against PTPs, which 
are an emerging paradigm for the development of 
anti- diabetic drugs.

Jiang et al.26 considered that PTP1B is a prom-
ising drug target for the treatment of diabetes type 2 
as well as obesity through its action as a negative 
regulator of insulin receptor signaling and could 
had potent inhibitory activity against PTP1B.

hydrogen peroxide, and hydroxyl radicals, which 
have a negative impact on cells by increasing oxida-
tive stress and harming microvascular endothelial 
cells. All of them contributed to the development 
of DM sequelae as diabetes retinopathy, nephrop-
athy, and neuropathy and also the macrovascular 
issues such as stroke complications in type 2 DM, 
peripheral arterial disease, and coronary artery 
disease.20,21

Dietary habits were known to help type 2 dia-
betics by regulating their glycemic parameters; the 
American and Canadian Diabetes Associations 
advised eating more foods with unsaturated fats 
rather than saturated and trans fats. Numerous 
studies had recommended numerous species of the 
genus Ballota as a secure and affordable dietary 
supplement for a variety of illnesses.22 Founding 
by Ghaedi et al.23 concluded that Ballota glandulo-
sissima can be used as a supplement by diabetics 

FIG 4. Schematic figure represent molecular dynamics of interaction between PTP9 enzyme and ligand 
palmitic acid (A) and α-Linoleic acid (B).

PTPN9-ChEB1_15756 PTPN9-ChEB1_27432(A) (B)

TABLE 3. The interaction between the protein tyrosine phosphatase non-receptor 11 and ligand Linoleic 
acid and palmitic acid.
Complex Binding affinity Interacting residues H-Bond interaction Distance
PTPN11_ChEBI_15756 (palmitic) −7.4 Lys260(A) O1-NZ 2.99
PTPN11_ChEBI_27432 (α-Linoleic) −5.7 Asp477(A) O2-OD2 2.96
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FIG 5. The contact between protein PTP11 and the ligand (A) palmitic acid and (B) α-Linoleic acid.

FIG 6. Schematic figure represents molecular dynamics of interaction between PTP11 enzyme and 
ligand palmitic acid (A) and α-Linoleic acid (B).
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ALA regulates insulin sensitivity by influencing 
glucose homeostasis through putative roles in gene 
regulation, fat metabolism, and adipocyte devel-
opment. Various species of the genus Ballota have 
been recommended by numerous studies as a secure 
and affordable dietary supplement for a variety of 
ailments.

As a result, the present study recommends 
B. saxatilis as a brand-new oral hypoglycemic 
agent. The plant’s growing in the Iraqi environment 
and the use of its extracts in dietary regimens both 
require more research. From a substantial class of 
phytocompounds that are widely distributed and 
have demonstrated therapeutic activity against a 
number of clinical disorders, including neurological 
illnesses, PTPs, or protein tyrosine phosphatases, 
are a promising target for the creation of anti- 
diabetic medications.
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